Hyperbolic 3-manifolds with low cusp volume

Andrew Yarmola University of Luxembourg andrew.yarmola@uni.lu

in collaboration with David Gabai, Robert Haraway, Robert Meyerhoff, and Nathaniel Thurston

Geometric structures and representation varieties, National University of Singapore, May 4, 2017

 Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.

- Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.
- X is the interior of a compact manifold whose boundary is a *union of tori* (possibly empty).

figure 8 knot

- Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.
- X is the interior of a compact manifold whose boundary is a *union of tori* (possibly empty).
- A boundary torus c is called a *cusp*.

figure 8 knot

- Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.
- X is the interior of a compact manifold whose boundary is a *union of tori* (possibly empty).
- A boundary torus c is called a *cusp*.
- **Theorem (Mostow).** A complete finite volume hyperbolic structure on X is unique up to isometry.

figure 8 knot

- Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.
- X is the interior of a compact manifold whose boundary is a *union of tori* (possibly empty).
- A boundary torus c is called a *cusp*.
- **Theorem (Mostow).** A complete finite volume hyperbolic structure on X is unique up to isometry.
- It follows that vol_H(X) is topological invariant.

figure 8 knot

- Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.
- X is the interior of a compact manifold whose boundary is a *union of tori* (possibly empty).
- A boundary torus c is called a *cusp*.
- **Theorem (Mostow).** A complete finite volume hyperbolic structure on X is unique up to isometry.
- It follows that vol_ℍ(X) is topological invariant.
- Theorem (Thurston-Jørgensen). The subset of \mathbb{R}

 $\{\operatorname{vol}_{\mathbb{H}}(X) \mid X \text{ is a complete hyperbolic 3-manifold}\}\$

has order ω^{ω} and $X \mapsto \operatorname{vol}_{\mathbb{H}}(X)$ is *finite-to-one*.

figure 8 knot

Whitehead link

Background •00 Hyperbolic 3-manifolds

Finite volume hyperbolic 3-manifolds

- Let X = H³/Γ where Γ is a discrete torsion-free subgroup of PSL(2, C) and X has finite volume.
- X is the interior of a compact manifold whose boundary is a *union of tori* (possibly empty).
- A boundary torus c is called a *cusp*.
- **Theorem (Mostow).** A complete finite volume hyperbolic structure on X is unique up to isometry.
- It follows that vol_H(X) is topological invariant.
- **Theorem (Thurston-Jørgensen).** The subset of \mathbb{R}

 $\{\operatorname{vol}_{\mathbb{H}}(X) \mid X \text{ is a complete hyperbolic 3-manifold}\}\$

has order ω^{ω} and $X \mapsto \operatorname{vol}_{\mathbb{H}}(X)$ is *finite-to-one*.

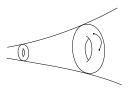
figure 8 knot

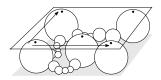
Whitehead link

Gabai - Haraway - Meyerhoff - Thurston -Y.

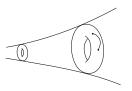
 A cusp c corresponds to a conjugacy class of a maximal Z ⊕ Z ≃ Γ c ≤ Γ.

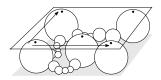
- A cusp c corresponds to a conjugacy class of a maximal Z ⊕ Z ≃ Γ c ≤ Γ.
- Γ_c is generated by two parabolic elements that fix the same point z ∈ Ĉ.



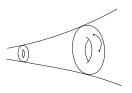


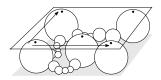
- A cusp c corresponds to a conjugacy class of a maximal Z ⊕ Z ≃ Γ c ≤ Γ.
- Γ_c is generated by two parabolic elements that fix the same point z ∈ Ĉ.
- For a horosphere H_z at z, H_z/Γ_c is a *flat* torus.



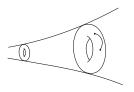


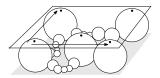
- A cusp c corresponds to a conjugacy class of a maximal Z ⊕ Z ≃ Γ c ≤ Γ.
- Γ_c is generated by two *parabolic* elements that *fix* the same point z ∈ Ĉ.
- For a horosphere H_z at z, H_z/Γ_c is a *flat* torus.
- There exists a maximal embedded horoball neighborhood B_c of c.



