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Hyperbolic Space Surfaces Hyperbolic 3-manifolds

Homogeneous geometries

Homogeneous geometry in dimension 2

α

β

γ

α+ β + γ > 180◦

α

β

γ

α+ β + γ = 180◦

α β

γ

α+ β + γ < 180◦

• On the sphere and the plane, every direction looks
the same – these spaces are homogenous.

• They are complete – you can keep walking in a
straight line forever.

• If try to make the saddle-shaped space homogenous
and complete, it starts looking like :
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Homogeneous geometries

Poincaré disk model

• This saddle-shaped geometry is called
hyperbolic geometry.

• To work with it, we need a model where
we can draw “straight” lines and measure
length and angles.

• Let H2 be the interior of the unit disk –
the circle will be “at infinity.”

• Hyperbolic straight lines are circular arcs
perpendicular to the “circle at infinity’.’

• Hyperbolic circles look like regular circles,
but their centers are elsewhere.

• Hyperbolic triangles look very much like
the triangles on the saddle.
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Flat surfaces

Finite area everywhere flat surfaces

• Build a finite area surface
which is flat everywhere
by gluing.

• Gluing at corners and
edges must always
produce angles of 360◦.
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Flat surfaces

Finite area everywhere flat surfaces
• Build a finite area surface

which is flat everywhere
by gluing.

• Gluing at corners and
edges must always
produce angles of 360◦.

too much angle to be flat!
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Hyperbolic surfaces

Finite area everywhere hyperbolic surfaces

• We can solve this problem in
hyperbolic geometry because
polygons can have tiny angles.

• In fact, we can take a finite area
hyperbolic 8-gon where the angles
are almost zero.

• Then, we can deform it and
increase the angle until we get
the desired

360◦/8 = 45◦.

• Notice that the sides are still
straight line segments.
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An example

An example of a hyperbolic 3-manifold

• Going up one dimension, we can
glue faces of a polyhedron or
several polyhedra together.

• The angle condition becomes
more complicated – we now get
equations called the Poincaré
Polyhedron Theorem and the
Thurston gluing equations.

• Given a combinatorial gluing, we
can use computational techniques
to find solutions for the shapes of
these polyhedra.
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Topology

What does this thing look like?

• The 3-manifolds obtained from
the previous gluing is the outside
(i.e. complement) of the figure
8-knot!

• We look at the complement in
the 3-sphere – this is R3 plus a
point at infinity.

• Going in the reverse direction, we
see that for some 3-manifolds
(given combinatorially) it is
possible to find a (complete)
hyperbolic structure. It so
happens that when the structure
is finite volume, it is unique (for
the given combinatorial gluing).
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Topology and geometry

Can 3-manifolds be understood through geometry?

• For “most” knots (and links), their complements admit finite volume
hyperbolic structures like above. This makes the volume an invariant of
the knot – if two knots have different volumes, they’re different knots!

• For closed 3-manifolds (those without boundary), this question was
answered in 2003 by Grigori Perelman with his proof of Thurston’s
geometrization conjecture (1982) as well as the long standing Poincaré
conjecture (1904).

• Broadly speaking, the Geometrization Theorem states that 3-manifolds
can be (uniquely) cut along surfaces such that the remaining pieces admit
one of 8 model geometries, with hyperbolic geometry being very
prevalent.
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Computation

How can computers help?

• A computer can take a knot diagram, find the combinatorial structure of
the compliment, and then solve the gluing equations – thus allowing us to
compute the volume, or other invariants.

• A computer can take the combinatorial structure of a 3-manifolds and
find all cutting surfaces for the geometrization decomposition.

• If we want to find smallest volume hyperbolic manifold, the only current
proof is computer assisted. The difficulty of this last question can be
seeing the set of volumes plotted on the real line :
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