Introduction

For a simply connected domain Ω in $\mathbb{C} \subset \partial \mathbb{H}^3$, let $Dome(\Omega)$ denote the boundary of the convex hull of $\partial \mathbb{H}^3 \smallsetminus \Omega$. The surface Dome(Ω) is hyperbolic in its intrinsic metric ([5]). The following result of Sullivan is of interest.

Sullivan's Theorem

Theorem. There exists a universal constant K > 1 such that for any a proper simply connected domain Ω in \mathbb{C} and the group Γ of Möbius transformations preserving Ω , there is a Γ -equivariant K-quasiconformal homeomorphism $f_{\Omega} : \Omega \to \text{Dome}(\Omega)$ extending continuously to the identity map on the common boundary of Ω and Dome (Ω) .

Let K_{eq} denote the best such K. Epstein, Marden and Markovic [3] have shown that 2.1 $\leq K_{eq} \leq$ 13.88. If the condition for equivariance is dropped, Bishop showed that the optimal K is less than 7.88 [1]. Expanding of previous techniques, we have been able to show that $K_{eq} \leq 7.12$.

Pleated Surfaces

Definition. Let $\mathcal{G}(\mathbb{H}^2)$ we the space of unoriented geodesics in \mathbb{H}^2 . A measured lamination (Λ, μ) is a pair where μ is a Borel measure on $\mathcal{G}(\mathbb{H}^2)$, $\Lambda =$ $\operatorname{supp}(\mu)$, and no two distinct geodesics in Λ intersect. We refer to elements of Λ as *leafs* and components of $\mathbb{H}^2 \setminus \bigcup \Lambda$ as *flats*.

Fix a real $c \geq 0$. If Λ is finite, then we may choose orientations for the leafs of (Λ, μ) and define the earthquake map $E_{c\mu} : \mathbb{H}^2 \to \mathbb{H}^2$ by taking translations along each leaf $l \in \Lambda$ by amount $c\mu(\{l\})$. Under $E_{c\mu}$, (Λ, μ) is carried to a new measured lamination (Λ^*, μ^*) . We also define the pleating map $P_{c\mu} : \mathbb{H}^2 \to \mathbb{H}^3$ by fixing an embedding of a flat in \mathbb{H}^3 and mapping all other flats by bending along every $l \in \Lambda$ by the amount $c\mu(\{l\})$. These maps can be defined for general (Λ, μ) and are continuous except for possibly at elements of Λ , see [2, 3].

A New Bound for Sullivan's Theorem for Simply Connected Domains

Martin Bridgeman, Richard D. Canary, and Andrew Yarmola Department of Mathematics, Boston College Department of Mathematics, University of Michigan

Figure 1: An example of $Dome(\Omega)$ in the upper halfspace model, where Ω is the domain below all the hemispheres. Notice that this is also a pleated plane for some finite measured lamination.

For a given $z = x + iy \in \mathbb{C}$, we define the complex earthquake map $\mathbb{C}E_z : \mathbb{H}^2 \to \mathbb{H}^3$ by $\mathbb{C}E_z = P_{uu^*} \circ$ $E_{x\mu}$. From this, we obtain a continuous family of pleated surface parametrized by z. Further, $\mathbb{C}E_z$ extends to a holomorphic motion of $\partial \mathbb{H}^2$ in $\partial \mathbb{H}^3$ [3].

In [3], Epstein, Marden and Markovic show given $Dome(\Omega)$, one my find a measured lamination such that im $\mathbb{C}E_i = \text{Dome}(\Omega)$. Further, they show that this measured lamination, and the corresponding families of pleated surfaces, can be effectively approximated by finite measured laminations.

Bending and Roundedness

For an arc C transverse to a measured lamination (Λ, μ) , we define

$$|\mu|(C) = \mu(\{l \in \Lambda \mid l \cap C \neq \emptyset\}).$$

The *L*-norm of (Λ, μ) is

$$\|\mu\|_L = \sup_C |\mu|(C),$$

where the supremum is taken over all arcs transverse to Λ of length L. We have the following new result about the L-norm of μ given that P_{μ} is embedded.

Theorem. Let $B : [0, 2\sinh -1(1)] \rightarrow [\pi, 2\pi]$ be given by $B(L) = 2\cos^{-1}(-\sinh(L/2))$. If P_{μ} is embedded, then $\|\mu\|_L \leq B(L)$.

