Hyperbolic 3-manifolds with low cusp volume

Andrew Yarmola
University of Luxembourg
andrew.yarmola@uni.lu
in collaboration with David Gabai, Robert Haraway, Robert Meyerhoff, and Nathaniel Thurston

Geometric structures and representation varieties, National University of Singapore, May 4, 2017

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.
- X is the interior of a compact manifold whose boundary is a union of tori (possibly empty).

figure 8 knot

Whitehead link

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.
- X is the interior of a compact manifold whose boundary is a union of tori (possibly empty).
- A boundary torus \mathfrak{c} is called a cusp.

figure 8 knot

Whitehead link

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.
- X is the interior of a compact manifold whose boundary is a union of tori (possibly empty).
- A boundary torus \mathfrak{c} is called a cusp.
- Theorem (Mostow). A complete finite volume hyperbolic structure on X is unique up to isometry.

figure 8 knot

Whitehead link

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.
- X is the interior of a compact manifold whose boundary is a union of tori (possibly empty).
- A boundary torus \mathfrak{c} is called a cusp.
- Theorem (Mostow). A complete finite volume hyperbolic structure on X is unique up to isometry.

figure 8 knot

Whitehead link

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.
- X is the interior of a compact manifold whose
boundary is a union of tori (possibly empty).
- X is the interior of a compact manifold whos
boundary is a union of tori (possibly empty).
- A boundary torus \mathfrak{c} is called a cusp.
- Theorem (Mostow). A complete finite volume hyperbolic structure on X is unique up to isometry.

figure 8 knot
- It follows that $\operatorname{vol}_{\mathbb{H}}(X)$ is topological invariant.
- Theorem (Thurston-Jørgensen). The subset of \mathbb{R}
$\left\{\operatorname{vol}_{\mathbb{H}}(X) \mid X\right.$ is a complete hyperbolic 3-manifold $\}$ has order ω^{ω} and $X \mapsto \operatorname{vol}_{\mathbb{H}}(X)$ is finite-to-one.

Whitehead link

Finite volume hyperbolic 3-manifolds

- Let $X=\mathbb{H}^{3} / \Gamma$ where Γ is a discrete torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{C})$ and X has finite volume.
- X is the interior of a compact manifold whose boundary is a union of tori (possibly empty).
- A boundary torus \mathfrak{c} is called a cusp.
- Theorem (Mostow). A complete finite volume hyperbolic structure on X is unique up to isometry.
- It follows that $\operatorname{vol}_{\mathbb{H}}(X)$ is topological invariant.
- Theorem (Thurston-Jørgensen). The subset of \mathbb{R}
$\left\{\operatorname{vol}_{\mathbb{H}}(X) \mid X\right.$ is a complete hyperbolic 3-manifold $\}$ has order ω^{ω} and $X \mapsto \operatorname{vol}_{\mathbb{H}}(X)$ is finite-to-one.

figure 8 knot

Whitehead link

Maximal cusp neighborhoods

Hyperbolic 3-manifolds

Maximal cusp neighborhoods

- A cusp c corresponds to a conjugacy class of a maximal $\mathbb{Z} \oplus \mathbb{Z} \cong \Gamma_{\mathrm{c}} \leq \Gamma$.

Hyperbolic 3-manifolds

Maximal cusp neighborhoods

- A cusp \mathfrak{c} corresponds to a conjugacy class of a maximal $\mathbb{Z} \oplus \mathbb{Z} \cong \Gamma_{\mathfrak{c}} \leq \Gamma$.
- $\Gamma_{\mathfrak{c}}$ is generated by two parabolic elements that fix the same point $z \in \widehat{\mathbb{C}}$.

Hyperbolic 3-manifolds

Maximal cusp neighborhoods

- A cusp \mathfrak{c} corresponds to a conjugacy class of a maximal $\mathbb{Z} \oplus \mathbb{Z} \cong \Gamma_{\mathbf{c}} \leq \Gamma$.
- $\Gamma_{\mathfrak{c}}$ is generated by two parabolic elements that fix the same point $z \in \widehat{\mathbb{C}}$.
- For a horosphere H_{z} at $z, H_{z} / \Gamma_{\mathfrak{c}}$ is a flat torus.

