Persistence and Computation of the Cup
Product

Andrew Yarmola
Senior Honors Thesis
Department of Mathematics, Stanford University
Advisor: Mikael Vejdemo-Johansson

June 9 2010

Abstract

In this paper we discuss the computation of the cup product for
the cohomology of a finite simplicial complex over a field. Working
with the theory of persistent (co)homology, we study an algebraic
substructure of the cohomology ring of a simplicial complex within a
filtration. We study this structure in a persistence setting, allowing
us to classify it by a series of barcodes. Further, we introduce and
implement several algorithms for computing the cup product for a
simplicial complex within the persistent and non persistent settings.

Contents

[2 Background|
2.1 Simplicial Complexes|
2.2 Chain Complexes|
[2.3 Simplicial Homology and Cohomology|.
2.4 (Co)homology Coefficients|

3__Persistencel
[3.1 Persistent Homology|
[3.2 Persistent Cohomologyl
[3.3 Algorithm for Persistent Cohomology|

[4 The Cup Product]
4.1 The Cohomology Ringl

[Computation of the Cup Product|

6 Algorithms|
[6.1 Basic Algorithm ot a Simplicial Complex|
[6.2 Discussion on Persistence Algorithms|

[7 Experiments|
(7.1 Implementations

[9 Acknowledgments|

10
10
15
17

20
22

24

25
26
28

30
30
31

32

33

1 Introduction

Topological data analysis is a developing field of mathematics focused on
providing methods for computing topological features of data sets. A topo-
logical approach allows us to find both global and local features of complex
data sets while working in an abstract mathematical framework. Homology
and cohomology have been particularly powerful tools for data analysis.

In this paper, we study the computation of the cup product for the co-
homology ring of a filtered simplicial complex over a finite field. A filtered
simplicial complex is simply a sequence of simplicial complexes ordered by
inclusion. We are interested in the analysis of both the cup product struc-
ture of the total simplicial complex, the final complex in the sequence, and
the changes to this structure throughout this sequence. A filtered simplicial
complex gives rise to an system of graded cohomology rings {R'};>q with
homomorphisms R — R'. We study the cup product by analyzing the
powers of the ideal I; = € 50 Ré. within system of graded rings.

Our results are meant to enrich the already established framework of
persistent homology and cohomology [2][6][4][5][|1]. Persistent homology and
cohomology characterize the birth and death of topological features in a
filtered simplicial complex. This framework has been applied to tackle prob-
lems such as shape recognition, data simplification, sensor network coverage,
and finding local circular coordinates for data sets. By introducing the cup
product, we can further enrich this framework by allowing the detection of a
new range of topological features.

We begin this paper with a few motivational points and then provide
the necessary background in (co)homology and the cup product in sections
2 and 4. In section 3 we review the framework of persistent (co)homology
and show an algorithm for persistent cohomology. In section 5 we discuss the
computation of the cup product in the persistence setting and provide our
main theoretical results. In section 6 we develop several algorithms for the
computation of the cup product. We discuss our implementations in section

7.

1.1 Motivation

The problem reconstructing a space from some point cloud sample has re-
ceived much attention in the field of computation sciences. Algorithms for
persistent homology and cohomology of simplicial complexes provide an ad-

vanced approach to high dimensional analysis and reconstruction of such
samples. Given a point cloud in R”, there are a variety of methods of con-
structing a nested sequence of simplicial approximations of the data, called
a filtration (e.g. Cech, Rips, or Witness complexes [2][6]). In general, a nu-
merical parameter is varied to construct a filtration. Persistence algorithms
allow us to track the evolution of topological features within the filtration
and find stable global features of the data set. From this analysis, it is pos-
sible to find a range of “good” simplicial approximations of the data and
get valuable topological information about its structure. In an attempt to
further refine this range, we are interested in looking at the evolution of the
cohomology ring in the filtration.

The structure of the cohomology ring enriches our analysis in several
ways. Example 1 shows that having information about the cohomology ring
allows us to distinguish between certain topological spaces with the same
(co)homology. This provides us with a more precise understanding of the
topological structure of the data set. In fact, we get even more structural
information. The cohomology ring is closely tied to the intersections of sub-
manifolds [7] and so provides us with an assessment of how “manifold like”
our data set is. In certain cases, this ability so say something about the
“manifold like” structure of our simplicial approximations should allow us to
notice undesired cusping in our data set. That is, cusping would correspond
to a collapse in the manifold like structure of our simplicial complexes. Such
collapses could indicate that we should take a new sample of points, mod-
ify our filtration in a specific way, or allow us to choose a more preferred
approximation to our data

Example 1. Consider the spaces T' = S' x St and M = S?V S?Vv St. The
cohomology of the these spaces is the same with H(T F) ~ H'(M;F) ~ F?
and H*(T;F) ~ H*(M;F) ~ F. These spaces have very different topological
structures since 7' is a 2-manifold, while M is not. The cup product allows us
to differentiate between these two spaces. The cup product of the non trivial
cohomology classes in dimension 1 is non trivial for T', while it is trivial for
M.

Examples 2. Besides allowing us to differentiate between spaces, study-
ing the change in cup product structure throughout a filtration can be in-
teresting. Morse theory on high dimensional manifolds is an example where
understanding the cup product structure on the level sets could allow us
understand the high dimensional manifold itself.

2 Background

2.1 Simplicial Complexes

A k-dimensional simplex o, or k-simplex, is defined to be a set ¢ =
{vo, ..., v}, where the element of o are called vertices. One can think of
a k-simplex geometrically as the convex hull of £ + 1 affinely independent
points in R™ where n > k. A set of points {vg, ..., vt} in R™ is called affinely
independent if and only if). a;v; = 0 and) ., a; = 0 implies that a; = 0 for
all 2. For k = 0,1,2,3 the corresponding geometric realizations are a point,
a line segment, a triangle, and a tetrahedron. A face of a simplex ¢ is a set
7 with 7 C 0. We also call o a coface of 7.

For a simplex, we can define a notion of orientation if we assign a linear
ordering to the vertices. Two orderings are considred the same if the per-
mutation taking one to the other has positive sign, and distinct if the sign
is negative. That is [v,...,ve] ~ [Uy0), .., Vyw) if and only if sign(y) = 1.
Thus, for k£ > 0, each k-simplex can be given two possible orientations cor-
responding to equivalence classes of orderings. Note that an orientation on
o gives an orientation to all of its faces by suborderings. We use the [..]
notation when listing vertices to indicate that an orientation for o has been
chosen.

A simplicial complex K is a set of simplices such that if c € K and 7 C o
then 7 € K. This amounts to the need for all of the faces of a simplex to
be included in the complex K. A subcomplex L of K is a subset of K that
is also simplicial complex. The dimension of K is the largest dimension of a
simplex in K. If K is a finite set, then K is called a finite simplicial complex.
We can construct a simplicial complex from any simplex ¢ by taking the set
of all faces of o.

A geometric realization of K, denoted as | K|, can be constructed by tak-
ing geometric realization of all ¢ € K and gluing them along common faces,
which are faces of the form oNo’. In the geometric realization, it is important
that any two simplices that meet, do so at a common face. In particular,
|K| =[1,cx lo|/ ~ where ~ is the equivalent relation specifying which faces
are identifies. For a finite simplicial complex K, we can always construct
a geometric realization in R™ where m is the number of O-simplices of K.
We can consider K to be a subcomplex of an m-simplex, whose geometric
realization lies in R™.