There is also a result in another direction, which gives a bound on $\|\mu\|_L$ that guarantees that P_{μ} is embedded. From an unpublished manuscript of Epstein and Jerrard we have:

Let \mathcal{T} be the universal Teichmüller space defined as the space of all quasisymmetric homeomorphism of \mathbb{S}^1 modulo the action of the group of Möbious transformations by left composition. A straightforward generalization of the results and techniques of Epstein, Marden and Markovic used in [3] give us the following theorems.

Theorem. There exists a well defined monotonic function $G: (0,\infty) \to (0,\pi)$ such that if $||\mu||_L \leq G(L)$ then P_{μ} is embedded.

Following Epstein, Marden and Markovic in [2], we use these results to find a region $\mathfrak{T}_0^L \subset \mathbb{C}$ such that $\mathbb{C}E_z$ if embedded for all $z \in \mathfrak{T}_0^L$ and (Λ, μ) with $\|\mu\|_L = 1$. For $L \in [0, 2\sinh(-1)]$ and $x \in \mathbb{R}$, we define the functions

• $F_1(x, L) = \min(Le^{|x|/2}, \sinh^{-1}(e^{|x|} \sinh(L)))$ • $F_2(x, L) = \max(Le^{-|x|/2}, \sinh^{-1}(e^{-|x|} \sinh(L)))$ • $Q(x,L) = \max\left(\frac{G(L)}{\left\lceil F_1(x,L)/L \right\rceil}, G(F_2(x,L))\right).$

Then the region \mathfrak{T}_0^L is given by

 $\mathfrak{T}_{0}^{L} = \{x + iy \mid |y| < Q(x, L)\}.$

We also define the region

 $\mathfrak{T}^L = \left\{ x + iy \mid y > -Q(x, L) \right\}.$

Main Results

Theorem. There is a holomorphic map \mathfrak{G} : $\mathfrak{T}^L \to \mathcal{T}$ such that if $P_{c\mu}$ if a pleated surface corresponding to $\text{Dome}(\Omega)$ with $\|\mu\|_L = 1$, then the class $\mathfrak{G}(ic)$ recovers the map in Sullivan's Theorem.

Main Theorem

Theorem. The optimal equivariant quasiconformal constant K_{eq} satisfies the inequality $\log(K_{eq}) \le d_{\mathcal{T}}(\mathfrak{G}(iB(L)), 0) \le d_{\mathfrak{T}^L}(iB(L), 0).$ In particular, taking L = 1.5 we attain $K_{eq} \le 7.12.$

We used MATLAB to construct a polygonal approximation of infinite area for the region \mathfrak{T}^L . Using the Schwarz-Christoffel mapping toolbox by Toby Driscoll [4], we computed the images of the points 0 and B under a Riemman mapping of \mathfrak{T}^L to the upper half plane. Computing the hyperbolic distance between the images provides the result.

[1]	C.J
	ren
	35
[2]	D.E
	hor
	159
[3]	D.E
	and
[4]	Τ.]
	for
[5]	W.2
	tur

Richard D. Canary was partially supported by NSF grants DMS-0504791 and DMS-0554239.

Computation

 $\bullet B \approx 5.0725i$

Figure 2: The graph of the function -Q(x, L) for L = 1.5. The area above the graph is the region \mathfrak{T}^L . The hyperbolic distance between the two points 0 and B = B(L) determines the upper bound for K_{eq} .

References

. Bishop, "An explicit constant for Sullivan's convex hull theon," in In the tradition of Ahlfors and Bers III, Contemp. Math. **55**(2007), Amer. Math. Soc., 41–69.

B.A. Epstein, A. Marden and V. Markovic, "Quasiconformal meomorphisms and the convex hull boundary," Ann. of. Math. $\mathbf{59}(2004), 305-336.$

B.A. Epstein, A. Marden and V. Markovic, "Complex earthquakes d deformations of the unit disk," J. Diff. Geom 73(2006), 119–166. Driscoll, A Matlab program for computing and visualizing con-

rmal maps, http://www.math.udel.edu/SC/

P. Thurston, The Geometry and Topology of 3-Manifolds, Lecre Notes, Princeton University, 1979.

Acknowledgements