Hyperbolic 3-manifolds

Maximal cusp neighborhoods

- A cusp \mathfrak{c} corresponds to a conjugacy class of a maximal $\mathbb{Z} \oplus \mathbb{Z} \cong \Gamma_{\mathbf{c}} \leq \Gamma$.
- $\Gamma_{\mathfrak{c}}$ is generated by two parabolic elements that fix the same point $z \in \widehat{\mathbb{C}}$.
- For a horosphere H_{z} at $z, H_{z} / \Gamma_{\mathfrak{c}}$ is a flat torus.
- There exists a maximal embedded horoball neighborhood B_{c} of \mathfrak{c}.

Maximal cusp neighborhoods

- A cusp \mathfrak{c} corresponds to a conjugacy class of a maximal $\mathbb{Z} \oplus \mathbb{Z} \cong \Gamma_{\mathbf{c}} \leq \Gamma$.
- $\Gamma_{\mathfrak{c}}$ is generated by two parabolic elements that fix the same point $z \in \widehat{\mathbb{C}}$.
- For a horosphere H_{z} at $z, H_{z} / \Gamma_{\mathrm{c}}$ is a flat torus.
- There exists a maximal embedded horoball neighborhood B_{c} of \mathfrak{c}.
- If we look at all the lifts of $B_{\mathfrak{c}}$ in \mathbb{H}^{3}, we obtain a horoball system $\widetilde{B_{\mathrm{c}}}$.

Maximal cusp neighborhoods

- A cusp \mathfrak{c} corresponds to a conjugacy class of a maximal $\mathbb{Z} \oplus \mathbb{Z} \cong \Gamma_{\mathfrak{c}} \leq \Gamma$.
- $\Gamma_{\mathfrak{c}}$ is generated by two parabolic elements that fix the same point $z \in \widehat{\mathbb{C}}$.
- For a horosphere H_{z} at $z, H_{z} / \Gamma_{\mathrm{c}}$ is a flat torus.
- There exists a maximal embedded horoball
 neighborhood B_{c} of \mathfrak{c}.
- If we look at all the lifts of $B_{\mathfrak{c}}$ in \mathbb{H}^{3}, we obtain a horoball system $\widetilde{B_{c}}$.
- Given a primitive element $s \in \Gamma_{\mathfrak{c}} \backslash\{i d\}$, we think of it as a slope on the flat torus ∂B_{c} and we measure length ℓ_{s} of the geodesic representative of s in the
 Euclidean metric on $\partial B_{\mathfrak{c}}$.

Dehn filling and drilling

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.

Hyperbolic 3-manifolds

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.
- Theorem (Futer - Kalfagianni - Purcell). If $\ell_{s}>2 \pi$, then $X(s)$ admits a complete hyperbolic structure and

$$
\left(1-\frac{4 \pi^{2}}{\ell_{s}^{2}}\right)^{3 / 2} \operatorname{vol}_{\mathbb{H}}(X) \leq \operatorname{vol}_{\mathbb{H}}(X(s))<\operatorname{vol}_{\mathbb{H}}(X)
$$

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.
- Theorem (Futer - Kalfagianni - Purcell). If $\ell_{s}>2 \pi$, then $X(s)$ admits a complete hyperbolic structure and

$$
\left(1-\frac{4 \pi^{2}}{\ell_{s}^{2}}\right)^{3 / 2} \operatorname{vol}_{\mathbb{H}}(X) \leq \operatorname{vol}_{\mathbb{H}}(X(s))<\operatorname{vol}_{\mathbb{H}}(X)
$$

- Not only do we have control on volume, but this gives only finitely many exceptional s for which $X(s)$ is not hyperbolic.

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.
- Theorem (Futer - Kalfagianni - Purcell). If $\ell_{s}>2 \pi$, then $X(s)$ admits a complete hyperbolic structure and

$$
\left(1-\frac{4 \pi^{2}}{\ell_{s}^{2}}\right)^{3 / 2} \operatorname{vol}_{\mathbb{H}}(X) \leq \operatorname{vol}_{\mathbb{H}}(X(s))<\operatorname{vol}_{\mathbb{H}}(X)
$$

- Not only do we have control on volume, but this gives only finitely many exceptional s for which $X(s)$ is not hyperbolic.
- Dehn drilling is the process of removing an embedded curve γ form X.

