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1 Introduction

Let G be a compact connected Lie group with Lie algebra g and T a maximal torus of
G with Lie algebra t. Let W = NG(T)/T be the Weyl group of T in G. Recall that W
acts on t through the Ad-representation. W is generated by reflections across kernels
of roots of t in g⊗ C or if you like the positive real roots.

The main result of these notes is that H(G/T) vanishes in odd degrees. We will, in fact,
provide a ring isomorphism H(G/T) to a purely algebraic structure.

2 Background/Review

Let 〈 , 〉 be the Ad-invariant inner product on g (average all inner products on g or
take the negative of the Killing Form). We then have an orthogonal decomposition
g = m⊕ t. For X,Y,Z ∈ g, the inner product satisfies 〈[X,Y],X〉+ 〈Y, [X,Z]〉 = 0.
Note that Ad(T) has no nonzero invariant vectors in m and no nonzero element of m
has zero bracket with all of t (by the maximally of t as an abelian subalgebra).

An element H0 ∈ t is called regular or generic, if the powers of exp H0 are dense in
T . Note that H0 ∈ t is regular iff its Ad(G)-centralizer is precisely Ad(T). For the
remainder of this text, we choose some particular generic element H0 ∈ t

Let m = m1 ⊕ . . .⊕mv be an orthogonal decomposition given by the real irreducible
representations of T , which are 2 dimensional. For H ∈ t , the eigenvalues of Ad(exp H)
on mi are {exp(±

√
−1αi(H)}, where αi ∈ t∗ . We let the set of positive roots

∆+ = {α1, . . . , αv} be the set of roots that take positive values on our generic element
H0 . Note that since W acts faithfully on t, its image in GL(t) is generated by reflections
about the kernels of elements in ∆+ .

http://www.lepp.cornell.edu/~yz98/notes/Cohomology%20of%20Compact%20Lie%20Group.pdf
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Since the mi are preserved by ad(t), we can choose an orthonormal basis {Xi,Xi+v}
for mi such that the matrix for ad(H) |mi with H ∈ t is[

0 αi(H)
−αi(H) 0

]
.

By the ad-invariance of the inner product,

〈H, [Xi,Xj]〉 = −〈[Xi,H],Xj〉 = 〈[H,Xi],Xj〉 = −αi(H)〈Xi+v,Xj〉

for 1 ≤ i ≤ v, 1 ≤ j ≤ 2v. Above, the right hand side can be nonzero only if j = i + v.
Thus, if j 6= i± v, then [Xi,Xj] ∈ m.

For 1 ≤ i ≤ v, we let Hi = [Xi,Xi+v], which is Ad(T)-invariant so Hi ∈ m and
ad(Hi)mi ⊂ mi . The span of Xi,Xi+v,Hi is a Lie subalgebra of g that is actually
isomorphic to su(2).

3 Invariant Theory

Let P =
⊕∞

p=0 Pp be the symmetric algebra on t∗ (i.e. Pp = (t∗)⊗p/ ∼ where
λ1 ⊗ . . .⊗ λp ∼ λσ(1) ⊗ . . .⊗ λσ(p) for σ ∈ Sp ). One can think of P as polynomials
over R where the monomials are products of functionals on t. The adjoint action of
W on t induces an action/representations of W on P by degree-preserving algebra
automorphisms (for λ ∈ t∗ and w ∈ W , the action is λ 7→ λ ◦ Ad(w−1)). We will be
interested in the W -invariant polynomials PW .

Example 1 For U(n), PW is generated by elementary symmetric polynomials. For
U(n), t is the set of diagonal complex matrices with aj

√
−1 on the diagonal and W

acts as Sn t on by permuting aj .

Theorem 2 (Chevalley) The ring PW has algebraically independent homogeneous
generators F1, . . . ,Fl with PW = R[F1, . . . ,Fl], where l = dim t. (Recall: alge-
braically independent means that the homomophism R[X1, . . . ,Xl]→ R[F1, . . . ,Fl]
given by Xi 7→ Fi is an isomorphism)

The generators are numbered such that deg F1,≤ . . . , deg Fl . We will call the numbers
mi = deg Fi − 1 the exponents of W acting on t. It is known that m1 + . . .+ ml = v
and (1 + m1) . . . (1 + ml) = |W|.

Example 3 For SU(n), {mi} is {1, . . . , n− 1} and for G2 they are {1, 5}. Note that
for SU(n) you loose the generator in degree 1, which you had for U(n), because of
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linear dependence. For G2 , the Lie algebra of T is that of SU(3) but the action of W is
extended by an inversion.