Remark What we call a simplicial complex, some authors prefer to call

an abstract simplicial complex. We chose our definition to emphasize the
combinatorial nature of simplicial complexes. The geometry of the simplicial
complex or an embedding are not necessary for the general framework of our
computation approach.

For a simplicial complex K, we can assign orientations to all of its sim-
plices by providing a partial ordering of the 0-simplices, i.e. vertices, of K
such that the restriction to the vertices of every simplex in K is linear. We
call such an assignment of orientations compatible. If K is finite, we can sim-
ply choose a linear ordering of all the 0-simplices. The well-ordering theorem
allows us to do the same for infinite simplicial complexes.

A filtration of a complex K is a nested sequence S = { K} of simplicial
complexes) C K° C K! C ... C K™ = K. In general, we may treat this
sequence as infinite by letting K* = K for i > m. A simple example is given
by K' = {0 € K | dim(0) < i}. We say that S is a refinement of T if T is a
subsequence of S. We refer to any refinement of the above example as being
ordered by dimension.

A map f : K — L between to simplicial complexes is called simplicial
if takes O-simplices to O-simplexes and if o = {vp, ..., v} € K then f(o) =
{f(vo),..., f(vg)} € L. Note that for simplicity, we are treating 0-simplices
and vertices as the same thing. An inclusion 7 : K < L is an example of a
simplicial map.

2.2 Chain Complexes

A chain complex of abelian groupsis a collection {Cy }rez of abelian groups
along with homomorphisms 0y, : C,, — Cj_1 such that 0y_1 09, = 0. C} is
called the k'-chain group and its elements are called k-chains. The homo-
morphism 9, are called boundary operators for reasons that will become clear.
To denote an entire chain complex we use the notation C, or (Ci, 0,) if we
need to specify the boundary operators.

Given a simplicial complex K with a compatible ordering, we let the
Cx(K;Z) be the free abelian group generated by k-simplices of K. The
elements of Ci(K;Z) are finite sums of the form). a;0; with a; € Z and
o; € K. For 0 = [vg,...,v] € K, we define

k

Oc(0) = (=1)'[v, -, i, ..., k]

1=0

where that ¢; indicates the removal of that vertex. Note that this is the
alternating sum of the (k — 1)-dimensional faces of o, giving J; the name
boundary operator. The alternating sign is meant to account for the ori-
entation. Since the ordering for K was compatible, dx(0) is an element of
Cr-1(K;Z). As O is well defined on the generators of Cy(K;Z), we can
extend it to a homomorphism 0 : C(K;Z) — Cr_1(K;Z).

Lemma 2.2.1. For a simplicial complex K we have that Ox_1 0 9, = 0.

Proof. Tt is enough to check that this hold for generators o = [vy, ..., vk]| of
C}c(K; Z)
(Or100)(0) =Y (1) (=1)[vg, .,)y, Tiv - 00
i>j
+ 3 (=D)H(=1) oo, - By v] =0
i<j

once we pull out a negative sign from the second summand and interchange
1 and J. O

Now, if we let Cx(K;Z) = 0 and Jy = 0 for k < 0, then {Cy(K;Z)}rez is
indeed a chain complex.

Given an abelian group G, we can construct a cochain complex by du-
alizing {Cy(K;Z)}kez to C¥(K;G) = Hom(Cy(K;Z),G) and 6 = ;.
CHK;G) — C*L(K;G), where (6,0)(c) = ¢(Oxy10). Note that &, 0 6,1 =
(O © Ogt1)* = 0, so the cochain complex is simply a chain complex with
arrows going in a different direction. We call d; a coboundary operator.

Using the boundary and coboundary operators we identify several sub-
groups of Ci(K;Z) and C*(K;G). The subgroups Z,(K;Z) = ker 8, and
Z*(K; G) = ker 6, are called cycle and cocycle groups respectively. Similarly,
the By(K;Z) = im Oy, and B*(K;G) = im 6;,_; are boundary and cobound-
ary groups respectively. Observe that Oy 0 Jry1 = 0 and d; 0 61 = 0 imply
that

By(K;Z) € Zy(K;Z) € Cy(KZ)

and
BMK;G) C ZMK;G) C CHK; G).

Definition 2.2.1. A chain map between two complezes (Cs, 0y) and (CL,d.)
is a collection of homomorphisms f : Cy — C}. such that O o fr = fr—10 Ok.

7

A cochain map can be defined similarly. Chain maps behave well with
respect to the subgroups we defined above because fi(kerd;) C ker 9, and
Jr(im Opq1) € im 0, ;. This behavior allows (co)chain maps to induce maps
of (co)homology.

For most of the paper, we will drop the indices on 0 and ¢§ for simplicity.

2.3 Simplicial Homology and Cohomology

For a simplicial complex K and an abelian group G, we define the k-
homology group to be Hy(K;Z) = Z,,(K;Z)/Bx(K;Z) and the k*-cohomology
group with coefficient in G to be H*(K;G) = Z¥(K;G)/B*(K;G). Elements
of Hy(K;Z) and H*(K;G) are called homologous cycles and cocycles respec-
tively and are classes of (co)cycles up to (co)boundaries.

Remark. Homology and cohomology can be abstractly defined for any
chain and cochain complex as simply ker 9/im 0 and ker § /im ¢ respectively.
Note the implied indices. With this in mind, we will talk about (co)homology
of a (co)chain complex.

Homology and cohomology groups are topological invariants in the sense
that if there is a bijective simplical map between K and L, then the (co)homo-
logy groups for K and L are naturally isomorphic. In fact, any simplicial map
f+ K — L gives rise to a homomorphisms f, : Hy(K;Z) — Hy(L;Z) and
f*: HY(L;G) — H*(K;G) for all k. This homomorphism arrises from the
induced (co)chain maps by f on the (co)chain complexes of K and L. The
details of these facts can be found in [7]. For this paper, we are only concerned
with homomorphisms induced by an inclusion ¢ : L — K with regard to
filtrations of simplicial complexes. We use iy and i# for the induced maps
on the level of chains and cochains respectively. For homology, ix(¢) = ¢
for ¢ € Cp(K;Z). For cohomology (i#)(c) = v (i(0)) for ¢ € C*(K;G).
Note that a bijective simplicial map implies that there is a homeomorphism
between |L| and | K| as topological spaces.

Intuitively, (co)homology groups indicate the presence of k-dimensional
analogues of holes. For examples a sphere (or boundary of a tetrahedron)
S? has Hy(S?) ~ Z, indicating a 2-dimensional hole, or void, in the space.
From the perspective of data analysis, these features contribute to the un-
derstanding of the data set as a whole.

In general, homology and cohomology groups do not have a trivial re-
lationship, such as being isomorphic. However, their relationship is well
understood by the universal theorem of cohomology the details of which may

be found in [7]. An important distinction to be made between the two is
that cocycles are global functions ¢ : Cy(K;Z) — G while cycles are ele-
ments of Cy(K;7Z), creating the notion that cohomology carries more global
information than homology.

2.4 (Co)homology Coefficients

Before we introduce the persistence (co)homology, we would like to ad-
dress the nature of coefficients in (co)homology. As we have seen, coho-
mology carries a notion of coefficient in a group G. However, if G = R
was chosen to be a commutative ring with unity, the cochains C*(K; R) =
Hom(Cy(K;Z), R) become modules over R, making H*(K; R) an R-module.
In particular, if R = FF is a field, then H*(K; R) is vector space. The di-
mension of H*(K;F) over F is called the k' betti number. Over a field,
cohomology groups can then be completely described by their betti num-
bers.