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.
- Theorem (Futer - Kalfagianni - Purcell). If $\ell_{s}>2 \pi$, then $X(s)$ admits a complete hyperbolic structure and

$$
\left(1-\frac{4 \pi^{2}}{\ell_{s}^{2}}\right)^{3 / 2} \operatorname{vol}_{\mathbb{H}}(X) \leq \operatorname{vol}_{\mathbb{H}}(X(s))<\operatorname{vol}_{\mathbb{H}}(X)
$$

- Not only do we have control on volume, but this gives only finitely many exceptional s for which $X(s)$ is not hyperbolic.
- Dehn drilling is the process of removing an embedded curve γ form X.
- Theorem (Agol - Culler - Shalen). With X closed and not one of 5 manifolds, γ the shortest geodesic in X, then $X \backslash \gamma$ admits a complete hyperbolic structure. With $B_{\mathfrak{c}_{\gamma}} \subset X \backslash \gamma$ corresponding to γ,

$$
\operatorname{vol}\left(B_{\mathfrak{c}_{\gamma}}\right) / 0.85328 \leq \operatorname{vol}_{\mathbb{H}}(X \backslash \gamma)<3.0177 \operatorname{vol}_{\mathbb{H}}(X)
$$

Dehn filling and drilling

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling $X(s)$.
- Theorem (Futer - Kalfagianni - Purcell). If $\ell_{s}>2 \pi$, then $X(s)$ admits a complete hyperbolic structure and

$$
\left(1-\frac{4 \pi^{2}}{\ell_{s}^{2}}\right)^{3 / 2} \operatorname{vol}_{\mathbb{H}}(X) \leq \operatorname{vol}_{\mathbb{H}}(X(s))<\operatorname{vol}_{\mathbb{H}}(X)
$$

- Not only do we have control on volume, but this gives only finitely many exceptional s for which $X(s)$ is not hyperbolic.
- Dehn drilling is the process of removing an embedded curve γ form X.
- Theorem (Agol - Culler - Shalen). With X closed and not one of 5 manifolds, γ the shortest geodesic in X, then $X \backslash \gamma$ admits a complete hyperbolic structure. With $B_{\mathbf{c}_{\gamma}} \subset X \backslash \gamma$ corresponding to γ,

$$
\operatorname{vol}\left(B_{\mathfrak{c}_{\gamma}}\right) / 0.85328 \leq \operatorname{vol}_{\mathbb{H}}(X \backslash \gamma)<3.0177 \operatorname{vol}_{\mathbb{H}}(X)
$$

- Remark: There are very many people involved in obtaining these results. The number 0.85328 is the Böröczky constant for horoball packing.

Understanding all X with small $\operatorname{vol}\left(B_{\mathrm{c}}\right)$

Understanding all X with small $\operatorname{vol}\left(B_{\mathrm{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and \mathfrak{c} a cusp. Let $B_{\mathfrak{c}}$ be the maximal horoball neighborhood of \mathfrak{c}. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s 647
s782	s780	s785	s776	s774	v 2124	v 2355	v 2533
v 2644	v 2731	v 3108	v 3127	v 3211	v 3376		

Understanding all X with small $\operatorname{vol}\left(B_{\mathrm{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3 -manifold and \mathfrak{c} a cusp. Let $B_{\mathfrak{c}}$ be the maximal horoball neighborhood of \mathfrak{c}. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s 647
s782	s780	s785	s776	s774	v 2124	v 2355	v 2533
v 2644	v 2731	v 3108	v 3127	v 3211	v 3376		

- The proof is computer assisted and relies on several rigorous validations.

Understanding all X with small $\operatorname{vol}\left(B_{\mathfrak{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3 -manifold and \mathfrak{c} a cusp. Let $B_{\mathfrak{c}}$ be the maximal horoball neighborhood of \mathfrak{c}. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s 647
s782	s780	s785	s776	s774	v 2124	v 2355	v 2533
v 2644	v 2731	v 3108	v 3127	v 3211	v 3376		

- The proof is computer assisted and relies on several rigorous validations.
- There are infinitely many pairs (X, \mathfrak{c}) with $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$.