Let D be the ring of constant coefficient differential operators on P . We can think of
D as the symmetric algebra S(t), where H ∈ t corresponds to the function on t∗ given
by evaluation at H (e.g. H · (λ1λ2) = λ1(H)λ2 + λ2(H)λ1 or the directional derivative
for the vector H ). We have that W acts naturally on D (by it’s action on S(t)) and we
define the “harmonic polynomials” in P to be those annihilated by the W -invariant
differential operators

H = {f ∈P : DW f = 0}.

One can think of H as the solution to a set of differential equations.

Let H p = H ∩Pp , then H = ⊕p H p since a differential operator is W invariant if
and only if each homogeneous component in W invariant (think of about the action
of W on S(t)). Note that the action of W on P preserves H (for g ∈ W , p ∈ P ,
D ∈ D , we have that D(g · p) = (g−1 · D)(p)).

Proposition 4 If J is the ideal generated by the elements of PW of positive degree,
then P = H ⊕J and multiplication is a linear isomorphism H ⊗PW ∼−→P .

The former gives us that P/J is isomorphic to H as W modules (Note: they are in
fact isomorphic to the regular representation of W ). The isomorphism H ⊗PW 'P

implies ∑
p≥0

dim H ptp =

l∏
i=1

(1 + t + t2 + . . .+ tmi) (where l = dim t)

which shows that dim H v = 1 and H p = 0 for p > v. This formula is deduced from∑
p

dim Pptp =

(∑
p

dim H ptp

)(∑
p

dim(PW ∩Pp)tp

)
,

∑
p

dim Pptp = (1 + t + t2 + . . .)l =
1

(1− t)l , and

∑
p

dim(PW ∩Pp)tp =

l∏
i=1

1
(1− tmi+1)

.

The primordial harmonic polynomial is Π =
∏
α∈∆+ α ∈ H v . For U(n) this is the

Vandermonde determinant
∏

i<j(xi − xj), which is transformed by the sign character
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via the action of Sn . In general, W acts like the sign character on the span of Π, where
the sign character ε : W → {±1} gives the parity of the number of reflections for
each g ∈ W . Any other polynomial whose span is preserved by the action of the sign
character vanishes on all root hyperplanes and so is divisible by Π. Thus Π generates
H v as dim H v = 1.

We may now state the theorem we will discuss at the end of this talk

Theorem 5 (Borel) There is a degree-doubling W -equivariant ring isomorphism

c : P/J → H(G/T).

Consequently, H(2) ' H(G/T), where the subscript indicated degree doubling.

4 Invariant Differential Forms

Let G act transitively on a manifold M (think M = G/T ). If τg is the diffeomorphism
given by g ∈ G, then a differential p-form ω ∈ Ωp(M) is G-invariant if τ∗gω = ω for
all g ∈ G. Since G acts transitively, such a form is determined by its value at one point
on M .

Lemma 6 Every de Rham cohomology class of M is represented by a G-invariant
form and the complex of G-invariant forms is preserved by the exterior derivative.

Definition 7 We define Λpn∗ as the set of all skew-symmetric multilinear maps
ω : n× . . .× n→ R where the domain has p terms.

Proposition 8 The complex {(Λpn∗)K , δ} computes H∗(M), where K is the stabilizer
of a point o ∈ M , g = r⊕ n with r the Lie algebra of K , and δ is defined below.

Proof Identify M = G/K and note that To(M) is naturally identified with n. Thus, an
invariant form ω̃ is determined by a skew-symmetrc multilinear map

ω = ω̃o : n× . . .× n→ R,

that is ω ∈ Λpn∗ . The invariance of ω̃ under K implies that ω is Ad(K) invariant.
Conversely, any element ω ∈ (Λpn∗)K determines a G invariant form ω̃ by

ω̃g·o((dτg)X1, . . . , (dτg)Xp) = ω(X1, . . . ,Xp),
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for X1, . . . ,Xp ∈ n ' To(M) and g ∈ G. Thus, we may identify the G-invariant
p-forms with (Λpn∗)K . The exterior derivative then becomes δ : (Λpn∗)K → (Λp+1n∗)K

given by

δω(X0, . . . ,Xp) =
1

p + 1

∑
i<j

(−1)i+jω([Xi,Xj]n,X0, . . . , X̂i, . . . , X̂j, . . . ,Xp).

Where [Xi,Xj]n is the projection of [Xi,Xj] on n along r and ˆ means the term is
omitted. By the Lemma, the complex {(Λpn∗)K , δ} computes H∗(M).

Example 9 Define ω(X,Y,Z) = 〈X, [Y,Z]〉 then [ω] 6= 0 ∈ H3(G). In particular, Sn

is not a Lie group for n > 3.