There is also a notion of homology with coefficients in an abelian group G.
Instead of taking the free abelian group Cy(K;Z) generated by k-simplices,
we may use Cy(K; G), which is the collection of all finite sums of the form
>, ai0; for a; € G and o; k-simplices. If G = R is a commutative ring
with unity, then Cy(K; R) is a free R-module generated by k-simplices. The
homology groups with coefficient in G are denoted as Hy(K; G) and are R-
modules if G = R and vector spaces if G = F is a field. Computationally, we
deal with (co)homology over finite fields. In the case of fields, the universal
coefficient theorem for cohomology tells us that there is a natural isomor-
phism H*(K;F) ~ Homp(H(K;F),F) |7]. For a finite simplicial complex,
we can also construct Homp(Hy(K;F),F) ~ Hy(K;F). Note that this iso-
morphism requires a choice of basis and is not natural. For (co)homology
computations over fields, we are then simply interested in the betti numbers
for a finite simplicial complex.

For a finite simplicial complex, taking coefficients in a principal ideal
domain R, homology and cohomology groups are finitely generated modules
whose structure we can understand by the following structure theorem.

Theorem 2.4.1. If M is a finitely generated module over a principal ideal
domain R, then M is a direct sum of cyclic R-modules. In particular,

M~ R'q <é R/(n))

9

where d,n € N, and r; # 0,1 € R with r; dividing r;11 for all i. Further, d
and the list ry,...,r, are unique.

The module M decomposes into a free module and a torsion module, the
left and right hand side respectively. Uniqueness of the decomposition lets
us classify M by its rank d and torsion coefficients rq,...,r,. M is therefore
quite similar to a vector space, except that some of its dimensions are not
full copies of R but are quotient rings by principal ideals. Another way to
think of about a finitely generated module over a principal ideal domain is
as a quotient of a free module by a free submodule, that is M ~ R /N
where N is the free submodule generated by {ry,...,r,}. Computationally,
we are interested in finding the rank and torsion coefficients of (co)homology
groups over a principal ideal domain due to this nice structure.

3 Persistence

As we have previously mentioned, the construction of a simplicial complex
from data is, in general, a parametrized process. For point cloud a data in
R™, the Cech, Rips, and Witness algorithms allow us to produce filtrations
of simplicial complexes that capture topological information along a numeric
parameter. Persistent (co)homology is a computational tool that allows us
to observe the variation of homological features within the filtration. In this
section we provide the basic framework for persistent (co)homology from
which will we build up our analysis of cup product structure in a persistence
setting.

3.1 Persistent Homology

We first discuss persistent homology for a filtration F' = {K;} as it is more
natural than persistent cohomology. Computing persistent homology over a
field produces a barcode, a set of time interval, that encodes the birth and
death of features in a filtration of a simplicial complex. Intuitively, a new
topological feature is born when a chain becomes a cycle in a filtration and
dies when a cycle becomes a boundary. From this intuition, we have the
following definition.

Definition 3.1.1. The p'* persistence k™ homology group of K, is
Hy (K3 G) = im (i* : Hy(Ki; G) — Hip(Kiyp; G)).

10

Since the map ¢* is induced by inclusion, the group Hy ,(K;; G) is precisely
those classes of cycles that are not boundaries in K, that is

Hk,p(Ki; G) ~ Zk(Ki; G)/(Zk(Kz, G) M Bk(Ki+p; G))

Over a principal ideal domain, persistent homology groups are finitely gen-
erated modules and are therefore classified by their rank and torsion coef-
ficients. We call the rank of a persistent homology group Hj ,(K;;R) the
persistent betti number 5,1”’ . Using matrix reduction algorithms it is possible
to compute the persistent betti number and torsion coefficients for individual-
persistent homology groups [2].

With coefficients in a field IF, the persistent homology groups become vec-
tor spaces and we may ask the question of whether we can find a compatible
set of basis elements across all of the persistent homology groups of a fixed
dimension k. In particular, we are interested in whether we can find a com-
patible basis for Hy(K;;F) and Hy(K;4,;F) for all ¢ and p. To do this, the
persistence in dimension k is combined into one algebraic structure called a
persistence module.

Definition 3.1.2. A persistence module over R is a collection of R-modules
{M;}ien along with homomorphisms ¢; : M; — M, 1. It is of finite type if M;
is finitely generated for each © and there is n such that ¢; is an isomorphism
for j > n.

Definition 3.1.3. The category of persistence modules (of finite type) over
R is the collection of all persistence modules (of finite type) over R and
morphisms (M., ¢.) — (Ni,.), which are collections of homomorphism f; :
M; — Nj such that ¥ o f; = fiy10 ¢y

The collection { Hx(K;; R)}ien, where K; is in a filtration F, becomes a
persistence module with the maps i* : Hy(K;; R) — Hg(K;41; R) induced by
inclusion. Note that we assume there is n such that K,, = K; for all 7 > n.
If F is a filtration of a finite simplicial complex, then our persistence module
is of finite type. We call this module the persistence homology module of F'.

We can build persistence modules more abstractly given a collection of
chain complexes {C};cy and chain maps f*: C. — C"

0=l .. .Cm— ...

We can take the £ homology of each chain complex to to get a persistence
module with homomorphisms induced by f*.

11

Definition 3.1.4. The direct sum of two persistence modules (M., ¢.) and
(N, 1) is the persistence module (M @& N), = {M; & N, }ien with the homo-
morphisms ¢, @ Py.

Over a field I, a persistence module of finite type V. looks like
Voo Vi—s...=V, > ...

where V; are finite vector spaces over F. Our goal is to find a basis for all
of these vector spaces that respects the maps V; — V;,;. This amounts to
expressing the persistence module V, as a direct sum of persistence modules
of the form

Li={0—...20=2F> ... 2F—=0—..}

and
Liew={0—...20=2F3F> ..}

where 7 indicates the position of the first F and j — 1 the position of the last.
We will find such a decomposition by transforming a persistence module into
a graded module.

A graded ring is a ring S with a decomposition S ~ €, ., S;, with S;
abelian groups, such that multiplication in S is defined by bilinear maps .S,, x
Sm — Snim- A polynomial ring is a good example where F[t] = @, Ft".
Elements of S; are called homogeneous. If S is an algebra over a ring R, then
S is called a graded R-algebra. We can similarly define a graded module M
over a graded ring S as an S-module with a decomposition M ~ €, , M;
where the action of S is given by bilinear maps S,, X M, = M, 1,,.

Given a persistence module (M., ¢.) over R, we collect it into an R][t]
graded module

a(M.) =P M;
i>0

where the action of ¢ is given by applying ¢.. That is,

t-(mg,m,...) =(0,p0(mo), p1(m1),...).

This construction establishes a correspondence between persistence mod-
ules of finite type and finitely generated non-negatively graded R[t]-modules.
From [2], we have that the Artin-Rees theorem provides us with the result:

12

Theorem 3.1.1. The correspondence defined by « is a functor and an equiv-
alence of categories of persistence modules of finite type over R and finitely
generated non-negatively graded modules over R[t] as a graded ring.

This correspondence allows us to use our understanding of finitely gener-
ated non-negatively graded R[t|-modules to analyze persistence modules.