Understanding all X with small $\operatorname{vol}\left(B_{\mathfrak{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and \mathfrak{c} a cusp. Let $B_{\mathfrak{c}}$ be the maximal horoball neighborhood of \mathfrak{c}. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

- The proof is computer assisted and relies on several rigorous validations.
- There are infinitely many pairs (X, \mathfrak{c}) with $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$.
- In practice, given (X, \mathfrak{c}), I can tell you which of the 22 manifolds is a parent.

Understanding all X with small $\operatorname{vol}\left(B_{\mathfrak{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and \mathfrak{c} a cusp. Let $B_{\mathfrak{c}}$ be the maximal horoball neighborhood of \mathfrak{c}. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

- The proof is computer assisted and relies on several rigorous validations.
- There are infinitely many pairs (X, \mathfrak{c}) with $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$.
- In practice, given (X, \mathfrak{c}), I can tell you which of the 22 manifolds is a parent.
- The list can be made smaller as s776 (the only 3-cusped parent manifold) is a parent for some of the other 22.

Understanding all X with small $\operatorname{vol}\left(B_{\mathrm{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be a finite volume hyperbolic 3 -manifold and \mathfrak{c} a cusp. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census manifolds.

m125	m129	m203	m295	m292	s443	s596	s 647
s782	s780	s785	s776	s774	v 2124	v 2355	v 2533
v 2644	v 2731	v 3108	v 3127	v 3211	v 3376		

- Using Agol-Culler-Shalen and Böröczky's horoball packing density, we chose the bound 2.62 to identify all closed X with $\operatorname{vol}_{\mathbb{H}}(X)<1.01749$. These should be the Weeks manifold, Vol_{2} and Vol_{3}. Requires rigorous volume estimates and Futer-Kalfagianni-Purcell.

Understanding all X with small $\operatorname{vol}\left(B_{\mathfrak{c}}\right)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be a finite volume hyperbolic 3 -manifold and \mathfrak{c} a cusp. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$ then X is a Dehn filling of one of the following 22 census manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

- Using Agol-Culler-Shalen and Böröczky's horoball packing density, we chose the bound 2.62 to identify all closed X with $\operatorname{vol}_{\mathbb{H}}(X)<1.01749$. These should be the Weeks manifold, Vol_{2} and Vol_{3}. Requires rigorous volume estimates and Futer-Kalfagianni-Purcell.
- Agol shows that one cusped manifolds with more than 8 exceptional slopes have $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.572$. Rigorous bounds on slope length and the 2π-Theorem should show that $\mathbb{S}^{3} \backslash\{$ figure 8 knot$\}$ is one of only two manifolds with 10 exceptional slopes (maximum).

Bicuspid subgroup

Bicuspid subgroup

- Conjugate so that Γ_{c} is generated by $m=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad$ and $\quad n=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$.

Bicuspid subgroup

- Conjugate so that Γ_{c} is generated by $m=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad$ and $\quad n=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$.
- A point of tangency for B_{c} corresponds to an
 element $g \in \Gamma$ with $g=\left(\begin{array}{cc}P S i & -i / S \\ S i & 0\end{array}\right)$.

Bicuspid subgroup

Bicuspid subgroup

- Conjugate so that Γ_{c} is generated by $m=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad$ and $\quad n=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$.
- A point of tangency for B_{c} corresponds to an
 element $g \in \Gamma$ with $g=\left(\begin{array}{cc}P S i & -i / S \\ S i & 0\end{array}\right)$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$
Q_{\mathfrak{c}}=Q(L, P, S)=\langle m, n, g\rangle \leq \operatorname{PSL}(2, \mathbb{C})
$$

Bicuspid subgroup

- Conjugate so that Γ_{c} is generated by $m=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad$ and $\quad n=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$.
- A point of tangency for B_{c} corresponds to an
 element $g \in \Gamma$ with $g=\left(\begin{array}{cc}P S i & -i / S \\ S i & 0\end{array}\right)$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$
Q_{\mathfrak{c}}=Q(L, P, S)=\langle m, n, g\rangle \leq \operatorname{PSL}(2, \mathbb{C})
$$

- Theorem (Agol). If $\operatorname{vol}\left(B_{\mathbf{c}}\right)<\pi$ then [$\left.\Gamma: Q_{c}\right]<\infty$ and there exists a non-trivial word $w(m, n, g)=i d$.

