Computational techniques for hyperbolic 3-manifolds

Andrew Yarmola
Université du Luxembourg
andrew.yarmola@uni.lu

Université du Luxembourg, April 28, 2017
Homogeneous geometry in dimension 2

\[\alpha + \beta + \gamma > 180^\circ \]

\[\alpha + \beta + \gamma = 180^\circ \]

\[\alpha + \beta + \gamma < 180^\circ \]
Homogeneous geometry in dimension 2

\[\alpha + \beta + \gamma > 180^\circ \]

\[\alpha + \beta + \gamma = 180^\circ \]

\[\alpha + \beta + \gamma < 180^\circ \]

- On the sphere and the plane, every direction looks the same – these spaces are *homogenous*.
Homogeneous geometry in dimension 2

- On the sphere and the plane, every direction looks the same – these spaces are homogenous.
- They are complete – you can keep walking in a straight line forever.
Homogeneous geometry in dimension 2

- On the sphere and the plane, every direction looks the same – these spaces are *homogenous*.
- They are *complete* – you can keep walking in a straight line forever.
- If try to make the saddle-shaped space *homogenous* and *complete*, it starts looking like:

\[
\alpha + \beta + \gamma > 180^\circ \\
\alpha + \beta + \gamma = 180^\circ \\
\alpha + \beta + \gamma < 180^\circ
\]
Homogeneous geometry in dimension 2

- On the sphere and the plane, every direction looks the same – these spaces are *homogenous*.
- They are *complete* – you can keep walking in a straight line forever.
- If try to make the saddle-shaped space *homogenous* and *complete*, it starts looking like:

\[
\alpha + \beta + \gamma > 180^\circ \\
\alpha + \beta + \gamma = 180^\circ \\
\alpha + \beta + \gamma < 180^\circ
\]
Hyperbolic Space

Homogeneous geometries

Hyperbolic 3-manifolds

<table>
<thead>
<tr>
<th>Poincaré disk model</th>
</tr>
</thead>
</table>

This saddle-shaped geometry is called hyperbolic geometry. To work with it, we need a model where we can draw "straight" lines and measure length and angles. Let H^2 be the interior of the unit disk – the circle will be "at infinity." Hyperbolic straight lines are circular arcs perpendicular to the "circle at infinity." Hyperbolic circles look like regular circles, but their centers are elsewhere. Hyperbolic triangles look very much like the triangles on the saddle.
Poincaré disk model

- This saddle-shaped geometry is called *hyperbolic* geometry.
Poincaré disk model

- This saddle-shaped geometry is called *hyperbolic* geometry.
- To work with it, we need a model where we can draw “straight” lines and measure length and angles.
This saddle-shaped geometry is called *hyperbolic* geometry.

To work with it, we need a model where we can draw “straight” lines and measure length and angles.

Let \mathbb{H}^2 be the *interior* of the unit disk – the circle will be “at infinity.”
Poincaré disk model

- This saddle-shaped geometry is called *hyperbolic* geometry.
- To work with it, we need a model where we can draw “straight” lines and measure length and angles.
- Let \mathbb{H}^2 be the *interior* of the unit disk – the circle will be “at infinity.”
- *Hyperbolic straight* lines are circular arcs perpendicular to the “circle at infinity.”
This saddle-shaped geometry is called *hyperbolic* geometry.

To work with it, we need a model where we can draw “straight” lines and measure length and angles.

Let \mathbb{H}^2 be the *interior* of the unit disk – the circle will be “at infinity.”

Hyperbolic straight lines are circular arcs perpendicular to the “circle at infinity”.

Hyperbolic circles look like regular circles, but their centers are elsewhere.
Poincaré disk model

- This saddle-shaped geometry is called *hyperbolic* geometry.
- To work with it, we need a model where we can draw “straight” lines and measure length and angles.
- Let \mathbb{H}^2 be the *interior* of the unit disk – the circle will be “at infinity.”
- *Hyperbolic straight* lines are circular arcs perpendicular to the “circle at infinity.”
- *Hyperbolic circles* look like regular circles, but their centers are elsewhere.
- *Hyperbolic triangles* look very much like the triangles on the saddle.
Poincaré disk model

- This saddle-shaped geometry is called *hyperbolic* geometry.
- To work with it, we need a model where we can draw “straight” lines and measure length and angles.
- Let \mathbb{H}^2 be the *interior* of the unit disk – the circle will be “at infinity.”
- *Hyperbolic straight* lines are circular arcs perpendicular to the “circle at infinity.”
- *Hyperbolic circles* look like regular circles, but their centers are elsewhere.
- *Hyperbolic triangles* look very much like the triangles on the saddle.
Finite area everywhere flat surfaces
Finite area everywhere flat surfaces

- Build a *finite area* surface which is flat *everywhere* by gluing.
Finite area everywhere flat surfaces

- Build a finite area surface which is flat everywhere by gluing.
Finite area everywhere flat surfaces

- Build a *finite area* surface which is flat *everywhere* by gluing.
Finite area everywhere flat surfaces

- Build a \textit{finite area} surface which is flat \textit{everywhere} by gluing.
- Gluing at \textit{corners} and \textit{edges} must always produce angles of 360°.
Finite area everywhere flat surfaces

- Build a *finite area* surface which is flat *everywhere* by gluing.
- Gluing at *corners* and *edges* must always produce angles of 360°.
Finite area everywhere flat surfaces