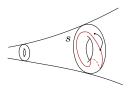


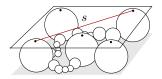
- A cusp c corresponds to a conjugacy class of a maximal Z ⊕ Z ≃ Γ c ≤ Γ.
- Γ_c is generated by two *parabolic* elements that *fix* the same point z ∈ Ĉ.
- For a horosphere H_z at z, H_z/Γ_c is a *flat* torus.
- There exists a maximal embedded horoball neighborhood B_c of c.
- If we look at all the lifts of B_c in ℍ³, we obtain a horoball system B_c.





- A cusp c corresponds to a conjugacy class of a maximal Z ⊕ Z ≃ Γ_c ≤ Γ.
- Γ_c is generated by two parabolic elements that fix the same point z ∈ Ĉ.
- For a horosphere H_z at z, H_z/Γ_c is a *flat* torus.
- There exists a maximal embedded horoball neighborhood B_c of c.
- If we look at all the lifts of $B_{\mathfrak{c}}$ in \mathbb{H}^3 , we obtain a *horoball system* $\widetilde{B_{\mathfrak{c}}}$.
- Given a primitive element s ∈ Γ_c \ {id}, we think of it as a slope on the flat torus ∂B_c and we measure length ℓ_s of the geodesic representative of s in the Euclidean metric on ∂B_c.





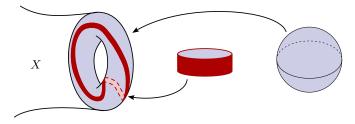
Gabai - Haraway - Meyerhoff - Thurston -Y.

ackground ⊙●	
yperbolic 3-manifolds	

Dehn filling is the topological process of gluing in a solid torus to a cusp.
For every slope s on a cusp, there is a unique Dehn filling X(s).

Background oo●	
Hyperbolic 3-manifolds	

Dehn filling is the topological process of gluing in a solid torus to a cusp.
For every slope s on a cusp, there is a unique Dehn filling X(s).



8	
000	000000
lyperbolic 3-manifolds	

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling X(s).
- **Theorem (Futer** Kalfagianni Purcell). If $\ell_s > 2\pi$, then X(s) admits a complete hyperbolic structure and

$$\left(1 - \frac{4\pi^2}{\ell_s^2}\right)^{3/2} \operatorname{vol}_{\mathbb{H}}(X) \le \operatorname{vol}_{\mathbb{H}}(X(s)) < \operatorname{vol}_{\mathbb{H}}(X).$$

Background DO●	
lyperbolic 3-manifolds	

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling X(s).
- **Theorem (Futer** Kalfagianni Purcell). If $\ell_s > 2\pi$, then X(s) admits a complete hyperbolic structure and

$$\left(1 - \frac{4\pi^2}{\ell_s^2}\right)^{3/2} \operatorname{vol}_{\mathbb{H}}(X) \le \operatorname{vol}_{\mathbb{H}}(X(s)) < \operatorname{vol}_{\mathbb{H}}(X).$$

• Not only do we have control on volume, but this gives only *finitely many* exceptional s for which X(s) is not hyperbolic.

Background DO●	
lyperbolic 3-manifolds	

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling X(s).
- **Theorem (Futer** Kalfagianni Purcell). If $\ell_s > 2\pi$, then X(s) admits a complete hyperbolic structure and

$$\left(1 - \frac{4\pi^2}{\ell_s^2}\right)^{3/2} \operatorname{vol}_{\mathbb{H}}(X) \le \operatorname{vol}_{\mathbb{H}}(X(s)) < \operatorname{vol}_{\mathbb{H}}(X).$$

- Not only do we have control on volume, but this gives only *finitely many* exceptional s for which X(s) is not hyperbolic.
- Dehn drilling is the process of removing an embedded curve γ form X.