Recall that F[t] is a principal ideal domain for a filed F. Theorem 2.4.1
provides us with an understanding of the stucture of finitely generated mod-
ules over a principal ideal domain. For graded modules, the structure theorem
becomes

Theorem 3.1.2. If M is a finitely generated graded module over a graded
principal ideal domain R then

M ~ (é 2“1‘1%) - (é Eba'R/(rj)>

where n,m, a;,b; € Z and r; are homogeneous elements of R such that r; |
rj+1. The notation X*R means the a upward shift of the gradation of R. The
numbers n,m,a; the list of pairs (b;,r;) are unique.

Given a persistence homology module M, = {Hy(K;;F)}ien for a filtra-
tion of a finite simplicial complex, we can apply the above theorem to see

that
a(M,) =~ (@ zz“iF[t]> @ (@ EbjIF[t]/(t”j)>

where (r;) = (t") since r; is a homogeneous element of F[t]. Analyzing this
structure, we see that pulling back the right hand for each j we get a subspace
of M, isomorphic to F that is propagated by ¢ until M, , as which point
its dies. On the left hand side, for each ¢ we get an subspace isomorphic to [F
is born in M,, and never dies is it is moved up by ¢ in the gradation. This is
precisely the decomposition we were looking for in terms of a direct sum of
persistence modules. Each 3% F[t] piece corresponds to a persistence module
I, and each S%F[t]/(¢") corresponds to a persistence module Iy, p 4n,-
Thus, we have shown that a compatible basis for the persistence module
over a field exists.

A persistence interval is simply a pair (p,q) with 0 < p < ¢ < oo for
p,q € ZU{oo}. A collection (multiset) of persistence intervals is a barcode

13

that we will denote as &. For each i is the decomposition above, we get
a persistence interval (a;,00) and for each j the interval (b;,b; + n;). Form
this, we have that

({Hi(K3; F) bien, i) =~ @ Ipg

(r.9)€Z

Thus, to each persistence module over a field we can assign a barcode that
describes the structure of that module. A barcode is a very elegant and
concise structure that each easy to display and encompasses the persistence
of a filtration of a finite simplicial complex.

Remark. We chose to construct the associated graded module of a per-
sistence homology module directly form the homology groups. An alternate
approach is to construct graded F[t] modules from chain complexes them-
selves, that is we can define Cy(F;F) = @, Cr(K;; F) for our filtration F
with t acting as the inclusion homomorphism. From this, we attain a chain
complex {Cy(F;F)}rez of modules over F[t] where the boundary maps are
simply the original boundary maps on each grading. The homology of this
chain complex is precisely the associated graded module to the persistence
homology module. Note that each Cy(F;F) is a free graded F[t] module
because t acts by inclusion, this will not be the case for cohomology.

The computation of persistence intervals in all dimensions can be done
concurrently using an adapted reduction algorithm on the matrices produced
by boundary maps. We call this algorithm the PH algorithm. The running
time is O(n?), the same as reduction to Smith Normal Form. The algorithm
computes one simplex at a time by taking a sparse filtration of the input.
The details and proof of validity can be found in [2]. With regard to the
above remark, this algorithm relies on the fact that Cy(F';F) are free graded
F[t] modules.

Remark. For those familiar with spectral sequences, there is a connec-
tion to persistent homology. There is a very natural spectral sequence that
arrises from a filtration with

ES = Cpig(Ky F) [Cpig(K1 F).

If our filtration is sparse, then persistence interval corresponds to a non-trivial
differential of the spectral sequence. In particular, for every interval of length
[there is a non-trivial differential d;; that arrises from the computation
of B! [2]. Running the spectral sequence therefore, allows us to pick off
persistence intervals in order of ascending length.

14

Remark. Towards the end of this section, we focused entirely on persis-
tence over of a field. The reason for this, is that modules over an arbitrary
graded ring R[t] can be very complex and there is not general theorem de-
scribing their structure [2]. What we see happening in the case of fields
is that the associated graded module of a persistence module decomposes
into free and torsional components allowing us to find a compatible basis.
For persistence modules over principal ideal domains, the homology groups
themselves carry torsion, so decomposing the associated graded module is
not an easy task.

3.2 Persistent Cohomology

Persistent cohomology is motivated in the same way as homology. We are
interested in analyzing the how cocycles change throughout the filtration.
Since cohomology is a contravariant functor, that is the inclusion i : K; — Kj
induces a reverse map i* : H*(K;;G) — HF(K;;G), the birth and death
analogies don’t cleanly apply as they do for homology.

With cohomology, we are looking more at the life of a cochain in @ €
C*(K;F) where K = Ug,cr K; for a filtration F. Recall that F stabilizes after
a finite amount of time. We look at what happens to ¢ as we apply ¢*. The
event of “death” occurs for v first, that is when (i*)? (1)) becomes a cocycle.
The event of “birth” arrives later, when (i*)?(¢)) becomes a coboundary.
Since filtrations are ordered by inclusions, we are guaranteed this behaviors.
A persistence interval (p, ¢) will correspond to a cochain that is a cocycle for
time ¢ < ¢ and a coboundary for time ¢ < p. We use these slightly inverted
notions of death and birth as they will make it easier to understand the
persistent cohomology algorithm we present in the next section.

As with persistence homology, we are interested in finding a compatible
basis for the structure:

H*(Ko;F) < HY(K;F) < ...« HY(K,;F) « ...

We can call such a structure a dual-persistence module specifically because it
looks like the dual of a persistence module and H*(K;; F) ~ Homg(Hy(K;; F), F)
in a natural way. As before, we would like to decompose it into a direct sum
of I7; and I, where these are the duals of the modules discussed in the

previous section.

15

Give a dual-persistence module (M*,1*) of finite type over F, we can
construct a graded F[u]-module

M) =P M

i>0
where the action of u is given by *

w- (m®,m', ..) = (W(m), v (ma),...).

Theorem 3.1.2 implies that there is a unique decomposition of this module
into well understood free and torsion components. As with persistence homol-
ogy, we attain a barcode that describes the persistence. The decomposition
provides us an expression of (M*,¢*) as a direct sum of I, and [}, mod-
ules. This proves the existence of a compatible basis for the dual-persistence
module.

If we let (M*, %) = ({ H*(K;;F)}is0, %) then it is natural to ask whether
the persistence intervals of homology and cohomolgoy are the same.

Theorem 3.2.1. The persistence intervals of homology and cohomology are
the same for a filtration of a finite simplicial complex.

Proof. This follows from the naturally of the isomorphism H*(K;;F) ~
Homp(Hy(K;; F),F). The dual of the persistence homology module is then
isomorphic to the dual-persistence cohomology module. Observe that given
a direct sum decomposition of the persistence homology module

(M., i) @

(p9)e”?

its dual has a natural decomposition @ (hg)e? Ip .- Uniqueness in Theorem
3.1.2 guarantees that this decomposition is unique up to the set of inter-
vals &2 and therefore the dual-persistense cohomology module has the same

persistence intervals.

]

Given that the persistence intervals are the same, it would be natural to
assume that there is a simple way to adapt the PH algorithm in [2] to compute
the actual cocycles for the compatible basis. Running the PH algorithm

16

backwards would be the natural idea. However, the PH algorithm relies on

the fact that

Cy(F;F) = €D Cu(K;; F) ~ @ Flt]
is a free F[t]-module, where t acts by ix. For cohomology however, the
C*(F;F) = @, C*(K;; F) viewed as an F[u]-module with the action of u by
i* is not free.