5 Cohomology of Flag Manifolds

We will use Morse Theory to show that the odd dimensional cohomology of G/T
vanishes. We can further use this approach to decompose the flag manifold G/T into
cells. This is called the Bruhat Decomposition. This process will be the generalization
of decomposing the S2 = SU(2)/T into a 0-cell and a 2-cell.

We will find a Morse function f on G/T . For a smooth manifold M , a morse function
f : M → R is a smooth function with non-singular Hessian Hx f at each critical point x .
The function we find will be the analogue of the dot product of vectors on a 2-sphere
with the vector pointing to the north pole. The span of the gradient flow lines emanating
from a critical point will provide us with a cell decomposition. For the sphere the flow
lines from the south pole give us the 2-cell and the north pole, which has no flow lines
emanating, gives us the 0-cell.

If f is a Morse function and x is critical point, let λ(x) be the number of negative
eigenvalues of Hx f . Then the Morse polynomial is Mt(f ) =

∑
tλ(x) over the critical

points x of f .

Theorem 10 For a morse function f : M → R, we have thatMt(f ) ≥
∑

i dim Hi(M)ti .
Moreover, if the morse polynomial has no consecutive exponents, equality holds.

To construct a Morse function on G/T , we take the regular element H0 ∈ t that we
chose for the positive roots. Recall that the Ad(G) centralizer of H0 is exactly Ad(T),
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so we may view G/T ⊂ g as the Ad(G) orbit of H0 (analogous to S2 ⊂ R3 ). We define
f : G/T → R by

f (gT) = 〈Ad(g)H0,H0〉.

For X ∈ g, we can compute the vector field

X̄f (gT) =
d
ds

f (exp(sX)gT) |s=0= 〈Ad(g)H0, [H0,X]〉,

where the last equality is given by ad invariance of the inner product. Since the centralizer
of H0 in g is exactly t as H0 is regular, it follows that the image of ad(H0) is m. So
gT is a critical point of f if and only if 〈Ad(g)H0,m〉 = 0. Therefore, Ad(g)H0 ∈ t

by the orthogonal decomposition of g. It follows that Ad(g)H0 = Ad(w)H0 for some
w ∈ W and that wT , for w ∈ W , are precisely the critical points of f .

Let X1, . . . ,X2v be the orthonormal basis for m we discussed earlier. Note that the
differential of π : G→ G/T maps Ad(w)m = m isomorphically onto TwT (G/T), so
we may use our basis to compute the Hessian at each point wT . If hij is the ij entry in
HwT f , then using our identities for the inner product

hij(wT) = X̄iX̄jf (wT) = 〈[Xi,Ad(w)H0], [H0,Xj]〉 = −αi(Ad(w)H0)αj(H0)〈Xi±v,Xj±v〉.

Note that it follows that hij = 0 for i 6= j and hii(wT) = −αi(Ad(w)H0)αi(H0). Since
H0 is regular, then so is Ad(w)H0 and therefore hii(w) 6= 0 and HwT f is non singular.
Thus, as dimm = 2ν , the index λ(wT) is twice the number m(w) of positive roots α
such that H 7→ α(Ad(w)H) (i.e. w−1 · α) is again a positive root.

The Morse polynomial of f is then Mt(f ) =
∑

w∈W t2m(w) . Since all the exponents
of Mf (t) are odd, Mt(f ) =

∑
i Hi(M)ti and it follows that Hi(M) = 0 for i odd. In

particular,
∑

i dim H2i(G/T) = |W|.

The Schubert cell Xw in the Bruhat Decomposition is the cell spanned by the flow lines
of the gradient of f emanating from wT . The dimension of this cell is then the number
of positive eigenvalues of the HwT f , or, equivalently, twice the number of positive roots
that become negative under w−1 · α .

Note that W acts on G/T by w · gT = gw−1T , which gives us an action of W on
H(G/T). Since H(G/T) vanishes in odd degrees, the Lefschetz number associated to w
is equal to the trace of its action on H(G/T). If w 6= 1, then it has not fixed points so
the Lefshetz number is zero. If w = 1, then the Lefshetz number is simply the Euler
characteristic, which is |W|. Hence, the action is that of the regular representation, so
H(G/T) ' R[W] as W -modules.

We can now give the proof of our final result, which we restate here.
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Theorem 11 (Borel) There is a degree-doubling W -equivariant ring isomorphism

c : P/J → H(G/T).

Consequently, H(2) ' H(G/T), where the subscript indicated degree doubling.

Proof The idea is to describe H(G/T) in terms of G-invariant differential forms.
For each λ ∈ t∗ , we extend λ to all of g by making it zero on m and define an
Ad(T)-invariant 2-form on m by

ωλ(X,Y) = λ([X,Y]).