Background DO●	
Hyperbolic 3-manifolds	

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling X(s).
- **Theorem (Futer** Kalfagianni Purcell). If $\ell_s > 2\pi$, then X(s) admits a complete hyperbolic structure and

$$\left(1 - \frac{4\pi^2}{\ell_s^2}\right)^{3/2} \operatorname{vol}_{\mathbb{H}}(X) \le \operatorname{vol}_{\mathbb{H}}(X(s)) < \operatorname{vol}_{\mathbb{H}}(X).$$

- Not only do we have control on volume, but this gives only *finitely many* exceptional s for which X(s) is not hyperbolic.
- Dehn drilling is the process of removing an embedded curve γ form X.
- Theorem (Agol Culler Shalen). With X closed and not one of 5 manifolds, γ the shortest geodesic in X, then X \sim γ admits a complete hyperbolic structure. With B_{cγ} ⊂ X \sim γ corresponding to γ,

 $\operatorname{vol}(B_{\mathfrak{c}_{\gamma}})/0.85328 \leq \operatorname{vol}_{\mathbb{H}}(X \smallsetminus \gamma) < 3.0177 \operatorname{vol}_{\mathbb{H}}(X).$

Background DO●	
lyperbolic 3-manifolds	

- Dehn filling is the topological process of gluing in a solid torus to a cusp. For every slope s on a cusp, there is a unique Dehn filling X(s).
- **Theorem (Futer** Kalfagianni Purcell). If $\ell_s > 2\pi$, then X(s) admits a complete hyperbolic structure and

$$\left(1 - \frac{4\pi^2}{\ell_s^2}\right)^{3/2} \operatorname{vol}_{\mathbb{H}}(X) \le \operatorname{vol}_{\mathbb{H}}(X(s)) < \operatorname{vol}_{\mathbb{H}}(X).$$

- Not only do we have control on volume, but this gives only *finitely many* exceptional s for which X(s) is not hyperbolic.
- Dehn drilling is the process of removing an embedded curve γ form X.
- Theorem (Agol Culler Shalen). With X closed and not one of 5 manifolds, γ the shortest geodesic in X, then X \sim γ admits a complete hyperbolic structure. With B_{cγ} ⊂ X \sim γ corresponding to γ,

 $\operatorname{vol}(B_{\mathfrak{c}_{\gamma}})/0.85328 \le \operatorname{vol}_{\mathbb{H}}(X \smallsetminus \gamma) < 3.0177 \operatorname{vol}_{\mathbb{H}}(X).$

Remark : There are very many people involved in obtaining these results. The number 0.85328 is the Böröczky constant for horoball packing. Understanding all X with small $vol(B_c)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and c a cusp. Let B_{c} be the maximal horoball neighborhood of c. If $vol(B_{c}) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and c a cusp. Let B_c be the maximal horoball neighborhood of c. If $vol(B_c) \le 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

ſ	m125	m129	m203	m295	m292	s443	s596	s647
	s782	s780	s785	s776	s774	v2124	v2355	v2533
	v2644	v2731	v3108	v3127	v3211	v3376		

• The proof is computer assisted and relies on several rigorous validations.

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and c a cusp. Let B_{c} be the maximal horoball neighborhood of c. If $vol(B_{c}) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

ſ	m125	m129	m203	m295	m292	s443	s596	s647
	s782	s780	s785	s776	s774	v2124	v2355	v2533
	v2644	v2731	v3108	v3127	v3211	v3376		

- The proof is computer assisted and relies on several rigorous validations.
- There are *infinitely many* pairs (X, \mathfrak{c}) with $vol(B_{\mathfrak{c}}) \leq 2.62$.

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and c a cusp. Let B_c be the maximal horoball neighborhood of c. If $vol(B_c) \le 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

- The proof is computer assisted and relies on several rigorous validations.
- There are *infinitely many* pairs (X, \mathfrak{c}) with $vol(B_{\mathfrak{c}}) \leq 2.62$.
- In practice, given (X, \mathfrak{c}) , I can tell you which of the 22 manifolds is a parent.

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be an orientable finite volume hyperbolic 3-manifold and c a cusp. Let B_{c} be the maximal horoball neighborhood of c. If $vol(B_{c}) \leq 2.62$ then X is a Dehn filling of one of the following 22 census (parent) manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

- The proof is computer assisted and relies on several rigorous validations.
- There are *infinitely many* pairs (X, \mathfrak{c}) with $vol(B_{\mathfrak{c}}) \leq 2.62$.
- In practice, given (X, c), I can tell you which of the 22 manifolds is a parent.
- The list can be made smaller as s776 (the only 3-cusped parent manifold) is a parent for some of the other 22.

Understanding all X with small $vol(B_{\mathfrak{c}})$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be a finite volume hyperbolic 3-manifold and c a cusp. If $vol(B_c) \le 2.62$ then X is a Dehn filling of one of the following 22 census manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

• Using Agol-Culler-Shalen and Böröczky's horoball packing density, we chose the bound 2.62 to identify all *closed* X with $vol_{\mathbb{H}}(X) < 1.01749$. These should be the Weeks manifold, Vol_2 and Vol_3 . Requires rigorous volume estimates and Futer-Kalfagianni-Purcell.

Understanding all X with small $vol(B_c)$

Theorem (Gabai - Haraway - Meyerhoff - Thurston -Y.). (Preliminary) Let X be a finite volume hyperbolic 3-manifold and c a cusp. If $vol(B_c) \leq 2.62$ then X is a Dehn filling of one of the following 22 census manifolds.

m125	m129	m203	m295	m292	s443	s596	s647
s782	s780	s785	s776	s774	v2124	v2355	v2533
v2644	v2731	v3108	v3127	v3211	v3376		

- Using Agol-Culler-Shalen and Böröczky's horoball packing density, we chose the bound 2.62 to identify all *closed* X with $vol_{\mathbb{H}}(X) < 1.01749$. These should be the Weeks manifold, Vol₂ and Vol₃. Requires rigorous volume estimates and Futer-Kalfagianni-Purcell.
- Agol shows that one cusped manifolds with more than 8 exceptional slopes have $vol(B_c) < 2.572$. Rigorous bounds on slope length and the 2π -Theorem should show that $\mathbb{S}^3 \setminus \{\text{figure 8 knot}\}\$ is one of only two manifolds with 10 exceptional slopes (maximum).

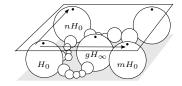
Bicuspid subgroup

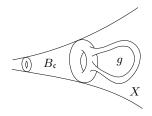
Gabai - Haraway - Meyerhoff - Thurston -Y.

 $\begin{array}{c} \text{Statement of results} \\ \text{OO} \end{array}$

Bicuspid subgroup

• Conjugate so that $\Gamma_{\rm c}$ is generated by $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$.

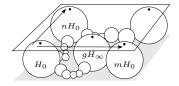


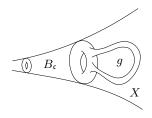


 $\begin{array}{c} \text{Statement of results} \\ \text{OO} \end{array}$

Bicuspid subgroup

- Conjugate so that $\Gamma_{\mathfrak{c}}$ is generated by $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$.
- A point of tangency for $B_{\mathfrak{c}}$ corresponds to an element $g \in \Gamma$ with $g = \begin{pmatrix} PSi & -i/S \\ Si & 0 \end{pmatrix}$.



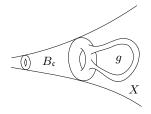


Bicuspid subgroup

- Conjugate so that $\Gamma_{\mathfrak{c}}$ is generated by $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$.
- A point of tangency for B_{c} corresponds to an element $g \in \Gamma$ with $g = \begin{pmatrix} PSi & -i/S \\ Si & 0 \end{pmatrix}$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$Q_{\mathfrak{c}} = Q(L, P, S) = \langle m, n, g \rangle \leq \mathrm{PSL}(2, \mathbb{C})$$





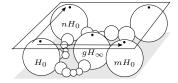
 $\begin{array}{c} \text{Statement of results} \\ \text{OO} \end{array}$

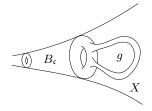
Bicuspid subgroup

- Conjugate so that $\Gamma_{\mathfrak{c}}$ is generated by $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$.
- A point of tangency for B_{c} corresponds to an element $g \in \Gamma$ with $g = \begin{pmatrix} PSi & -i/S \\ Si & 0 \end{pmatrix}$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$Q_{\mathfrak{c}} = Q(L, P, S) = \langle m, n, g \rangle \leq \mathrm{PSL}(2, \mathbb{C})$$

• **Theorem (Agol).** If $vol(B_c) < \pi$ then $[\Gamma: Q_c] < \infty$ and there exists a non-trivial word w(m, n, g) = id.





