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Background Statement of results Proof methods

Hyperbolic 3-manifolds

Finite volume hyperbolic 3-manifolds
• Let X = H3/Γ where Γ is a discrete torsion-free

subgroup of PSL(2,C) and X has finite volume.

• X is the interior of a compact manifold whose
boundary is a union of tori (possibly empty).

• A boundary torus c is called a cusp.
• Theorem (Mostow). A complete finite volume

hyperbolic structure on X is unique up to isometry.
• It follows that volH(X) is topological invariant.
• Theorem (Thurston-Jørgensen). The subset of R

{volH(X) | X is a complete hyperbolic 3-manifold}

has order ωω and X 7→ volH(X) is finite-to-one.
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Background Statement of results Proof methods

Hyperbolic 3-manifolds

Maximal cusp neighborhoods

• A cusp c corresponds to a conjugacy class of a
maximal Z⊕ Z ∼= Γc ≤ Γ.

• Γc is generated by two parabolic elements that fix
the same point z ∈ Ĉ.

• For a horosphere Hz at z, Hz/Γc is a flat torus.
• There exists a maximal embedded horoball

neighborhood Bc of c.
• If we look at all the lifts of Bc in H3, we obtain a

horoball system B̃c.

• Given a primitive element s ∈ Γc ∖ {id}, we think of
it as a slope on the flat torus ∂Bc and we measure
length ℓs of the geodesic representative of s in the
Euclidean metric on ∂Bc.
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• For a horosphere Hz at z, Hz/Γc is a flat torus.
• There exists a maximal embedded horoball

neighborhood Bc of c.
• If we look at all the lifts of Bc in H3, we obtain a

horoball system B̃c.

• Given a primitive element s ∈ Γc ∖ {id}, we think of
it as a slope on the flat torus ∂Bc and we measure
length ℓs of the geodesic representative of s in the
Euclidean metric on ∂Bc.

Gabai - Haraway - Meyerhoff - Thurston -Y.



Background Statement of results Proof methods

Hyperbolic 3-manifolds

Maximal cusp neighborhoods

• A cusp c corresponds to a conjugacy class of a
maximal Z⊕ Z ∼= Γc ≤ Γ.

• Γc is generated by two parabolic elements that fix
the same point z ∈ Ĉ.
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Background Statement of results Proof methods

Hyperbolic 3-manifolds

Dehn filling and drilling

• Dehn filling is the topological process of gluing in a solid torus to a cusp.
For every slope s on a cusp, there is a unique Dehn filling X(s).

• Theorem (Futer - Kalfagianni - Purcell). If ℓs > 2π, then X(s) admits
a complete hyperbolic structure and(

1− 4π2

ℓ2s

)3/2

volH(X) ≤ volH(X(s)) < volH(X).

• Not only do we have control on volume, but this gives only finitely many
exceptional s for which X(s) is not hyperbolic.

• Dehn drilling is the process of removing an embedded curve γ form X.
• Theorem (Agol - Culler - Shalen). With X closed and not one of 5

manifolds, γ the shortest geodesic in X, then X ∖ γ admits a complete
hyperbolic structure. With Bcγ ⊂ X ∖ γ corresponding to γ,

vol(Bcγ )/0.85328 ≤ volH(X ∖ γ) < 3.0177 volH(X).

• Remark : There are very many people involved in obtaining these results.
The number 0.85328 is the Böröczky constant for horoball packing.
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Preliminary results

Understanding all X with small vol(Bc)

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary)
Let X be an orientable finite volume hyperbolic 3-manifold and c a cusp. Let
Bc be the maximal horoball neighborhood of c. If vol(Bc) ≤ 2.62 then X is a
Dehn filling of one of the following 22 census (parent) manifolds.

m125 m129 m203 m295 m292 s443 s596 s647
s782 s780 s785 s776 s774 v2124 v2355 v2533

v2644 v2731 v3108 v3127 v3211 v3376

• The proof is computer assisted and relies on several rigorous validations.
• There are infinitely many pairs (X, c) with vol(Bc) ≤ 2.62.
• In practice, given (X, c), I can tell you which of the 22 manifolds is a

parent.
• The list can be made smaller as s776 (the only 3-cusped parent manifold)

is a parent for some of the other 22.

Gabai - Haraway - Meyerhoff - Thurston -Y.
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Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary)
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then X is a Dehn filling of one of the following 22 census manifolds.

m125 m129 m203 m295 m292 s443 s596 s647
s782 s780 s785 s776 s774 v2124 v2355 v2533
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• Using Agol-Culler-Shalen and Böröczky’s horoball packing density, we
chose the bound 2.62 to identify all closed X with volH(X) < 1.01749.
These should be the Weeks manifold, Vol2 and Vol3. Requires rigorous
volume estimates and Futer-Kalfagianni-Purcell.