Bicuspid subgroup

Bicuspid subgroup

- Conjugate so that Γ_{c} is generated by $m=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad$ and $\quad n=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$.
- A point of tangency for B_{c} corresponds to an
 element $g \in \Gamma$ with $g=\left(\begin{array}{cc}P S i & -i / S \\ S i & 0\end{array}\right)$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$
Q_{\mathfrak{c}}=Q(L, P, S)=\langle m, n, g\rangle \leq \operatorname{PSL}(2, \mathbb{C})
$$

- Theorem (Agol). If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<\pi$ then [$\left.\Gamma: Q_{c}\right]<\infty$ and there exists a non-trivial word $w(m, n, g)=i d$.
- We call the word $w(m, n, g)$ a variety word.

Bicuspid subgroup

Bicuspid subgroup

- Conjugate so that Γ_{c} is generated by

$$
m=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad n=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

- A point of tangency for B_{c} corresponds to an
 element $g \in \Gamma$ with $g=\left(\begin{array}{cc}P S i & -i / S \\ S i & 0\end{array}\right)$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$
Q_{\mathfrak{c}}=Q(L, P, S)=\langle m, n, g\rangle \leq \operatorname{PSL}(2, \mathbb{C})
$$

- Theorem (Agol). If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<\pi$ then $\left[\Gamma: Q_{\mathrm{c}}\right]<\infty$ and there exists a non-trivial word $w(m, n, g)=i d$.
- We call the word $w(m, n, g)$ a variety word.
- The length $\ell_{g}(w)=\#$ of g and g^{-1} 's.

Parameter space search

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathrm{c}}\right)<2.62$ then Q_{c} admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^{3}$ that contains all Q of interest.

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^{3}$ that contains all Q of interest.
- We choose \mathcal{P} to be 6 - dim box with side ratios $\left(2^{5 / 6}, 2^{4 / 6}, \ldots, 2^{1 / 6}, 1\right)$.

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^{3}$ that contains all Q of interest.
- We choose \mathcal{P} to be 6 -dim box with side ratios $\left(2^{5 / 6}, 2^{4 / 6}, \ldots, 2^{1 / 6}, 1\right)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^{3}$ that contains all Q of interest.
- We choose \mathcal{P} to be 6 -dim box with side ratios $\left(2^{5 / 6}, 2^{4 / 6}, \ldots, 2^{1 / 6}, 1\right)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.
- We eliminate (sub)-boxes that contain no discrete torsion-free points.

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^{3}$ that contains all Q of interest.
- We choose \mathcal{P} to be 6 -dim box with side ratios $\left(2^{5 / 6}, 2^{4 / 6}, \ldots, 2^{1 / 6}, 1\right)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.
- We eliminate (sub)-boxes that contain no discrete torsion-free points.
- Our approach is to find a killer word $w_{k i l l}(m, n, g)$ for a box \mathcal{B} such that 1. $w_{\text {kill }}(m, n, g) \cdot H_{\infty} \cap H_{\infty} \neq \emptyset$ over all of \mathcal{B}

2. $w_{\text {kill }}(m, n, g) \neq i d$ over all of \mathcal{B}

Parameter space search

Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right)<2.62$ then $Q_{\mathfrak{c}}$ admits one of 85 variety words w_{i}. Furthermore, $\ell_{g}\left(w_{i}\right) \leq 7$ for all i.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^{3}$ such that $Q(P, S, L)$ is discrete, torsion-free, and $\operatorname{vol}\left(B_{\mathfrak{c}}\right)=\left|S^{2}\right| \operatorname{im}(L) / 2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^{3}$ that contains all Q of interest.
- We choose \mathcal{P} to be 6 -dim box with side ratios $\left(2^{5 / 6}, 2^{4 / 6}, \ldots, 2^{1 / 6}, 1\right)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.
- We eliminate (sub)-boxes that contain no discrete torsion-free points.
- Our approach is to find a killer word $w_{k i l l}(m, n, g)$ for a box \mathcal{B} such that 1. $w_{\text {kill }}(m, n, g) \cdot H_{\infty} \cap H_{\infty} \neq \emptyset$ over all of \mathcal{B} 2. $w_{\text {kill }}(m, n, g) \neq i d$ over all of \mathcal{B}
- Lemma. Let $V_{w}=\{w(m, n, g)=i d\} \subset \mathcal{P}$, then there is a computable neighborhood $N_{w} \supset V_{w}$, such that $N_{w} \backslash V_{w}$ contains no discrete points.