To resolve this problem, [3] proposes modifying the filtration F' to some
F'. This modification is based on the observation that Hompy (C (F; F); F[t])
is free. However, the cohomology of the complex {Homp (Cy (F; F); F[t]) } x>0}
produces what is called relative persistent cohomology. Using the relation-
ship between relative cohomology and cohomology of a simplicial complex,
it is possible to construct a new filtration F” such that part of the cohomol-
ogy of {Homgy (Cr(F";F); F[t]) }r>0} describes the persistent cohomology of
F [3].

In a computational setting, modifying the filtration of simplicial complex
is costly and ineffective. In the next section we discuss an alternate algorithm
for computing persistent cohomology.

3.3 Algorithm for Persistent Cohomology

Let Fi denote a filtration of a simplex K and and let F be a finite field. We
consider Fy sparse in that K;\ K;_; = {0;} has only one element. Note that
every filtration has a sparse refinement. In a sparse filtration, each simplex
has a unique index, which is the time at which it enters the filtration. For a
simplex o € K we let 0* denote the cochain that vanishes everywhere outside
of o and o*(0) = 1. We would also like to give indices to cochains in the
following manner.

Definition 3.3.1. For a cochain o we let the index i, be smallest value of ¢
for which a(0;) # 0 for o; € F.

In our algorithm, for every simplex o; we may also store a pointer to a
cochain o;.cocycle or o;.pivot. These values are no essential for this algorithm,
but we will use them later in our algorithms for cohomology. Note that the
“replacement” step in the algorithm replaces these values as well.

We use Algorithm 1 to compute persistent cohomology. This is a modified
version of the algorithm found in [4].

17

Algorithm 1 PersistentCohomology(Fk,TF)
Let lists H, R be initially empty
for 0; € Fx do
Let ao € H be the cocycle of greatest index with v, = (da)(o;) # 0.
if o exists then
Remove o from H
For all 8 € H vz = (0f3)(0;) # 0 replace 8 with 8 — (vg/va)ax
Add o to R
Clear o;,.cocycle { This value should be o}
Set g;.pivot = .
Print out the interval [iq, 7)
else
Add o} to H
Set o;.cocycle = o}
end if

end for

We denote By, Hi, Ry to be the elements of dimension k in R = {d« |
a € R}, H, R respectively. After the algorithm terminates, the array H
contains representatives a basis for H*¥(K;F) for every k. In fact, at any
point in time j in the algorithm, H lists a basis for the cohomology of the
simplicial complex K; = {0; € Fix | ¢ < j}. Further, By is a basis for the
coboundary group B*(K;;F). We make this precise with the following proof
of algorithm:

Theorem 3.3.1. Let K; = {0, € Fx | i < j}. After the algorithm runs for
o; € Fi, the following are true:

1. Hy contains a list of representatives for a basis for H*(K;;F).
2. By, is a basis for B*(K;;F).
8. Hy U By U Ry, is a basis for C*(K;TF).

Proof. We present a proof by induction on j. For j = 1, we have that H = ()
and o} is added to H at the end of the loop. It is clear that the three
statements hold as HY(K, = {0, };F) ~ F and is generated by ;.
Assuming our theorem holds for j — 1, we prove it holds for j. We have
that K;_1 U{o,;} = K. Let o; be of dimension d. We let H', R’ denote lists

18

we attain for K; and H, R the lists we have for K;_;. We also let F'S indicate
the vector space spanned by S.

Since o ¢ K;_; is follows that (607)(a) = 0j(0a) = 0, so 07 is a cocycle
and dimp Z4(K;; F) = dimg Z%(K;_1; F) + 1. Let us first assume that o7 is a
coboundary. Then, there is some cochain v € C 1K ;;F) = C1(K;_1; F)
with 0y = o*. Item three of our theorem implies that v = aa + b3 + rp
for some « € FHy 1, p € FBy_1, p € FR; 1 and a,b,r € F. Thus o* =
ada +rop as 0 = 0. If (da)(o) = 0 for all @ € FHy_; then o* € §(FR4_1).
However, since ¢* increased the dimension of d-cocycles this would increase
the dimension of R;_ i, which is not possible. Therefore, there must be some
a € FH, ; for which (da)(c) # 0. We can can guarantee that we can pick
a € Hy 1 of highest index for which this holds. Since (da)(o) # 0, « is no
longer a cocycle. Since H; | was a set of representatives for the basis for
H*Y(K;_y;F), if we remove « from Hy_; and adjust all other 8 € Hy; which
do not vanish on ¢ as in the algorithm, we attain a new set representatives
H}, , for a basis of H™!(K;,F). Further, da = co* is a new basis element
for the d-coboundaries. It follows that we have a new H)_, that has one
element less, B, = B, U {0a}, R, | = Rq—1 U {a} with other parts of the
lists unchanged. It is clear that the three items of the theorem hold for these
new lists.

If o* is not a coboundary, it a new basis element for H4(K;;F), so we
have H), = H;U{a}. Again, the conclusions of the theorem hold and so our
inductive step is verified, completing the proof. n

For the computation of persistent cohomology, we do not need to keep
track of the lists B and R in general, we do so for the convince of the reader
and as a baseline for our future algorithms.

Corollary 1. Algorithm 1 produces the persistence intervals for the filtration
Fg.

Proof. Every time the algorithm prints an interval at time j, we have that
a cochain « has stopped being a cocycle in any later step in the filtration.
The cochain « is a non-bounding cocycle when it was first created as an
indication function o7. Since « is chosen to be the youngest cochain that has
ceased being a cocycle we have

So i, =1 and [iy, j) is indeed a persistence interval.

]

As a last remark, we would like to discuss the values o;.cocycle and
o;.pivot. First note that no simplex will ever have both values set. Also,
the value does not need to be set. At time after at the end of the main
for-loop of the algorithm, the list of all cochains for o;.cocycle that are set
is equal to H. The list of all cochains o;.pivot that are set is equal to R.
The a = o;.pivot cochain correspond to the cochain that is killed by o;, the
coboundary of this cochain is a basis element for the boundary subgroup of
the dimension of ¢;. For a simplex where a = o;.cocycle is set, we have
that ¢+ = i,, that is, o; the oldest simplex on which a does not vanish. We
can think of o; giving birth to « as ¢7. This mirrors our birth and death
explanation of persistence cohomology: cocycles are born, then transformed
by reduction and then die when they are no longer cocycles.

4 The Cup Product

The structure of cohomology over a commutative ring with unity R allows
us to define a product of two cochains. For cochains ¢ € C*(K;R) and
1 € CYK; R) we define a cochain ¢ — ¢ : Cy(K;Z) — R by values on

o= [vg,..., Uy as

(@~)(o) =o([vos- - vk]) - V([vw, - - -, Vga])

where we take multiplication in R. This product is clearly associative and
distributive. It is also trivial to see that the cup product is bilinear. To show
that we can extend this product to the level of cohomology groups, we must
show that this product induces a product on homologous cocycles. For this,
we must show that the product of two cocycles in again a cocycle and the
product of a cocycle and a coboundary is a coboundary. Explicitly, we would
like (¢ + 0) ~ (¢ + 9¢') to be of the form n + 6¢. The following lemma,

which is essentially the Leibniz rule, gives us the result

Lemma 4.0.1. 6(¢ — ¢) = 0¢ ~ ¥ + (=1)*¢ < §¢ for ¢ € C} and ¢ € Cf

Proof. For o = [vg, ..., Vkr111] we have
k+1 '
(66~ ¥)(0) =D (1) '¢([v0, - Biy -, Vkpa]V ([Vks1, -, Vi)
i=0

20

k+i+1

(=D (¢~ o)) = > (=1 d([vo, - o] ([0hs - Gy, Opsia])

i=k
Adding these two equations, we can see that the last term of the first sum
cancels the first term of the second sum. What remains is

k41
(¢ ~ w>(Z (_1)i[U07 s 77}1'7 s 7Uk+l+1]) = <¢ ~ w>(80> = 5(¢ ~ w)((f)
=0
Thus, 6(¢ ~ ¥) = §¢ — ¥ + (=1)¥¢ — 59 as desired.]