• Agol shows that one cusped manifolds with more than 8 exceptional
slopes have vol(Bc) < 2.572. Rigorous bounds on slope length and the
2π-Theorem should show that S3 ∖ {figure 8 knot} is one of only two
manifolds with 10 exceptional slopes (maximum).
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Background Statement of results Proof methods

Bicuspid subgroup

Bicuspid subgroup

• Conjugate so that Γc is generated by
m =

(
1 1
0 1

)
and n =

(
1 L
0 1

)
.

• A point of tangency for Bc corresponds to an
element g ∈ Γ with g =

(
PSi −i/S
Si 0

)
.

• The bicuspid subgroup of (X, c) is

Qc = Q(L,P, S) = ⟨m,n, g⟩ ≤ PSL(2,C)

• Theorem (Agol). If vol(Bc) < π then
[Γ : Qc] < ∞ and there exists a non-trivial
word w(m,n, g) = id.

• We call the word w(m,n, g) a variety word.
• The length ℓg(w) = # of g and g−1’s.

H0 mH0

nH0

gH∞
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Background Statement of results Proof methods

Killer words

Parameter space search

Theorem. If vol(Bc) < 2.62 then Qc admits one of 85 variety words wi.
Furthermore, ℓg(wi) ≤ 7 for all i.

• Our goal is to understand the collection of all (P, S, L) ∈ C3 such that
Q(P, S, L) is discrete, torsion-free, and vol(Bc) = |S2| im(L)/2 ≤ 2.62.

• Conjugation and reflection arguments allow us to restrict ourselves to a
compact parameter space P ⊂ C3 that contains all Q of interest.

• We choose P to be 6-dim box with side ratios (25/6, 24/6, . . . , 21/6, 1).
• By cutting each dimension in half, we can encode sub-boxes in binary.
• We eliminate (sub)-boxes that contain no discrete torsion-free points.
• Our approach is to find a killer word wkill(m,n, g) for a box B such that

1. wkill(m,n, g) ·H∞ ∩H∞ ̸= ∅ over all of B
2. wkill(m,n, g) ̸= id over all of B

• Lemma. Let Vw = {w(m,n, g) = id} ⊂ P, then there is a computable
neighborhood Nw ⊃ Vw, such that Nw ∖ Vw contains no discrete points.
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Background Statement of results Proof methods

Horoball systems

Horoball systems and necklaces

• A variety word w corresponds to a necklace
ηw of horoballs in B̃c ⊂ H3 of ℓg(w) balls.

• A manifold obtained by attaching a disk
along w is called a necklace manifold Kw.

• If we can find an embedded Kw ⊂ X and Kw

admits a complete hyperbolic structure with 2
cusps, then X is a Dehn filling of Kw.

• Idea: If w is “simple” enough, then a disk can
always be attached in X \Bc.

• The groups π1(Kwi) = ⟨m,n, g | [m,n], wi⟩
can be shown to be hyperbolic using John
Berge’s program Heegard. Note : this is not
enough to give Dehn filling. In practice,
however, this recovers the parent.
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Background Statement of results Proof methods

Classifying short necklace manifolds

Necklace ≤ 7 manifolds

• Theorem. If vol(Bc) ≤ 2.62, there is an
embedded ≤ 7-necklace manifold K in X.

• We show that ≤ 7 necklaces are unknotted,
unblocked, and unlinked. For n = 6
unblocked is done by Adams-Knudson.

• One call ways find a full ≤ 7 necklace
structure – the boundary of the attached disk
cuts ∂Bc into disks.

• Full n-necklace manifolds arise as gluings of
n-dipyramids – suspension of a regular n-gon.

• Theorem. The full ≤ 7-necklace manifolds
that are embeddable into hyperbolic
3-manifolds are the ones on our list.
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cuts ∂Bc into disks.

• Full n-necklace manifolds arise as gluings of
n-dipyramids – suspension of a regular n-gon.

• Theorem. The full ≤ 7-necklace manifolds
that are embeddable into hyperbolic
3-manifolds are the ones on our list.
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Knotted, blocked, and linked

1

2
3

4

14
15

16

13 6 7

12 5 17 8

11 10 9

Knotted 18-necklace whose core is the
trefoil. Horoball 18 is at infinity.

13

12
11 9

10

8

2 7

3 1 6

4 5

Knotted 14-necklace with an unknotted
core. Horoball 14 is at infinity.

A 6-necklace blocked by red and infinity
horoballs.

Borromean linking of unblocked and
unknotted necklace.
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Thank you!

Thank you!
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