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Circle Packings

◦ Let S be an oriented closed surface of genus ≥ 2.
◦ Given a hyperbolic structure on S, a circle packing

is a finite collection P of disks with disjoint interiors
such that each complimentary region is Möbius
equivalent to an ideal hyperbolic polygon.

◦ The complimentary regions define dual disks.
◦ We can build a polygonal cell decomposition τP of

S, called the nerve of P, as seen on the right.
◦ Theorem (Koebe–Andreev–Thurston).

For a polygonal cell decomposition τ of S, there
exists a unique (marked) hyperbolic structure and
circle packing P on S for which τ = τP .

◦ Theorem (Brooks). The structures admitting a
circle packing are dense in Teichmüller space.
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Complex projective structures

◦ There is a notion of “disk” without a metric.
◦ A complex projective structure σ on S is a

maximal atlas of charts to CP1 where the
transition maps are restrictions of Möbius
transformations. Let C denote the space of all
such structures up to isotopy.

◦ One can think of σ as a pair (devσ, holσ),
where devσ : S̃ → CP1 is the developing map
and holσ : π1S → PSL(2,C) is the holonomy.

◦ A (round) disk on σ is a connected closed
subset D of S̃ such that devσ|D is injective
and devσ(D) is a closed disk in CP1.

◦ When the covering map S̃ → S is injective on
D, we call D an embedded disk.
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Kojima, Mizushima and Tan Conjecture

For a polygonal cell decomposition τ of S, let Cτ be the space of pairs (σ,P)
where σ ∈ C and P is an embedded circle packing on σ with nerve τP ∼= τ .
Conjecture (Kojima–Mizushima–Tan). Let T denote the Teichmüller space
of S. The forgetful map fτ : Cτ → T is a homeomorphism.

◦ When S is a sphere, this is Koebe’s original result.
◦ Mizushima proved the Conjecture when S is a torus and τ has one vertex.
◦ When τ has one vertex, Kojima–Mizushima–Tan have shown that Cτ is a

smooth variety of the correct dimension and fτ is proper for all genus.
◦ For all τ , they find a neighborhood U of the Koebe–Andreev–Thurston

solution such that fτ |U is a local homemorphism.
◦ Danenberg proved that fτ is proper for combinatorially interesting τ .

Theorem (Schlenker–Y.). The map fτ is proper for all τ .
To complete the Conjecture, one would need to show that

◦ Cτ is a manifold, ◦ fτ is locally injective, ◦ Cτ is connected.
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Delaunay circle patterns

◦ We prove our result in the more general setting of
Delaunay circle patterns.

◦ A Delaunay decomposition of a finite set of points
V on σ is a realization of a polygonal cell
decomposition η with V(η) = V such the vertices of
each polygon lie on the boundary of a round disk
containing no other elements of V(η) in its interior.

◦ A Delaunay circle pattern D is the collection of
disks corresponding to the faces of η.

◦ The nerve of D is the dual η∗
D of ηD = η.

◦ To get a Delaunay circle pattern from a circle
packing, one just needs to add the dual disks.

◦ At points of V(ηD), we can measure angles between
outward normals of overlapping disks to define the
angle function θD : E(η∗

D) → (0, π).
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packing, one just needs to add the dual disks.

◦ At points of V(ηD), we can measure angles between
outward normals of overlapping disks to define the
angle function θD : E(η∗

D) → (0, π).
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Properness for Delaunay circle patterns

Lemma. The angle function θD : E(η∗
D) → (0, π) satisfies:

1. For each face f of η∗
D,

∑
e∈∂f θD(e) = 2π.

2. For each homotopically trivial non-backtracking closed edge path
[e1, · · · , en] in η∗

D which does not bound a face,
∑n

i=1 θD(ei) > 2π.

◦ A pair (η, θ) is called an admissible if it satisfies the Lemma.
◦ Let Cη,θ be the space of pairs (σ,D) where σ ∈ C and D is a Delaunay

circle pattern on σ with ηD ∼= η and θD = θ. The topology on the second
factor is inherited from the bundle of round disks on C.

◦ Bobenko and Springborn have shown that Cη,θ contains a unique
hyperbolic structure. In particular, Cη,θ is non-empty.

Theorem (Schlenker–Y.). Let (η, θ) be an admissible pair, then the forgetful
map fη,θ : Cη,θ → T is proper.
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Hyperbolic ends

◦ Our approach is to use hyperbolic geometry in dimension 3.
◦ Every σ ∈ C gives rise to a non-complete hyperbolic structure

E(σ) on S × R>0, called the hyperbolic end associated to σ.
◦ One end of E(σ) is complete and has σ as the conformal

boundary at infinity.
◦ The other end has a metric completion whose boundary is

hyperbolic in the path metric and is bent along a measured
lamination µσ ∈ ML.

◦ Generalizing a result of KMT, we obtain
◦ Lemma. For an admissible pair (η, θ), the set of all µσ with

σ appearing in Cη,θ is is pre-compact in ML.
◦ Let K ⊂ T be compact, then results on grafting and this

Lemma show that set of σ appearing in f−1
η,θ(K) is

pre-compact.
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Ideal polyhedra in hyperbolic ends

◦ A Delaunay circle pattern D defines the set of point V = V(ηD) in σ.
From this, we get an ideal polyhedron in E(σ) given as

PD = E(σ)∖ E(σ ∖ V ).

The points of V are called ideal vertices of PD.
◦ By construction, the intersection of PD with a small horosphere at an

ideal vertex is a convex Euclidean polygon.
◦ Further, the cell decomposition of PD is exactly ηD.
◦ The cusped boundary of PD carries a complete hyperbolic metric hD on

the punctured surface S ∖ VD. We call these balanced metrics.

Lemma. There is a constant l0 > 0 all closed geodesics in (hD, S ∖ VD) which
are contractible in S have length at least l0.

◦ This Lemma and compactness properties of the bundle of round disks on
C let us conclude that f−1

η,θ(K) is pre-compact.
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The points of V are called ideal vertices of PD.
◦ By construction, the intersection of PD with a small horosphere at an

ideal vertex is a convex Euclidean polygon.
◦ Further, the cell decomposition of PD is exactly ηD.
◦ The cusped boundary of PD carries a complete hyperbolic metric hD on

the punctured surface S ∖ VD. We call these balanced metrics.

Lemma. There is a constant l0 > 0 all closed geodesics in (hD, S ∖ VD) which
are contractible in S have length at least l0.

◦ This Lemma and compactness properties of the bundle of round disks on
C let us conclude that f−1

η,θ(K) is pre-compact.
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Thank you!
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