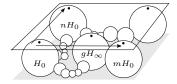
Statement of results

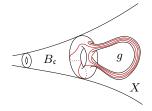
Bicuspid subgroup

- Conjugate so that $\Gamma_{\mathfrak{c}}$ is generated by $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$.
- A point of tangency for B_{c} corresponds to an element $g \in \Gamma$ with $g = \begin{pmatrix} PSi & -i/S \\ Si & 0 \end{pmatrix}$.
- The bicuspid subgroup of (X, \mathfrak{c}) is

$$Q_{\mathfrak{c}} = Q(L, P, S) = \langle m, n, g \rangle \leq \mathrm{PSL}(2, \mathbb{C})$$

- **Theorem (Agol).** If $vol(B_c) < \pi$ then $[\Gamma: Q_c] < \infty$ and there exists a non-trivial word w(m, n, g) = id.
- We call the word w(m, n, g) a variety word.





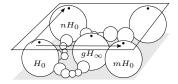
Statement of results

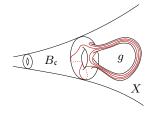
Bicuspid subgroup

- Conjugate so that $\Gamma_{\mathfrak{c}}$ is generated by $m = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$.
- A point of tangency for B_{c} corresponds to an element $g \in \Gamma$ with $g = \begin{pmatrix} PSi & -i/S \\ Si & 0 \end{pmatrix}$.
- The *bicuspid subgroup* of (X, \mathfrak{c}) is

$$Q_{\mathfrak{c}} = Q(L, P, S) = \langle m, n, g \rangle \leq \mathrm{PSL}(2, \mathbb{C})$$

- **Theorem (Agol).** If $vol(B_c) < \pi$ then $[\Gamma: Q_c] < \infty$ and there exists a non-trivial word w(m, n, g) = id.
- We call the word w(m, n, g) a variety word.
- The length $\ell_g(w) = \#$ of g and g^{-1} 's.





Killer words

Gabai - Haraway - Meyerhoff - Thurston -Y.

Theorem. If $vol(B_c) < 2.62$ then Q_c admits one of 85 variety words w_i . Furthermore, $\ell_g(w_i) \leq 7$ for all i.

• Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_c) = |S^2| \operatorname{im}(L)/2 \le 2.62$.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_{\mathfrak{c}}) = |S^2| \operatorname{im}(L)/2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space 𝒫 ⊂ 𝔅³ that contains all 𝒫 of interest.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_{\mathfrak{c}}) = |S^2| \operatorname{im}(L)/2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^3$ that contains all Q of interest.
- We choose \mathcal{P} to be 6-dim box with side ratios $(2^{5/6}, 2^{4/6}, \dots, 2^{1/6}, 1)$.

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_{\mathfrak{c}}) = |S^2| \operatorname{im}(L)/2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^3$ that contains all Q of interest.
- We choose \mathcal{P} to be 6-dim box with side ratios $(2^{5/6}, 2^{4/6}, \dots, 2^{1/6}, 1)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.

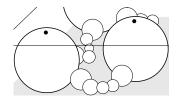
- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_{\mathfrak{c}}) = |S^2| \operatorname{im}(L)/2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^3$ that contains all Q of interest.
- We choose \mathcal{P} to be 6-dim box with side ratios $(2^{5/6}, 2^{4/6}, \dots, 2^{1/6}, 1)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.
- We eliminate (sub)-boxes that contain no discrete torsion-free points.

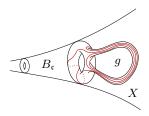
- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_{\mathfrak{c}}) = |S^2| \operatorname{im}(L)/2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^3$ that contains all Q of interest.
- We choose \mathcal{P} to be 6-dim box with side ratios $(2^{5/6}, 2^{4/6}, \dots, 2^{1/6}, 1)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.
- We eliminate (sub)-boxes that contain no discrete torsion-free points.
- Our approach is to find a $\mathit{killer}\ \mathit{word}\ w_{\mathit{kill}}(m,n,g)$ for a box ${\mathcal B}$ such that
 - 1. $w_{kill}(m, n, g) \cdot H_{\infty} \cap H_{\infty} \neq \emptyset$ over all of \mathcal{B}
 - 2. $w_{kill}(m, n, g) \neq id$ over all of \mathcal{B}

- Our goal is to understand the collection of all $(P, S, L) \in \mathbb{C}^3$ such that Q(P, S, L) is discrete, torsion-free, and $\operatorname{vol}(B_{\mathfrak{c}}) = |S^2| \operatorname{im}(L)/2 \leq 2.62$.
- Conjugation and reflection arguments allow us to restrict ourselves to a compact parameter space $\mathcal{P} \subset \mathbb{C}^3$ that contains all Q of interest.
- We choose \mathcal{P} to be 6-dim box with side ratios $(2^{5/6}, 2^{4/6}, \dots, 2^{1/6}, 1)$.
- By cutting each dimension in half, we can encode sub-boxes in binary.
- We eliminate (sub)-boxes that contain no discrete torsion-free points.
- Our approach is to find a $\mathit{killer}\ \mathit{word}\ w_{\mathit{kill}}(m,n,g)$ for a box ${\mathcal B}$ such that
 - 1. $w_{kill}(m, n, g) \cdot H_{\infty} \cap H_{\infty} \neq \emptyset$ over all of \mathcal{B}
 - 2. $w_{kill}(m, n, g) \neq id$ over all of \mathcal{B}
- Lemma. Let $V_w = \{w(m, n, g) = id\} \subset \mathcal{P}$, then there is a computable neighborhood $N_w \supset V_w$, such that $N_w \smallsetminus V_w$ contains no discrete points.

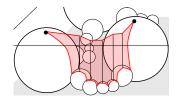
• A variety word w corresponds to a *necklace* η_w of horoballs in $\widetilde{B}_{\mathfrak{c}} \subset \mathbb{H}^3$ of $\ell_g(w)$ balls.

• A variety word w corresponds to a *necklace* η_w of horoballs in $\widetilde{B}_{\mathfrak{c}} \subset \mathbb{H}^3$ of $\ell_g(w)$ balls.



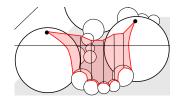


- A variety word w corresponds to a *necklace* η_w of horoballs in $\widetilde{B}_{\mathfrak{c}} \subset \mathbb{H}^3$ of $\ell_g(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold Kw.





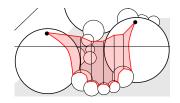
- A variety word w corresponds to a *necklace* η_w of horoballs in $\widetilde{B}_{\mathfrak{c}} \subset \mathbb{H}^3$ of $\ell_g(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold Kw.
- If we can find an *embedded* K_w ⊂ X and K_w admits a *complete* hyperbolic structure with 2 cusps, then X is a Dehn filling of K_w.

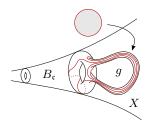




Horoball systems

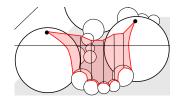
- A variety word w corresponds to a *necklace* η_w of horoballs in $\widetilde{B}_{\mathfrak{c}} \subset \mathbb{H}^3$ of $\ell_g(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold Kw.
- If we can find an *embedded* K_w ⊂ X and K_w admits a *complete* hyperbolic structure with 2 cusps, then X is a Dehn filling of K_w.
- *Idea:* If w is "simple" enough, then a disk can always be attached in $X \setminus \overline{B_{\mathfrak{c}}}$.

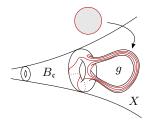




Horoball systems

- A variety word w corresponds to a *necklace* η_w of horoballs in $\widetilde{B}_{\mathfrak{c}} \subset \mathbb{H}^3$ of $\ell_g(w)$ balls.
- A manifold obtained by attaching a disk along w is called a necklace manifold Kw.
- If we can find an *embedded* K_w ⊂ X and K_w admits a *complete* hyperbolic structure with 2 cusps, then X is a Dehn filling of K_w.
- *Idea:* If w is "simple" enough, then a disk can always be attached in $X \setminus \overline{B_{c}}$.
- The groups π₁(K_{wi}) = ⟨m, n, g | [m, n], w_i⟩ can be shown to be hyperbolic using John Berge's program Heegard. Note : *this is not enough to give Dehn filling*. In practice, however, this recovers the parent.



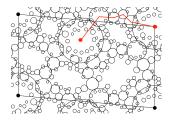


■ **Theorem.** If vol(B_c) ≤ 2.62, there is an embedded ≤ 7-necklace manifold K in X.

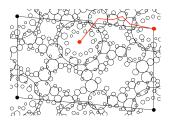
- Theorem. If vol(B_c) ≤ 2.62, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For n = 6 unblocked is done by Adams-Knudson.

- Theorem. If vol(B_c) ≤ 2.62, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are unknotted, unblocked, and unlinked. For n = 6 unblocked is done by Adams-Knudson.
- One call ways find a *full* ≤ 7 necklace structure – the boundary of the attached disk cuts ∂B_c into disks.

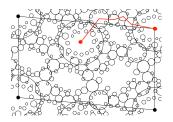
- Theorem. If vol(B_c) ≤ 2.62, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are *unknotted*, *unblocked*, and *unlinked*. For n = 6unblocked is done by Adams-Knudson.
- One call ways find a *full* ≤ 7 necklace structure – the boundary of the attached disk cuts ∂B_c into disks.



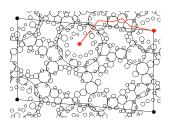
- **Theorem.** If $vol(B_c) \le 2.62$, there is an *embedded* \le 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are *unknotted*, *unblocked*, and *unlinked*. For n = 6unblocked is done by Adams-Knudson.
- One call ways find a *full* ≤ 7 necklace structure – the boundary of the attached disk cuts ∂B_c into disks.



- Theorem. If vol(B_c) ≤ 2.62, there is an embedded ≤ 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are *unknotted*, *unblocked*, and *unlinked*. For n = 6unblocked is done by Adams-Knudson.
- One call ways find a full \leq 7 necklace structure the boundary of the attached disk cuts $\partial B_{\rm c}$ into disks.
- Full *n*-necklace manifolds arise as gluings of *n*-dipyramids – suspension of a regular *n*-gon.



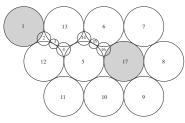
- **Theorem.** If $vol(B_c) \le 2.62$, there is an *embedded* \le 7-necklace manifold K in X.
- We show that ≤ 7 necklaces are *unknotted*, *unblocked*, and *unlinked*. For n = 6unblocked is done by Adams-Knudson.
- One call ways find a full \leq 7 necklace structure the boundary of the attached disk cuts $\partial B_{\rm c}$ into disks.
- Full *n*-necklace manifolds arise as gluings of *n*-dipyramids – suspension of a regular *n*-gon.
- **Theorem.** The full ≤ 7-necklace manifolds that are embeddable into hyperbolic 3-manifolds are the ones on our list.



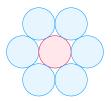
Background 000 Statement of results 00

Proof methods

Knotted, blocked, and linked



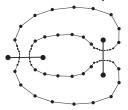
Knotted 18-necklace whose core is the trefoil. Horoball 18 is at infinity.



A 6-necklace blocked by red and infinity horoballs.



Knotted 14-necklace with an unknotted core. Horoball 14 is at infinity.



Borromean linking of unblocked and unknotted necklace.

Thank you!	

Thank you!

Gabai - Haraway - Meyerhoff - Thurston -Y.