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Hyperbolic 3-manifolds

Maximal cusp neighborhoods

= A cusp ¢ corresponds to a conjugacy class of a
maximal Z&® 7Z =21 <T.

= I'c is generated by two parabolic elements that fix
the same point z € C. 0 .

= For a horosphere H at z, H. /T is a flat torus.

= There exists a maximal embedded horoball
neighborhood B. of .

= If we look at all the lifts of B, in H?, we obtain a
horoball system B.. s

= Given a primitive element s € I'c \ {id}, we think of ) .
it as a slope on the flat torus 9B, and we measure
length ¢ of the geodesic representative of s in the

Euclidean metric on 0B..
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Hyperbolic 3-manifolds

Dehn filling and drilling

Dehn filling is the topological process of gluing in a solid torus to a cusp.
For every slope s on a cusp, there is a unique Dehn filling X (s).

Theorem (Futer - Kalfagianni - Purcell). If {s > 27, then X (s) admits
a complete hyperbolic structure and

47[_2 3/2
(1 e ) volu(X) < volu(X(s)) < volu(X).
Not only do we have control on volume, but this gives only finitely many
exceptional s for which X (s) is not hyperbolic.

Dehn drilling is the process of removing an embedded curve ~ form X.
Theorem (Agol - Culler - Shalen). With X closed and not one of 5
manifolds, + the shortest geodesic in X, then X \ ~ admits a complete
hyperbolic structure. With B, C X ~\ ~ corresponding to 7,

vol(Be,)/0.85328 < volu(X \ 7) < 3.0177 volg (X).

Remark : There are very many people involved in obtaining these results.
The number 0.85328 is the Béréczky constant for horoball packing.
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Understanding all X with small vol(B,)

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary)

Let X be an orientable finite volume hyperbolic 3-manifold and ¢ a cusp. Let
B: be the maximal horoball neighborhood of ¢. If vol(B.) < 2.62 then X is a

Dehn filling of one of the following 22 census (parent) manifolds.

m125 | m129 | m203 | m295 | m292 s443 s596 s647
s782 s780 s785 s776 s774 | v2124 | v2355 | v2533
v2644 | v2731 | v3108 | v3127 | v3211 | v3376

= The proof is computer assisted and relies on several rigorous validations.

= There are infinitely many pairs (X, ¢) with vol(B;) < 2.62.

= In practice, given (X, ¢), | can tell you which of the 22 manifolds is a

parent.

= The list can be made smaller as s776 (the only 3-cusped parent manifold)

is a parent for some of the other 22.
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Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary)

Let X be a finite volume hyperbolic 3-manifold and ¢ a cusp. If vol(B:) < 2.62

then X is a Dehn filling of one of the following 22 census manifolds.

m125 | m129 | m203 | m295 | m292 | s443 s596 s647
s782 s780 s785 s776 s774 | v2124 | v2355 | v2533
v2644 | v2731 | v3108 | v3127 | v3211 | v3376

= Using Agol-Culler-Shalen and Boéroczky's horoball packing density, we

chose the bound 2.62 to identify all closed X with volg(X) < 1.01749.
These should be the Weeks manifold, Volz and Vols. Requires rigorous

volume estimates and Futer-Kalfagianni-Purcell.

= Agol shows that one cusped manifolds with more than 8 exceptional

slopes have vol(B.) < 2.572. Rigorous bounds on slope length and the

27-Theorem should show that S* \ {figure 8 knot} is one of only two
manifolds with 10 exceptional slopes (maximum).
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= Conjugate so that I'; is generated by
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= A point of tangency for B, corresponds to an
PSi —i/S

Si 0 )

= The bicuspid subgroup of (X, ¢) is

element g € I with g = <

Q.=Q(L,P,S)=(m,n,g) <PSL(2,C)

= Theorem (Agol). If vol(B.) < 7 then
[[': Q] < oo and there exists a non-trivial
word w(m,n, g) = id.
= We call the word w(m,n,g) a variety word.
= The length {y(w) = # of g and g™ ''s.
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Parameter space search

Theorem. If vol(B.) < 2.62 then Q. admits one of 85 variety words w;.
Furthermore, ¢4(w;) < 7 for all 3.

Our goal is to understand the collection of all (P, S, L) € C* such that
Q(P, S, L) is discrete, torsion-free, and vol(B.) = |S?|im(L)/2 < 2.62.

Conjugation and reflection arguments allow us to restrict ourselves to a
compact parameter space P C C? that contains all Q of interest.

We choose P to be 6-dim box with side ratios (2°/6,2%/6 .. 21/6 1),
By cutting each dimension in half, we can encode sub-boxes in binary.
We eliminate (sub)-boxes that contain no discrete torsion-free points.

Our approach is to find a killer word wgii(m,n, g) for a box B such that

1. wri(m,n,g) - Heo N Hy # 0 over all of B
2. wy(m,n,g) # id over all of B

Lemma. Let V,, = {w(m,n,g) =id} C P, then there is a computable
neighborhood N,, D V,,, such that N, \. V,, contains no discrete points.
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Horoball systems and necklaces

A variety word w corresponds to a necklace

Nw of horoballs in B, C H? of Ly (w) balls. /
A manifold obtained by attaching a disk

along w is called a necklace manifold K,,.

If we can find an embedded K., C X and K,

admits a complete hyperbolic structure with 2
cusps, then X is a Dehn filling of K.

Idea: If w is “simple” enough, then a disk can
always be attached in X \ B..
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Horoball systems and necklaces

A variety word w corresponds to a necklace
Nw of horoballs in B. C H? of £y (w) balls.

A manifold obtained by attaching a disk
along w is called a necklace manifold K,,.

If we can find an embedded K., C X and K,
admits a complete hyperbolic structure with 2
cusps, then X is a Dehn filling of K.

Idea: If w is “simple” enough, then a disk can
always be attached in X \ B.

The groups 71 (Kw,;) = {(m,n,g | [m,n], w;)
can be shown to be hyperbolic using John
Berge's program Heegard. Note : this is not
enough to give Dehn filling. In practice,
however, this recovers the parent.
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Necklace < 7 manifolds

= Theorem. If vol(B.) < 2.62, there is an
embedded < T-necklace manifold K in X.

= We show that < 7 necklaces are unknotted,

unblocked, and unlinked. For n = 6
unblocked is done by Adams-Knudson.
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structure — the boundary of the attached disk
cuts 0B into disks.
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Classifying short necklace manifolds

Necklace < 7 manifolds

= Theorem. If vol(B.) < 2.62, there is an
embedded < T-necklace manifold K in X.

= We show that < 7 necklaces are unknotted,
unblocked, and unlinked. For n = 6
unblocked is done by Adams-Knudson.

= One call ways find a full <7 necklace
structure — the boundary of the attached disk
cuts OB, into disks.

= Full n-necklace manifolds arise as gluings of
n-dipyramids — suspension of a regular n-gon.

= Theorem. The full < 7-necklace manifolds
that are embeddable into hyperbolic
3-manifolds are the ones on our list.
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Knotted, blocked, and linked

Knotted 18-necklace whose core is the Knotted 14-necklace with an unknotted
trefoil. Horoball 18 is at infinity. core. Horoball 14 is at infinity.

.

A 6-necklace blocked by red and infinity  Borromean linking of unblocked and
horoballs. unknotted necklace.
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