This lemma show us that if 6¢ = ¢ = 0 then §(¢p —) = dp — Y + ¢ —
01 = 0. Therefore, the cup product of two cycles is a cocycle. Further, if
d¢ = 0 then §(¢ —) = ¢ — 6y and if §¢p = 0 then 6(¢ —) = d¢ — Y
giving us that the product of a cocycle (or coboundary) with a coboundary
is again a coboundary. These observation allow us to extend the cup product

to a product
w: H*(K;R) x H(K;R) — H"'(K; R).

The following lemma shows that the cup product is indeed a topological
invariant

Lemma 4.0.2. For a simplicial map f : K — L the induced maps f* :
H*L; R) — HM(K; R) satisfy f*(a~ B) = f*(a) < f*(B).

Proof. Taking representatives ¢ € a and ¢ € 3, we have that
(ffo~ f7P) (o) = (f70)([vo, -, v) (ST) ([vgs - - o +1]) =

= o(flvos - okl)(flvns - o)) = (6 =) (fo) = f# (¢~ ¥)(0).

where we use the fact that flvg, ..., vep] = [f(vo), ..., f(vks)]
[l

With regard to inclusions, this lemma will be important in analyzing the
change in cup product structure in a filtration.

A natural question to ask is whether the cup product is commutative.
The following theorem answers the question:

Theorem 4.0.2. The identity o ~ B = (=1)®3 < « holds for all a €
HY(K;R) and 3 € H'(K; R) over a commutative ring R

21

Proof. See [7]. The proof relies on showing that the permutation map
[V0, -, Un] = [Uny -+, V0]

induces a chain map that is chain homotopic to the identity. Once this fact
is shown, it is easy to see that o — [and 8 — « differ up to a sign by the
permutation of the vertices by the map above.

m

We will refer to this property as graded-commutative, though some au-
thors choose to simply use commutative. Note that for R = Zs the cup
product becomes commutative in a traditional sense.

Since we will be dealing with arbitrary cup products in this paper, let us
make a few remarks about notation. The length of a cup product a; — ... —
«, is the number of constituents, in this case n. We will also use the notation
w; a; and !, o for arbitrary and fixed length cup products respectively.

4.1 The Cohomology Ring

In this section, we introduce the cohomology ring and discuss the ideal
I =&,.,H"*(K;F) as the major focus of our study.
The cohomology ring is defined as

H*(K;R) = @ H'(K; R)

with the cup product providing the bilinear maps
w: H*(K; R) x H(K; R) — H"'(K; R).

If we take the scalar multiplication by the coefficient ring R into account,
H*(K; R) becomes a graded algebra, sometimes called the cup product al-
gebra. This ring can in general be very complex and the question of which
graded R-algebras arise as cup product algebras has not been answered [7].

Computationally, verifying whether two rings are isomorphic is not a sim-
ple task. If we restrict ourselves to coefficients in a field F, H*(K; F) becomes
a vector space with a gradation and a bilinear product. To understand the
structure of this product, we consider the ideal

I =@ H*(K;F) of H(K;F).

k>0

22

This ideal gives rise to a nested sequence of vector spaces over F
IDIPDIPD....

The sequence of dimensions of the vector spaces I* is then a topological in-
variant as an isomorphism of cohomology rings for two spaces would preserve
this sequence. Further, we are interested in finding a compatible basis for
this nested sequence of vector spaces, that is, we would like to find the ba-
sis elements of I'/I't! for every ¢ > 0. Intuitively, this basis provides us
not only with the knowledge of how complex the cup product structure of
the cohomology ring becomes, but gives us concrete cocycles that that have
non-trivial cup products of a certain length. Since we can attain the dimen-
sions of I from knowing the dimensions of I'/I*"! we will concentrates on
computing the latter.

For a filtration F of a finite simplicial complex, we are further interested
in the change in cup product structure as we move up the filtration. We
would like to find a homogeneous basis that is compatible with the map
H*(K;;F) — H*(K;F) for all i < j and the nestlings I™ D ™. If we define

I = P H*(K;;F)

k>0

then we look for a compatible basis across the structure

LR 1Ip
L +~— I} < <17
i* i i

SRR
o i

where the horizontal arrows indicate inclusions. We provide this analysis in
the next section.

23

Remark. Notice that our approach to computing cup product structure
is much deeper than simply computing the multiplication table for a basis
for cohomology. Comparing two multiplication tables is of similar difficulty
to assessing the isomorphism class of a ring, and therefore not an acceptable
computational invariant. Our approach, that provides weaker information
than an equivalence of multiplication tables, allows us to differentiate spaces
with much more ease but still intrinsically compute the multiplication table
as part of the algorithm if we wish to analyze it later.

5 Computation of the Cup Product

We develop our theory for the cup product in for a filtration in a similar
fashion to persistent (co)homology by constructing a graded module that we
decompose over a graded principal ideal domain.

For a filtration F' of a finite simplicial complex, we know that the induced
map ¢* : I' — I* | respects inclusions so we can consider

DR V) s i () (30

Since I7"/I" is a graded F-module, we can take the gradation in H*(K;;F).
Restricting 7 we get

for (/T N HY (K F) = (I, /L) 0 HY (K- F).
From this we construct a dual-persistence module of finite type
Dy, = {(I7/17*) N HY (K3 F)}iso}

with f, as the acting homomorphism.

As with persistent cohomology, we can decompose [(Dj) over Flu] by
Theorem 3.1.2. The decomposition provides us is a collection of intervals
and basis elements that are compatible across D;. These basis elements are
homogeneous elements of I7'/I"*" of degree k. Combining across all & > 0,
we have a compatible basis of homogeneous elements across I7*/I]""! for all
1 > 0, which is our desired result.

Theorem 5.0.1. There exists a basis of homogeneous elements for Il for
i > 0, n > 1 that is compatible with the homomorphisms * : I — I} for
all v < j and inclusions I 2O I for all n < m. This basis arrises form a
homogeneous basis on I7'/I'" and each element lies in I} \ I for some n.

24

The homogeneous basis elements lie in I* for some n,7. Since they arise
as homogeneous basis elements of I7"/I"", these elements have the form

m

o 2 n
fy - vljZl alj
i=1

where «;; are cohomology classes. Recall that —_; «; is shorthand for cup
products of length n. Note that v has the property that each cup product
in the expression of v has length n. We call v a cup product expression to
make a distinction between simple cup products of the form ' ; oy.

Given n, the interval (p, q) attained from the decomposition of D; corre-
sponds to birth and death events of cup product expressions in Dj. As with
persistent cohomology, since ¥, goes against the filtration, birth and death
are odd concepts. Let us take an element ¢p = > ", ~i—1 ¢i; of

n n+1
(@ C'(K; IF)) / (@ C'(K; IF)) NCH(K;TF)
>0 i>0
which is a cup product expression, but need not be a cocycle in C*(K;TF),
where K = Ug,cpK;. We track 1 as we apply ¢*. Note that time for us
follows the filtration. The event of “death” for 1) occurs when ¢ becomes a
cocycle. Note that Lemma 4.0.2 implies that this happens some time before
all the cochains ¢;; become cocycles. The “birth” event, occurs when 1) is
a coboundary, which occurs some time after there is a ¢;; in each summand
that is a coboundary. Thus, the persistence interval (p,q) corresponds to
some cup product expression ¢ above for which ¢;, are all cocycles before
time ¢ and an every summand has a ¢;, that is a coboundary before time p.

Computing these cup product expressions in not ideal as they are sum-
mations of already complex structures. What we would like is to find a
representative of v of the of the form -}, ¢, where 1), are non-trivial co-
cycles. Unfortunately, in the case of persistence this may not be possible.
We are able to find there sort of representatives when computing the cup
product structure on a simplicial complex without persistence.

6 Algorithms

In this section we present several algorithms for computing cup product struc-
ture on simplicial complexes. Our first algorithm introduces the general

25

technique used for a simplicial complex without computing the intervals for
persistence. We do this so the persistence algorithm is simpler to follow.
Both algorithms take a sparse filtration of a finite simplicial complex ordered
by dimensions. We also discuss a semi-persistense algorithm that omits in-
tervals of short length to improve performance.

6.1 Basic Algorithm of a Simplicial Complex

We start with a sparse filtration F' of a simplex K. Given a simplex K we
can simply take F' to be sparse and ordered by dimension, though the also
condition is unnecessary. We will compute the cup product structure of K
using Algorithm 2. The subroutine PersistentCohomology() simply runs
the persistence algorithm and returns the cohomology basis representatives
while setting the o;.cocycle and o;.pivot cochains in the filtration. Recall that
these values allow us to get a basis for cohomology and for the coboundaries.

In the algorithm below, V' will be a set of ordered cup products. These are
cup product w; ; for which io, < 4, for i < j. Also, every element v € V/
will have members v.cocycle and v.coboundary which are cochains that we
will modify, they are both initially zero. When writing v(c) we mean the
values of the cup product on . The notation V' U« means {fUa | § € V}.

The algorithm may seem a little daunting, but the main goal is to express
each viable cup product as an element of Z*(K;F) ~ H*(K;F)® B*(K;TF).
After the algorithm completes, for ever v € V, we have v = v.cocycle +
d(v.coboundary). The process performed in the second for-loop is simply the
process of solving Az = v where the columns of A are the basis representa-
tives for cohomology and those for the coboundaries with respect to the basis
of {o7}. Each o;.cocycle or o;.pivot is of the form ao} + 3., a;07, s0 Ais a
lower-tringular matrix. Our algorithm then constitutes column reduction to
express the cup product v in terms of basis elements of H*(K;F)® B*(K;F).

Theorem 4.0.2, which shows the graded-commutative nature of the cup
product, implies that I™ is generated by ordered cup products. Thus, there
is a basis of ordered cup products for I"/I"*1. In our last steps of the
algorithms, we take all ordered cup products that are not in the trivial co-
homology class and find a basis of the space spanned by them. The basis is
constructed such that the longest cup products are considered first, therefore
guaranteeing that the number of basis elements of length [that we find is
the dimension of I'/I'*!. These elements are also concrete representatives
for a basis of I'/I'*!. Therefore, we have shown the validity of Algorithm 2.

26

Algorithm 2 SimpleCupProduct(F,F)

Let V' be empty
H = PersistentCohomology(F,F)
Let V=H
for a € H do
V=VU({Vva)
end for
V =V \ H { V now contains all ordered simple cup products}
for 0, € ' do
for For all v € V such that

0 # b= v(0;) — v.cocycle(o;) — v.coboundary(do;)

do
if o;.pivot then
Let a = o;.pivot(do;)
Set v.coboundary + = (b/a)o;.pivot
else if o;.cocycle then
Let a = o;.cocycle(o;) { This is the coefficient of o} in 0;.cocycle}
Set v.cocycle + = (b/a)o;.cocycle
end if
end for
end for
Let V = {v € V | v.cocycle # 0}.
Order V such that the longest products are first.
Let B be a basis for the span of V' found by iterating through V in order.
For each [, the set of elements of length [in B is set of basis representatives
for I'/1'+1.

27

Theorem 6.1.1. Algorithm 2 correctly computes the cup product structure
on a simplicial complex K, providing us with a basis for I' /' for all 1 > 0.

The algorithm may look overly complex, however many of the steps are
essential. With our approach it is necessary to find which cup products are
non trivial, this requires identifying a cohomology class to which the cup
product belongs, which is done in the main for-loop. The last portion of the
algorithm in concerned with the issue of @« —« f and o/ « 8/ —« v + " «
B" < 4" being in the same cohomology class, which implies that o « 8 € I3,
not I?\ I*. Since we were unable to find any indication that such cases did
not occur, we take them into account in our algorithm.

The algorithm is unfortunately exponential in the number of simplices n
provided because we construct all the ordered cup products. There are at
most 2" ordered cup products since we can over count the basis for coho-
mology to have n elements. In practice however, the number of cohomology
classes is much smaller than the number of simplices. We can also introduce
techniques to eliminate cup products as part of the algorithm. For example
if the cocycle « lies in the same class as a cup product, then any cup prod-
uct that as a as a constituent can be dropped from consideration. Other
improvements of a similar fashion can be made.

6.2 Discussion on Persistence Algorithms

In this section we discuss the possibly of a general persistent cup product al-
gorithm. As we saw in the previous section, we are interested in decomposing

the modules
Dy = {1/ 17" N H* (K F) }iso

If we know the generators of the vector spaces in this module, we should be
able to compute a compatible basis for the module. In this section we will
assume the filtration F' is ordered by dimension.

We can find a generating set of each I by modifying Algorithm 1. We
will modify Algorithm 1 to compute the representation of each cup product
as part of the computation of persistent cohomology. As we discussed, a cup
product is born when it becomes a non trivial cocycle. A simple cup product
L, a; when q; is no longer a cocycle for some j.

For each cup product, we will keep a representation as a+d03 in Z*(K;F) ~
H*(K;F) ® B*(K;F). When we talk about updating the cup product rep-
resentation over a simplex o;, we mean to either update a with o;.cocycle

28

or 8 with o;.pivot as we did in Algorithm 2. When we correct for 5 +—
B — (vs/va)a, we assume that the representations are updated as well.

Algorithm 3 CupProductGenerators(Fy,F)
Let lists H, R, V be initially empty
for 0, € F do
Let a € H be the cocycle of greatest index with v, = (da)(o;) # 0.
if a exists then
Remove a from H
For all 5 € H vz = (0f)(0;) # 0 replace 8 +— 8 — (vg/va)cx
For cup products v € V that contain S, correct for 8 — 8 — (vg/vq)ax

Mark all v € V' containing « as dead at time ¢
Update the coboundary part of the representation of all v € V
Add a to R
else
Add o} to H
Update the cocycle part of the representation of all v € V, if the
cocycle part was updated from 0 to ao;*, mark the cup product as
being born at time
Add new ordered cup product to V' using o
end if
end for
return V

The validity of the above algorithm follows from the fact that a cup
product of cocycles is always a cocycle. We consider a cup product dead
when we can no longer make a substitution 8 — — (vg/v,)c. Note that
since F'is ordered by dimension, any new cup products introduces in the
last step of the for-loop are trivial until we start adding simplices of the
appropriate dimension.

Given these representations of cup products across the filtration, we now
have a tangible approach at decomposing Dj. Taking the cup products alive
at time 4, we can find a generators for I*/I*'. Using these generators,
it should then be possible to find a compatible basis across Dj. Since the
constituents of each cup product at time ¢ are compatible basis elements for
cohomology, we can do this using a reduction algorithm.

The complexity of this approach is rather unsatisfactory. This algorithm

29

is much more costly than Algorithm 2 as cohomology classes are born and die
rather quickly in complex data sets. This creates large numbers of extraneous
cup products that are born and die very quickly, which would most likely be
at the same. To mitigate this issue we can consider what we call a semi-
persistent algorithm.

Semi-Persistence Algorithm. Given a filtration F' and a set of check-
in times T, we would like to know the cup product structure at each time
t € T. We can construct such an algorithm by modifying Algorithm 2.
We may run Algorithm 2 until a time ¢t € T, then find the cup product
structure. At the next check-in time ¢’ € T, we update V to include the
necessary cup products and by modifying the old once by correcting for the
changes the constituent cocycles. This can be done since each of cohomology
basis representative is tied to some o] by our algorithm. We can update the
cup product structure for time ¢' and continue.

Note that the semi-persistnce algorithm provides us with intermitted cup
product structure, but does not give us any sub-decomposition of D} since
we do not look for compatible bases.

Discussion Both of the above algorithms are unfortunately complicated
and the nature of the cup product does not necessarily lend itself nicely to
persistent computation even though the theory gives us a proper decomposi-
tion. The semi-persitense algorithm provides us with a much more tangible
approach to understanding the transformation of the cup product structure
within a filtration.

7 Experiments

In this section we discuss the implemented code and provide a discussion of
the computational results.

7.1 Implementations

We have implemented Algorithm 1 and 2 for computing cup product struc-
ture on simplicial complex. The implementation works over any finite field
Z,. Implementing over Z, allows us to deal with spaces such as the Klein
bottle, where the cohomology over Z is 7Z x Zy. Parts of Algorithm 3 have
also been implemented over Zs, but this work is incomplete. The code was
written in C/C++ using standard libraries. Simplicial complexes are repre-

30

sented combinatorially as ordered subsets of Z%*!. We have also implemented
a subdivision algorithm that we use to construct large simplicial complexes
to time our algorithm.

This code is currently standalone, but work is being done to incorporate
portions into persistence homology and cohomology software. In their current
form, the algorithms are more a demonstration of computation than efficient
code.

All tests have been done on a machine running Mac OS X version 10.5.8
on an Intel Core 2 Duo 1.5 GHz processor with 2 GB of DDR2 RAM.

7.2 Data

Due to the nature of our standalone code, we were unable to import large
data sets for testing. We have done several tests on the most basic examples
available. We ran the torus 7' = S' x S! and M = S? v S? v S! as a basic
motivating example. For the torus we found two basis elements for /1% and
one for I?/I3, whereas M had three basis elements for /12, two of dimension
1 and one of dimension 2. This is precisely the desired result.

We also tested more complex 2 dimensional manifolds. We found the
correct bases and cup product structure on THT, TH#THT, oriented 2-mainfold
of genus 2 and 3 respectively. Projective spaces such as the projective plane
and the Klein bottle were also tested, producing proper results. Lens spaces
of dimension 3 we also used producing the desired cup product with I/I?
generated by two elements, one in dimension one and the other in dimension
2, and I%/I? generated by one element in dimension 3. A discussion of the
cup product of lens spaces can be found in [7].

One of our constructions of a simplicial complex K by hand had the same
cohomology as TH#T and the same dimensions for 7/I% and I?/I®. However,
of the multiplicative level, only two pairs of the ten ordered cup products of
cohomology classes of HY(THT;F) are non trivial, while we find four for K
that are non trivial. This shows that manifolds are not the only structures
to have interesting cup products and that our invariant does not identify the
multiplicative structure of the cohomology ring in its entirety.

Using our subdivision algorithm, we were able to get timings for for simpli-
cial complexes of increasing size. We subdivided the 7-simplex representation
of the torus. The graph below shows the timings.

31

Timings

Milliseconds
10000 15000 20000 25000
| | | |
o

5000

0
|
8
o
°

T T T T T T
0 10000 20000 30000 40000 50000

Number of Simplices

Even though our predicted running is exponential, this data can be fitted
with a degree 2 polynomial with an r? = 0.998. However, this may simply
be the result of the relatively small cohomology groups of the torus.

8 Conclusions

In this paper we have discussed the theory of persistent cohomology, persis-
tent cup product structure and have provided several algorithms for com-
puting cup product structure. We have been able establish a correspondence
that fully describes persistent cup product structure over an arbitrary field.
Our algorithm for computing the cup product of a simplicial complex deals
directly with the data set computing the cup product using persistent coho-
mology techniques.

Further research in the subject would be to study persistent cup prod-

32

uct structure algorithms. In particular, we would be interested in stability
results for cup product structure. Also, it would be interesting to answer
the question of whether a polynomial time algorithm for computing the cup
product of a simplicial complex exits, and if not, are there any conditions on
the simplicial complex that allow for a polynomial time algorithm.

Our current implementation of Algorithm 1 and 2 can also be improved
by using more robust concurrency libraries and integrating them into other
persistence (co)homology frameworks.

9 Acknowledgments

I would like to thank Mikael Vejdemo-Johansson who has helped me through
this project this year. He has provided great insight into both the theoretical
and computational aspects of the project. I would also like to thank Gunnar
Carlsson who first introduced me to this topic and has provided many great
articles on the subject. I am also grateful to Dmitriy Morozov for his lec-
tures on persistent homology and computational topology which were very
inspiring and influential to my understanding of the subject.

References
[1] Cerri A., Di Fabio B., Ferri M., Frosini P., and Landi C., Multidimensional persistence
homology is stable (August 2009).

[2] Zomorodian A. and Carlsson G., Computing persistent homology, Discrete and Com-
putational Geometry 32 (2005).

[3] de Silva V., Persistent cohomology, 2006.

[4] de Silva V., Morozov D., and Vejdemo-Johansson M., Persistent cohomology and cir-
cular coordinates, Discrete and Computational Geometry (2010).

[5] Carlsson G. and Zomorodian A., The theory of multidimensional persistence, Discrete
and Computational Geometry 42 (2009).

[6] Carlsson G., Zomorodian A., Collins A., and Guibas L., Persistence barcodes for shapes,
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing (2004).

[7] Hatcher, Algebraic topology, Cambridge University Press, 2005.

33

	Introduction
	Motivation

	Background
	Simplicial Complexes
	Chain Complexes
	Simplicial Homology and Cohomology
	(Co)homology Coefficients

	Persistence
	Persistent Homology
	Persistent Cohomology
	Algorithm for Persistent Cohomology

	The Cup Product
	The Cohomology Ring

	Computation of the Cup Product
	Algorithms
	Basic Algorithm of a Simplicial Complex
	Discussion on Persistence Algorithms

	Experiments
	Implementations
	Data

	Conclusions
	Acknowledgments

