A New Bound for Sullivan's Theorem for Simply Connected Domains

Martin Bridgeman, Richard D. Canary, and Andrew Yarmola

Department of Mathematics, University of Michigan

Introduction

For a simply connected domain Ω in $\mathbb{C} \subset \partial \mathbb{H}^{3}$, let Dome (Ω) denote the boundary of the convex hull of $\partial \mathbb{H}^{3} \backslash \Omega$. The surface $\operatorname{Dome}(\Omega)$ is hyperbolic in its intrinsic metric ([5]). The following result of Sullivan is of interest.

Sullivan's Theorem

Theorem. There exists a universal constant $K>1$ such that for any a proper simply connected domain Ω in \mathbb{C} and the group Γ of Möbius transformations preserving Ω, there is $a \Gamma$-equivariant K-quasiconformal homeomorphism $f_{\Omega}: \Omega \rightarrow \operatorname{Dome}(\Omega)$ extending continuously to the identity map on the common boundary of Ω and $\operatorname{Dome}(\Omega)$.

Let $K_{e q}$ denote the best such K. Epstein, Marden and Markovic [3] have shown that $2.1 \leq K_{e q} \leq$ 13.88. If the condition for equivariance is dropped, Bishop showed that the optimal K is less than 7.88 [1]. Expanding of previous techniques, we have been able to show that $K_{e q} \leq 7.12$.

Pleated Surfaces

Definition. Let $\mathcal{G}\left(\mathbb{H}^{2}\right)$ we the space of unoriented geodesics in \mathbb{H}^{2}. A measured lamination (Λ, μ) is a pair where μ is a Borel measure on $\mathcal{G}\left(\mathbb{H}^{2}\right), \Lambda=$ $\operatorname{supp}(\mu)$, and no two distinct geodesics in Λ intersect. We refer to elements of Λ as leafs and components of $\mathbb{H}^{2} \backslash \cup \Lambda$ as flats.
Fix a real $c \geq 0$. If Λ is finite, then we may choose orientations for the leafs of (Λ, μ) and define the earthquake map $E_{c \mu}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ by taking translations along each leaf $l \in \Lambda$ by amount $c \mu(\{l\})$. Under $E_{c \mu},(\Lambda, \mu)$ is carried to a new measured lamination $\left(\Lambda^{*}, \mu^{*}\right)$. We also define the pleating map $P_{c \mu}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{3}$ by fixing an embedding of a flat in \mathbb{H}^{3} and mapping all other flats by bending along every $l \in \Lambda$ by the amount $c \mu(\{l\})$. These maps can be defined for general (Λ, μ) and are continuous except for possibly at elements of Λ, see [2, 3].

Figure 1: An example of $\operatorname{Dome}(\Omega)$ in the upper halfspace model where Ω is the domain below all the hemispheres. Notice that this is also a pleated plane for some finite measured lamination

For a given $z=x+i y \in \mathbb{C}$, we define the complex earthquake map $\mathbb{C} E_{z}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{3}$ by $\mathbb{C} E_{z}=P_{y \mu^{*}} \circ$ $E_{x \mu}$. From this, we obtain a continuous family of pleated surface parametrized by z. Further, $\mathbb{C} E_{z}$ extends to a holomorphic motion of $\partial \mathbb{H}^{2}$ in $\partial \mathbb{H}^{3}[3]$.

In [3], Epstein, Marden and Markovic show given Dome (Ω), one my find a measured lamination such that $\operatorname{im} \mathbb{C} E_{i}=\operatorname{Dome}(\Omega)$. Further, they show that this measured lamination, and the corresponding families of pleated surfaces, can be effectively approximated by finite measured laminations.

Bending and Roundedness

For an arc C transverse to a measured lamination (Λ, μ), we define

$$
|\mu|(C)=\mu(\{l \in \Lambda \mid l \cap C \neq \emptyset\}) .
$$

The L-norm of (Λ, μ) is

$$
\|\mu\|_{L}=\sup _{C}|\mu|(C),
$$

where the supremum is taken over all arcs transverse to Λ of length L. We have the following new result about the L-norm of μ given that P_{μ} is embedded.
Theorem. Let $B:[0,2 \sinh -1(1)] \rightarrow[\pi, 2 \pi]$ be given by $B(L)=2 \cos ^{-1}\left(-\sinh (L / 2)\right.$. If P_{μ} is embedded, then $\|\mu\|_{L} \leq B(L)$.
There is also a result in another direction, which gives a bound on $\|\mu\|_{L}$ that guarantees that P_{μ} is embedded. From an unpublished manuscript of Epstein and Jerrard we have:

Theorem. There exists a well defined monotonic function $G:(0, \infty) \rightarrow(0, \pi)$ such that if $\|\mu\|_{L} \leq G(L)$ then P_{μ} is embedded.