Horoball systems and necklaces

Horoball systems and necklaces

- A variety word w corresponds to a necklace η_{w} of horoballs in $\widetilde{B_{c}} \subset \mathbb{H}^{3}$ of $\ell_{g}(w)$ balls.

Horoball systems and necklaces

- A variety word w corresponds to a necklace η_{w} of horoballs in $\widetilde{B_{c}} \subset \mathbb{H}^{3}$ of $\ell_{g}(w)$ balls.

Horoball systems

Horoball systems and necklaces

- A variety word w corresponds to a necklace η_{w} of horoballs in $\widetilde{B_{c}} \subset \mathbb{H}^{3}$ of $\ell_{g}(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold K_{w}.

Horoball systems

Horoball systems and necklaces

- A variety word w corresponds to a necklace η_{w} of horoballs in $\widetilde{B_{c}} \subset \mathbb{H}^{3}$ of $\ell_{g}(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold K_{w}.
- If we can find an embedded $K_{w} \subset X$ and K_{w} admits a complete hyperbolic structure with 2 cusps, then X is a Dehn filling of K_{w}.

Horoball systems and necklaces

- A variety word w corresponds to a necklace η_{w} of horoballs in $\widetilde{B_{c}} \subset \mathbb{H}^{3}$ of $\ell_{g}(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold K_{w}.
- If we can find an embedded $K_{w} \subset X$ and K_{w} admits a complete hyperbolic structure with 2
 cusps, then X is a Dehn filling of K_{w}.
- Idea: If w is "simple" enough, then a disk can always be attached in $X \backslash \overline{B_{\mathrm{c}}}$.

Horoball systems and necklaces

- A variety word w corresponds to a necklace η_{w} of horoballs in $\widetilde{B_{c}} \subset \mathbb{H}^{3}$ of $\ell_{g}(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold K_{w}.
- If we can find an embedded $K_{w} \subset X$ and K_{w} admits a complete hyperbolic structure with 2 cusps, then X is a Dehn filling of K_{w}.
- Idea: If w is "simple" enough, then a disk can always be attached in $X \backslash \overline{B_{\mathrm{c}}}$.
- The groups $\pi_{1}\left(K_{w_{i}}\right)=\left\langle m, n, g \mid[m, n], w_{i}\right\rangle$ can be shown to be hyperbolic using John Berge's program Heegard. Note : this is not enough to give Dehn filling. In practice, however, this recovers the parent.

Necklace ≤ 7 manifolds

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For $n=6$ unblocked is done by Adams-Knudson.

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For $n=6$ unblocked is done by Adams-Knudson.
- One call ways find a full ≤ 7 necklace structure - the boundary of the attached disk cuts ∂B_{c} into disks.

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For $n=6$ unblocked is done by Adams-Knudson.
- One call ways find a full ≤ 7 necklace
 structure - the boundary of the attached disk cuts ∂B_{c} into disks.

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For $n=6$ unblocked is done by Adams-Knudson.
- One call ways find a full ≤ 7 necklace structure - the boundary of the attached disk cuts ∂B_{c} into disks.

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For $n=6$ unblocked is done by Adams-Knudson.
- One call ways find a full ≤ 7 necklace structure - the boundary of the attached disk cuts ∂B_{c} into disks.
- Full n-necklace manifolds arise as gluings of n-dipyramids - suspension of a regular n-gon.

Necklace ≤ 7 manifolds

- Theorem. If $\operatorname{vol}\left(B_{\mathfrak{c}}\right) \leq 2.62$, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For $n=6$ unblocked is done by Adams-Knudson.
- One call ways find a full ≤ 7 necklace structure - the boundary of the attached disk cuts ∂B_{c} into disks.
- Full n-necklace manifolds arise as gluings of n-dipyramids - suspension of a regular n-gon.
- Theorem. The full ≤ 7-necklace manifolds that are embeddable into hyperbolic 3 -manifolds are the ones on our list.

Knotted, blocked, and linked

Knotted 18-necklace whose core is the trefoil. Horoball 18 is at infinity.

A 6-necklace blocked by red and infinity horoballs.

Knotted 14-necklace with an unknotted core. Horoball 14 is at infinity.

Borromean linking of unblocked and unknotted necklace.

Thank you!