We can identify ωλ with an honest G-invariant differential form ω̃λ as before. The
action of W on G-invariant forms is given by its action on G/T . One can compute that
w ·ωλ = ωw·λ . Further, the Jacobi identity implies that δωλ(X, Y, Z) = 1

3 ([[X, Z]m, Y]−
[[X,Y]m,Z] − [[Y,Z]m,X]) = 0. We let c(λ) = [ω̃λ] ∈ H2(G/T) and extend it to
degree-doubling map

c : P → H(G/T)

which preserves the W -action on both sides. Since H(G/T) is the regular representation
of W , its W -invariants are 1-dimensional and can therefore only occur in H0(G/T).
Since c is W -equivariant, it follows that the kernel of c contains the ideal J . The rest
of the proof deals with showing that J is exactly the kernel of c.

To prove that ker c = J , it suffices to show that c is injective on H as P = H ⊕J .
This is done by induction starting at the highest degree of 2ν and descending down. For
degree 2ν it suffices to show that c(Π), where Π is the primordial harmonic polynomial,
is non zero in H2ν(G/T).

For each root αi ∈ ∆+ , we have element Xi,Xi+ν that form a basis for mi such that
[Xi,Xi+ν] = Hi im t. Recall that [Xi,Xj] ∈ m is j 6= i + ν where 1 ≤ i ≤ ν . For each
i, write ωi = ωαi . Then by definition c(Π) = [ω̃α1 ∧ . . . ∧ ω̃αν ] and we can evaluate

ω1 ∧ . . . ∧ ων(X1,X1+ν , . . . ,Xν ,X2ν) =

=
1

(2ν)!

∑
σ∈S2ν

sgn(σ)ω1(Xσ(1),Xσ(1+ν)) · · ·ων(Xσ(ν),Xσ(2ν)) =

=
1

(2ν)!

∑
σ∈S2ν

sgn(σ)α1([Xσ(1),Xσ(1+ν)]) · · ·αν([Xσ(ν),Xσ(2ν)])

Since αi([Xσ(i),Xσ(i+ν)]) = 0 unless [Xσi,Xσ(i+ν)] ∈ m, the term for σ is zero unless
σ permutes the pairs {i, i + ν}, and possibly switches the order of members. Note that
σ(σ) is minus one the number of switches, so it follows that

ω1 ∧ . . . ∧ ων(X1,X1+ν , . . . ,Xν ,X2ν) =
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=
2ν

(2ν)!

∑
σ∈Sν

α1([Xσ(1),Xσ(1)+ν]) · · ·αν([Xσ(ν),Xσ(ν)+ν]) =

=
2ν

(2ν)!

∑
σ∈Sν

α1(Hσ(1)) · · ·αν(Hσ(ν)) =
2ν

(2ν)!
∂1 · · · ∂νΠ

where ∂i is the derivation of P extending λ 7→ λ(Hi). Since the pairing D ⊗P → R
given by (D, f ) 7→ (Df )(0) is perfect, it follows that there is a degree ν differential
operator that pairs non trivially with Π. Further, since an irreducible W -module can
only pair non trivially with its dual, and the self-dual character ε ocurs with multiplicity
one in Dν , afforded by ∂1 · · · ∂ν , it follows that ∂1 · · · ∂νΠ 6= 0 and c(Π) 6= 0.

We may now inductively assume that c : H k → H2k(G/T) is injective for some k ≤ ν .
Let V = H k−1 ∩ ker c. Note that V is preserved by W since c is W -equivariant.
Since the sign character is absent from H k−1 , there is a possible root α such that the
reflection sα along the associated hyperplane does not act like −I on V . We can then
decompose V = V+ ⊕ V− according to the eigenspaces of sα . If V 6= 0, then V+ 6= 0
so we may take some f ∈ V+ . Now c(αf ) = c(α)c(f ) = 0 and αf is in degree k , so
αf ∈J by assumption. Let h1, . . . , h|W| be a basis for H with h1, . . . , hr sα -skew
and the rest sα -invariant. By Chevalley’s Theorem, we can write αf =

∑
i hiτi , with

τi W -invariant of positive degree. Since αf is sα -skew by construction, the sum only
goes up to r . For i ≤ r , the polynomial hi must vanish on kerα and therefore hi = αh′i
for some h′i ∈P . Then it follows that f =

∑r
i=1 h′iτi ∈J and f is harmonic. Thus,

we must have that f = 0 and c is injective on H k−1 . By induction, c is injective and
since H(G/T) vanishes in odd degree, the proof is complete.
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