Following Epstein, Marden and Markovic in [2], we use these results to find a region $\mathfrak{T}_{0}^{L} \subset \mathbb{C}$ such that $\mathbb{C} E_{z}$ if embedded for all $z \in \mathfrak{T}_{0}^{L}$ and (Λ, μ) with $\|\mu\|_{L}=1$. For $L \in[0,2 \sinh -1(1)]$ and $x \in \mathbb{R}$, we define the functions

- $F_{1}(x, L)=\min \left(L e^{|x| / 2}, \sinh ^{-1}\left(e^{|x|} \sinh (L)\right)\right.$
- $F_{2}(x, L)=\max \left(L e^{-|x| / 2}, \sinh ^{-1}\left(e^{-|x|} \sinh (L)\right)\right.$
$-Q(x, L)=\max \left(\frac{G(L)}{\left.\mid F_{1}(x, L) / L\right\rceil}, G\left(F_{2}(x, L)\right)\right)$
Then the region \mathfrak{T}_{0}^{L} is given by

$$
\mathfrak{T}_{0}^{L}=\{x+i y| | y \mid<Q(x, L)\} .
$$

We also define the region

$$
\mathfrak{T}^{L}=\{x+i y \mid y>-Q(x, L)\} .
$$

Main Results
Let \mathcal{T} be the universal Teichmüller space defined as the space of all quasisymmetric homeomorphism of \mathbb{S}^{1} modulo the action of the group of Möbious transformations by left composition. A straightforward generalization of the results and techniques of Epstein, Marden and Markovic used in [3] give us the following theorems.

Theorem. There is a holomorphic map \mathfrak{G} $\mathfrak{T}^{L} \rightarrow \mathcal{T}$ such that if $P_{c \mu}$ if a pleated surface corresponding to $\operatorname{Dome}(\Omega)$ with $\|\mu\|_{L}=1$, then the class $\mathfrak{G}(i c)$ recovers the map in Sullivan's Theorem.

Main Theorem

Theorem. The optimal equivariant quasiconformal constant $K_{e q}$ satisfies the inequality
$\log \left(K_{\text {eq }}\right) \leq d_{\mathcal{T}}(\mathfrak{G}(i B(L)), 0) \leq d_{\mathfrak{I}^{L}}(i B(L), 0)$. In particular, taking $L=1.5$ we attain
$K_{e q} \leq 7.12$.

Computation
$\cdot B \approx 5.0725 i$

Figure 2: The graph of the function $-Q(x, L)$ for $L=1.5$. The area above the graph is the region \mathfrak{T}^{L}. The hyperbolic distance between the two points 0 and $B=B(L)$ determines the upper bound for $K_{e q}$

We used MATLAB to construct a polygonal approximation of infinite area for the region \mathfrak{T}^{L}. Using the Schwarz-Christoffel mapping toolbox by Toby Driscoll [4], we computed the images of the points 0 and B under a Riemman mapping of \mathfrak{T}^{L} to the upper half plane. Computing the hyperbolic distance between the images provides the result.

References

[1] C.J. Bishop, "An explicit constant for Sullivan's convex hull theorem," in In the tradition of Ahlfors and Bers III, Contemp. Math. 355(2007), Amer. Math. Soc., 41-69.
[2] D.B.A. Epstein, A. Marden and V. Markovic, "Quasiconformal homeomorphisms and the convex hull boundary," Ann. of. Math. 159(2004), 305-336.
3] D.B.A. Epstein, A. Marden and V. Markovic, "Complex earthquakes and deformations of the unit disk," J. Diff. Geom 73(2006), 119-166.
T. Driscoll, A Matlab program for computing and visualizing conformal maps, http://www.math.udel.edu/SC/
5] W.P. Thurston, The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton University, 1979

Acknowledgements

Richard D. Canary was partially supported by NSF grants DMS-0504791 and DMS-0554239