- Build a *finite area* surface which is flat *everywhere* by gluing.
- Gluing at *corners* and *edges* must always produce angles of 360°.
Finite area everywhere hyperbolic surfaces

- We can solve this problem in hyperbolic geometry because polygons can have tiny angles.
Finite area everywhere hyperbolic surfaces

- We can solve this problem in hyperbolic geometry because polygons can have tiny angles.
- In fact, we can take a \textit{finite area} hyperbolic 8-gon where the angles are almost zero.
Finite area everywhere hyperbolic surfaces

- We can solve this problem in hyperbolic geometry because polygons can have tiny angles.
- In fact, we can take a finite area hyperbolic 8-gon where the angles are almost zero.
- Then, we can deform it and increase the angle until we get the desired

\[360^\circ / 8 = 45^\circ. \]
Finite area everywhere hyperbolic surfaces

- We can solve this problem in hyperbolic geometry because polygons can have tiny angles.
- In fact, we can take a finite area hyperbolic 8-gon where the angles are almost zero.
- Then, we can deform it and increase the angle until we get the desired

$$\frac{360^\circ}{8} = 45^\circ.$$

- Notice that the sides are still straight line segments.
An example of a hyperbolic 3-manifold
An example of a hyperbolic 3-manifold

- Going up one dimension, we can glue faces of a *polyhedron* or several *polyhedra* together.
An example of a hyperbolic 3-manifold

- Going up one dimension, we can glue faces of a polyhedron or several polyhedra together.
An example of a hyperbolic 3-manifold

- Going up one dimension, we can glue faces of a polyhedron or several polyhedra together.
- The angle condition becomes more complicated – we now get equations called the Poincaré Polyhedron Theorem and the Thurston gluing equations.
An example of a hyperbolic 3-manifold

- Going up one dimension, we can glue faces of a polyhedron or several polyhedra together.
- The angle condition becomes more complicated – we now get equations called the Poincaré Polyhedron Theorem and the Thurston gluing equations.
- Given a combinatorial gluing, we can use computational techniques to find solutions for the shapes of these polyhedra.
What does this thing look like?
What does this thing look like?

- The 3-manifolds obtained from the previous gluing is the *outside* (i.e. complement) of the figure 8-knot!
What does this thing look like?

- The 3-manifolds obtained from the previous gluing is the *outside* (i.e. complement) of the figure 8-knot!
- We look at the complement in the 3-sphere – this is \mathbb{R}^3 plus a point at infinity.
What does this thing look like?

- The 3-manifolds obtained from the previous gluing is the *outside* (i.e. complement) of the figure 8-knot!
- We look at the complement in the 3-sphere – this is \mathbb{R}^3 plus a point at infinity.
- Going in the reverse direction, we see that for some 3-manifolds (given combinatorially) it is possible to find a (complete) hyperbolic structure. It so happens that when the structure is *finite volume*, it is *unique* (for the given combinatorial gluing).
Can 3-manifolds be understood through geometry?
Can 3-manifolds be understood through geometry?

- For “most” knots (and links), their complements admit *finite volume* hyperbolic structures like above. This makes the *volume* an *invariant* of the knot – if two knots have different volumes, they’re different knots!
Can 3-manifolds be understood through geometry?

- For “most” knots (and links), their complements admit finite volume hyperbolic structures like above. This makes the volume an invariant of the knot – if two knots have different volumes, they’re different knots!
- For closed 3-manifolds (those without boundary), this question was answered in 2003 by Grigori Perelman with his proof of Thurston’s geometrization conjecture (1982) as well as the long standing Poincaré conjecture (1904).
Can 3-manifolds be understood through geometry?

- For “most” knots (and links), their complements admit finite volume hyperbolic structures like above. This makes the volume an invariant of the knot – if two knots have different volumes, they’re different knots!
- For closed 3-manifolds (those without boundary), this question was answered in 2003 by Grigori Perelman with his proof of Thurston’s geometrization conjecture (1982) as well as the long standing Poincaré conjecture (1904).
- Broadly speaking, the Geometrization Theorem states that 3-manifolds can be (uniquely) cut along surfaces such that the remaining pieces admit one of 8 model geometries, with hyperbolic geometry being very prevalent.
How can computers help?
How can computers help?

- A computer can take a knot diagram, find the combinatorial structure of the compliment, and then solve the gluing equations – thus allowing us to compute the volume, or other invariants.
How can computers help?

- A computer can take a knot diagram, find the combinatorial structure of the compliment, and then solve the gluing equations — thus allowing us to compute the volume, or other invariants.

- A computer can take the combinatorial structure of a 3-manifolds and find all cutting surfaces for the geometrization decomposition.
How can computers help?

- A computer can take a knot diagram, find the combinatorial structure of the compliment, and then solve the gluing equations – thus allowing us to compute the volume, or other invariants.
- A computer can take the combinatorial structure of a 3-manifolds and find all cutting surfaces for the geometrization decomposition.
- If we want to find smallest volume hyperbolic manifold, the only current proof is computer assisted. The difficulty of this last question can be seeing the set of volumes plotted on the real line:
How can computers help?

- A computer can take a knot diagram, find the combinatorial structure of the compliment, and then solve the gluing equations – thus allowing us to compute the volume, or other invariants.
- A computer can take the combinatorial structure of a 3-manifolds and find all cutting surfaces for the geometrization decomposition.
- If we want to find smallest volume hyperbolic manifold, the only current proof is computer assisted. The difficulty of this last question can be seeing the set of volumes plotted on the real line: