Notes for a talk on cohomology of compact Lie groups

ANDREW YARMOLA

BASED ON THE PAPER OF MARK REEDER "On the cohomology of compact Lie groups," L'ENSEIGNEMENT MATH., T. 41, (1995), PAGES 181-200 AND NOTES OF YANG ZHANG

1 Introduction

Let *G* be a compact connected Lie group with Lie algebra \mathfrak{g} and *T* a maximal torus of *G* with Lie algebra \mathfrak{t} . Let $W = N_G(T)/T$ be the Weyl group of *T* in *G*. Recall that *W* acts on \mathfrak{t} through the Ad-representation. *W* is generated by reflections across kernels of roots of \mathfrak{t} in $\mathfrak{g} \otimes \mathbb{C}$ or if you like the positive real roots.

The main result of these notes is that H(G/T) vanishes in odd degrees. We will, in fact, provide a ring isomorphism H(G/T) to a purely algebraic structure.

2 Background/Review

Let \langle , \rangle be the Ad-invariant inner product on \mathfrak{g} (average all inner products on \mathfrak{g} or take the negative of the Killing Form). We then have an orthogonal decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{t}$. For $X, Y, Z \in \mathfrak{g}$, the inner product satisfies $\langle [X, Y], X \rangle + \langle Y, [X, Z] \rangle = 0$. Note that Ad(*T*) has no nonzero invariant vectors in \mathfrak{m} and no nonzero element of \mathfrak{m} has zero bracket with all of \mathfrak{t} (by the maximally of \mathfrak{t} as an abelian subalgebra).

An element $H_0 \in \mathfrak{t}$ is called *regular* or *generic*, if the powers of $\exp H_0$ are dense in T. Note that $H_0 \in \mathfrak{t}$ is regular iff its $\operatorname{Ad}(G)$ -centralizer is precisely $\operatorname{Ad}(T)$. For the remainder of this text, we choose some particular generic element $H_0 \in \mathfrak{t}$

Let $\mathfrak{m} = \mathfrak{m}_1 \oplus \ldots \oplus \mathfrak{m}_v$ be an orthogonal decomposition given by the real irreducible representations of *T*, which are 2 dimensional. For $H \in t$, the eigenvalues of Ad(exp *H*) on \mathfrak{m}_i are $\{\exp(\pm\sqrt{-1}\alpha_i(H)\}$, where $\alpha_i \in \mathfrak{t}^*$. We let the set of positive roots $\Delta^+ = \{\alpha_1, \ldots, \alpha_v\}$ be the set of roots that take positive values on our generic element H_0 . Note that since *W* acts faithfully on \mathfrak{t} , its image in GL(\mathfrak{t}) is generated by reflections about the kernels of elements in Δ^+ . Since the \mathfrak{m}_i are preserved by $\mathrm{ad}(\mathfrak{t})$, we can choose an orthonormal basis $\{X_i, X_{i+\nu}\}$ for \mathfrak{m}_i such that the matrix for $\mathrm{ad}(H) \mid_{\mathfrak{m}_i}$ with $H \in \mathfrak{t}$ is

$$\begin{bmatrix} 0 & \alpha_i(H) \\ -\alpha_i(H) & 0 \end{bmatrix}.$$

By the ad-invariance of the inner product,

$$\langle H, [X_i, X_j] \rangle = -\langle [X_i, H], X_j \rangle = \langle [H, X_i], X_j \rangle = -\alpha_i(H) \langle X_{i+\nu}, X_j \rangle$$

for $1 \le i \le v$, $1 \le j \le 2v$. Above, the right hand side can be nonzero only if j = i + v. Thus, if $j \ne i \pm v$, then $[X_i, X_j] \in \mathfrak{m}$.

For $1 \le i \le v$, we let $H_i = [X_i, X_{i+\nu}]$, which is Ad(*T*)-invariant so $H_i \in \mathfrak{m}$ and $\operatorname{ad}(H_i)\mathfrak{m}_i \subset \mathfrak{m}_i$. The span of $X_i, X_{i+\nu}, H_i$ is a Lie subalgebra of \mathfrak{g} that is actually isomorphic to $\mathfrak{su}(2)$.

3 Invariant Theory

Let $\mathscr{P} = \bigoplus_{p=0}^{\infty} \mathscr{P}^p$ be the symmetric algebra on \mathfrak{t}^* (i.e. $\mathscr{P}^p = (\mathfrak{t}^*)^{\otimes p} / \sim$ where $\lambda_1 \otimes \ldots \otimes \lambda_p \sim \lambda_{\sigma(1)} \otimes \ldots \otimes \lambda_{\sigma(p)}$ for $\sigma \in S_p$). One can think of \mathscr{P} as polynomials over \mathbb{R} where the monomials are products of functionals on \mathfrak{t} . The adjoint action of W on \mathfrak{t} induces an action/representations of W on \mathscr{P} by degree-preserving algebra automorphisms (for $\lambda \in \mathfrak{t}^*$ and $w \in W$, the action is $\lambda \mapsto \lambda \circ \operatorname{Ad}(w^{-1})$). We will be interested in the W-invariant polynomials \mathscr{P}^W .

Example 1 For U(n), \mathscr{P}^W is generated by elementary symmetric polynomials. For U(n), t is the set of diagonal complex matrices with $a_j\sqrt{-1}$ on the diagonal and W acts as S_n t on by permuting a_j .

Theorem 2 (Chevalley) The ring \mathscr{P}^W has algebraically independent homogeneous generators F_1, \ldots, F_l with $\mathscr{P}^W = \mathbb{R}[F_1, \ldots, F_l]$, where $l = \dim \mathfrak{t}$. (Recall: algebraically independent means that the homomophism $\mathbb{R}[X_1, \ldots, X_l] \to \mathbb{R}[F_1, \ldots, F_l]$ given by $X_i \mapsto F_i$ is an isomorphism)

The generators are numbered such that deg F_1 , $\leq \ldots$, deg F_l . We will call the numbers $m_i = \deg F_i - 1$ the *exponents* of W acting on t. It is known that $m_1 + \ldots + m_l = v$ and $(1 + m_1) \ldots (1 + m_l) = |W|$.

Example 3 For SU(n), $\{m_i\}$ is $\{1, ..., n-1\}$ and for G_2 they are $\{1, 5\}$. Note that for SU(n) you loose the generator in degree 1, which you had for U(n), because of

linear dependence. For G_2 , the Lie algebra of T is that of SU(3) but the action of W is extended by an inversion.

Let \mathscr{D} be the ring of constant coefficient differential operators on \mathscr{P} . We can think of \mathscr{D} as the symmetric algebra $S(\mathfrak{t})$, where $H \in \mathfrak{t}$ corresponds to the function on \mathfrak{t}^* given by evaluation at H (e.g. $H \cdot (\lambda_1 \lambda_2) = \lambda_1(H)\lambda_2 + \lambda_2(H)\lambda_1$ or the directional derivative for the vector H). We have that W acts naturally on \mathscr{D} (by it's action on $S(\mathfrak{t})$) and we define the "harmonic polynomials" in \mathscr{P} to be those annihilated by the W-invariant differential operators

$$\mathscr{H} = \{ f \in \mathscr{P} : \mathscr{D}^W f = 0 \}.$$

One can think of \mathcal{H} as the solution to a set of differential equations.

Let $\mathscr{H}^p = \mathscr{H} \cap \mathscr{P}^p$, then $\mathscr{H} = \bigoplus_p \mathscr{H}^p$ since a differential operator is W invariant if and only if each homogeneous component in W invariant (think of about the action of W on $S(\mathfrak{t})$). Note that the action of W on \mathscr{P} preserves \mathscr{H} (for $g \in W$, $p \in \mathscr{P}$, $D \in \mathscr{D}$, we have that $D(g \cdot p) = (g^{-1} \cdot D)(p)$).

Proposition 4 If \mathscr{J} is the ideal generated by the elements of \mathscr{P}^W of positive degree, then $\mathscr{P} = \mathscr{H} \oplus \mathscr{J}$ and multiplication is a linear isomorphism $\mathscr{H} \otimes \mathscr{P}^W \xrightarrow{\sim} \mathscr{P}$.

The former gives us that \mathscr{P}/\mathscr{J} is isomorphic to \mathscr{H} as W modules (Note: they are in fact isomorphic to the regular representation of W). The isomorphism $\mathscr{H} \otimes \mathscr{P}^W \simeq \mathscr{P}$ implies

$$\sum_{p\geq 0} \dim \mathscr{H}^p t^p = \prod_{i=1}^l (1+t+t^2+\ldots+t^{m_i}) \text{ (where } l = \dim \mathfrak{t})$$

which shows that dim $\mathscr{H}^{\nu} = 1$ and $\mathscr{H}^{p} = 0$ for $p > \nu$. This formula is deduced from

$$\sum_{p} \dim \mathscr{P}^{p} t^{p} = \left(\sum_{p} \dim \mathscr{H}^{p} t^{p}\right) \left(\sum_{p} \dim (\mathscr{P}^{W} \cap \mathscr{P}^{p}) t^{p}\right),$$
$$\sum_{p} \dim \mathscr{P}^{p} t^{p} = (1+t+t^{2}+\ldots)^{l} = \frac{1}{(1-t)^{l}}, \text{ and}$$
$$\sum_{p} \dim (\mathscr{P}^{W} \cap \mathscr{P}^{p}) t^{p} = \prod_{i=1}^{l} \frac{1}{(1-t^{m_{i}+1})}.$$

The primordial harmonic polynomial is $\Pi = \prod_{\alpha \in \Delta^+} \alpha \in \mathscr{H}^{\nu}$. For U(n) this is the Vandermonde determinant $\prod_{i < i} (x_i - x_j)$, which is transformed by the sign character

via the action of S_n . In general, W acts like the sign character on the span of Π , where the sign character $\varepsilon : W \to {\pm 1}$ gives the parity of the number of reflections for each $g \in W$. Any other polynomial whose span is preserved by the action of the sign character vanishes on all root hyperplanes and so is divisible by Π . Thus Π generates \mathscr{H}^v as dim $\mathscr{H}^v = 1$.

We may now state the theorem we will discuss at the end of this talk

Theorem 5 (Borel) There is a degree-doubling W-equivariant ring isomorphism

$$c: \mathscr{P}/\mathscr{J} \to H(G/T).$$

Consequently, $\mathscr{H}_{(2)} \simeq H(G/T)$, where the subscript indicated degree doubling.

4 Invariant Differential Forms

Let *G* act transitively on a manifold *M* (think M = G/T). If τ_g is the diffeomorphism given by $g \in G$, then a differential *p*-form $\omega \in \Omega^p(M)$ is *G*-invariant if $\tau_g^* \omega = \omega$ for all $g \in G$. Since *G* acts transitively, such a form is determined by its value at one point on *M*.

Lemma 6 Every de Rham cohomology class of *M* is represented by a *G*-invariant form and the complex of *G*-invariant forms is preserved by the exterior derivative.

Definition 7 We define $\Lambda^p \mathfrak{n}^*$ as the set of all skew-symmetric multilinear maps $\omega : \mathfrak{n} \times \ldots \times \mathfrak{n} \to \mathbb{R}$ where the domain has *p* terms.

Proposition 8 The complex $\{(\Lambda^p \mathfrak{n}^*)^K, \delta\}$ computes $H^*(M)$, where K is the stabilizer of a point $o \in M$, $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{n}$ with \mathfrak{r} the Lie algebra of K, and δ is defined below.

Proof Identify M = G/K and note that $T_o(M)$ is naturally identified with \mathfrak{n} . Thus, an invariant form $\tilde{\omega}$ is determined by a skew-symmetrc multilinear map

$$\omega = \tilde{\omega}_o : \mathfrak{n} \times \ldots \times \mathfrak{n} \to \mathbb{R},$$

that is $\omega \in \Lambda^p \mathfrak{n}^*$. The invariance of $\tilde{\omega}$ under *K* implies that ω is Ad(*K*) invariant. Conversely, any element $\omega \in (\Lambda^p \mathfrak{n}^*)^K$ determines a *G* invariant form $\tilde{\omega}$ by

$$\tilde{\omega}_{g \cdot o}((d\tau_g)X_1, \dots, (d\tau_g)X_p) = \omega(X_1, \dots, X_p),$$

for $X_1, \ldots, X_p \in \mathfrak{n} \simeq T_o(M)$ and $g \in G$. Thus, we may identify the *G*-invariant *p*-forms with $(\Lambda^p \mathfrak{n}^*)^K$. The exterior derivative then becomes $\delta : (\Lambda^p \mathfrak{n}^*)^K \to (\Lambda^{p+1} \mathfrak{n}^*)^K$ given by

$$\delta\omega(X_0,\ldots,X_p) = \frac{1}{p+1} \sum_{i< j} (-1)^{i+j} \omega([X_i,X_j]_{\mathfrak{n}},X_0,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_p).$$

Where $[X_i, X_j]_n$ is the projection of $[X_i, X_j]$ on \mathfrak{n} along \mathfrak{r} and $\hat{}$ means the term is omitted. By the Lemma, the complex $\{(\Lambda^p \mathfrak{n}^*)^K, \delta\}$ computes $H^*(M)$.

Example 9 Define $\omega(X, Y, Z) = \langle X, [Y, Z] \rangle$ then $[\omega] \neq 0 \in H^3(G)$. In particular, S^n is not a Lie group for n > 3.

5 Cohomology of Flag Manifolds

We will use Morse Theory to show that the odd dimensional cohomology of G/T vanishes. We can further use this approach to decompose the flag manifold G/T into cells. This is called the *Bruhat Decomposition*. This process will be the generalization of decomposing the $S^2 = SU(2)/T$ into a 0-cell and a 2-cell.

We will find a Morse function f on G/T. For a smooth manifold M, a morse function $f: M \to \mathbb{R}$ is a smooth function with non-singular Hessian $H_x f$ at each critical point x. The function we find will be the analogue of the dot product of vectors on a 2-sphere with the vector pointing to the north pole. The span of the gradient flow lines emanating from a critical point will provide us with a cell decomposition. For the sphere the flow lines from the south pole give us the 2-cell and the north pole, which has no flow lines emanating, gives us the 0-cell.

If *f* is a Morse function and *x* is critical point, let $\lambda(x)$ be the number of negative eigenvalues of $H_x f$. Then the Morse polynomial is $\mathcal{M}_t(f) = \sum t^{\lambda(x)}$ over the critical points *x* of *f*.

Theorem 10 For a morse function $f : M \to \mathbb{R}$, we have that $\mathcal{M}_t(f) \ge \sum_i \dim H^i(M)t^i$. Moreover, if the morse polynomial has no consecutive exponents, equality holds.

To construct a Morse function on G/T, we take the regular element $H_0 \in \mathfrak{t}$ that we chose for the positive roots. Recall that the Ad(G) centralizer of H_0 is exactly Ad(T),

so we may view $G/T \subset \mathfrak{g}$ as the Ad(*G*) orbit of H_0 (analogous to $S^2 \subset \mathbb{R}^3$). We define $f: G/T \to \mathbb{R}$ by

$$f(gT) = \langle \operatorname{Ad}(g)H_0, H_0 \rangle$$

For $X \in \mathfrak{g}$, we can compute the vector field

$$\bar{X}f(gT) = \frac{d}{ds}f(\exp(sX)gT) \mid_{s=0} = \langle \operatorname{Ad}(g)H_0, [H_0, X] \rangle,$$

where the last equality is given by ad invariance of the inner product. Since the centralizer of H_0 in \mathfrak{g} is exactly \mathfrak{t} as H_0 is regular, it follows that the image of $\mathrm{ad}(H_0)$ is \mathfrak{m} . So gT is a critical point of f if and only if $\langle \mathrm{Ad}(g)H_0, \mathfrak{m} \rangle = 0$. Therefore, $\mathrm{Ad}(g)H_0 \in \mathfrak{t}$ by the orthogonal decomposition of \mathfrak{g} . It follows that $\mathrm{Ad}(g)H_0 = \mathrm{Ad}(w)H_0$ for some $w \in W$ and that wT, for $w \in W$, are precisely the critical points of f.

Let $X_1, \ldots, X_{2\nu}$ be the orthonormal basis for \mathfrak{m} we discussed earlier. Note that the differential of $\pi : G \to G/T$ maps $\operatorname{Ad}(w)\mathfrak{m} = \mathfrak{m}$ isomorphically onto $T_{wT}(G/T)$, so we may use our basis to compute the Hessian at each point wT. If h_{ij} is the *ij* entry in $H_{wT}f$, then using our identities for the inner product

$$h_{ij}(wT) = \bar{X}_i \bar{X}_j f(wT) = \langle [X_i, \operatorname{Ad}(w)H_0], [H_0, X_j] \rangle = -\alpha_i (\operatorname{Ad}(w)H_0)\alpha_j (H_0) \langle X_{i\pm \nu}, X_{j\pm \nu} \rangle$$

Note that it follows that $h_{ij} = 0$ for $i \neq j$ and $h_{ii}(wT) = -\alpha_i(\operatorname{Ad}(w)H_0)\alpha_i(H_0)$. Since H_0 is regular, then so is $\operatorname{Ad}(w)H_0$ and therefore $h_{ii}(w) \neq 0$ and $H_{wT}f$ is non singular. Thus, as dim $\mathfrak{m} = 2\nu$, the index $\lambda(wT)$ is twice the number m(w) of positive roots α such that $H \mapsto \alpha(\operatorname{Ad}(w)H)$ (i.e. $w^{-1} \cdot \alpha$) is again a positive root.

The Morse polynomial of f is then $M_t(f) = \sum_{w \in W} t^{2m(w)}$. Since all the exponents of $M_f(t)$ are odd, $M_t(f) = \sum_i H^i(M)t^i$ and it follows that $H^i(M) = 0$ for i odd. In particular, $\sum_i \dim H^{2i}(G/T) = |W|$.

The Schubert cell X_w in the Bruhat Decomposition is the cell spanned by the flow lines of the gradient of f emanating from wT. The dimension of this cell is then the number of positive eigenvalues of the $H_{wT}f$, or, equivalently, twice the number of positive roots that become negative under $w^{-1} \cdot \alpha$.

Note that W acts on G/T by $w \cdot gT = gw^{-1}T$, which gives us an action of W on H(G/T). Since H(G/T) vanishes in odd degrees, the Lefschetz number associated to w is equal to the trace of its action on H(G/T). If $w \neq 1$, then it has not fixed points so the Lefshetz number is zero. If w = 1, then the Lefshetz number is simply the Euler characteristic, which is |W|. Hence, the action is that of the regular representation, so $H(G/T) \simeq \mathbb{R}[W]$ as W-modules.

We can now give the proof of our final result, which we restate here.

$$c: \mathscr{P}/\mathscr{J} \to H(G/T).$$

Consequently, $\mathscr{H}_{(2)} \simeq H(G/T)$, where the subscript indicated degree doubling.

Proof The idea is to describe H(G/T) in terms of *G*-invariant differential forms. For each $\lambda \in \mathfrak{t}^*$, we extend λ to all of \mathfrak{g} by making it zero on \mathfrak{m} and define an Ad(*T*)-invariant 2-form on \mathfrak{m} by

$$\omega_{\lambda}(X, Y) = \lambda([X, Y]).$$

We can identify ω_{λ} with an honest *G*-invariant differential form $\tilde{\omega}_{\lambda}$ as before. The action of *W* on *G*-invariant forms is given by its action on G/T. One can compute that $w \cdot \omega_{\lambda} = \omega_{w \cdot \lambda}$. Further, the Jacobi identity implies that $\delta \omega_{\lambda}(X, Y, Z) = \frac{1}{3}([[X, Z]_{\mathfrak{m}}, Y] - [[X, Y]_{\mathfrak{m}}, Z] - [[Y, Z]_{\mathfrak{m}}, X]) = 0$. We let $c(\lambda) = [\tilde{\omega}_{\lambda}] \in H^2(G/T)$ and extend it to degree-doubling map

$$c: \mathscr{P} \to H(G/T)$$

which preserves the *W*-action on both sides. Since H(G/T) is the regular representation of *W*, its *W*-invariants are 1-dimensional and can therefore only occur in $H^0(G/T)$. Since *c* is *W*-equivariant, it follows that the kernel of *c* contains the ideal \mathscr{J} . The rest of the proof deals with showing that \mathscr{J} is exactly the kernel of *c*.

To prove that ker $c = \mathcal{J}$, it suffices to show that c is injective on \mathcal{H} as $\mathcal{P} = \mathcal{H} \oplus \mathcal{J}$. This is done by induction starting at the highest degree of 2ν and descending down. For degree 2ν it suffices to show that $c(\Pi)$, where Π is the primordial harmonic polynomial, is non zero in $H^{2\nu}(G/T)$.

For each root $\alpha_i \in \Delta^+$, we have element $X_i, X_{i+\nu}$ that form a basis for \mathfrak{m}_i such that $[X_i, X_{i+\nu}] = H_i \operatorname{im} \mathfrak{t}$. Recall that $[X_i, X_j] \in \mathfrak{m}$ is $j \neq i + \nu$ where $1 \leq i \leq \nu$. For each i, write $\omega_i = \omega_{\alpha_i}$. Then by definition $c(\Pi) = [\tilde{\omega}_{\alpha_1} \wedge \ldots \wedge \tilde{\omega}_{\alpha_\nu}]$ and we can evaluate

$$\omega_1 \wedge \ldots \wedge \omega_{\nu}(X_1, X_{1+\nu}, \ldots, X_{\nu}, X_{2\nu}) =$$

$$= \frac{1}{(2\nu)!} \sum_{\sigma \in S_{2\nu}} sgn(\sigma) \omega_1(X_{\sigma(1)}, X_{\sigma(1+\nu)}) \cdots \omega_{\nu}(X_{\sigma(\nu)}, X_{\sigma(2\nu)}) =$$

$$= \frac{1}{(2\nu)!} \sum_{\sigma \in S_{2\nu}} sgn(\sigma) \alpha_1([X_{\sigma(1)}, X_{\sigma(1+\nu)}]) \cdots \alpha_{\nu}([X_{\sigma(\nu)}, X_{\sigma(2\nu)}])$$

Since $\alpha_i([X_{\sigma(i)}, X_{\sigma(i+\nu)}]) = 0$ unless $[X_{\sigma}i, X_{\sigma(i+\nu)}] \in \mathfrak{m}$, the term for σ is zero unless σ permutes the pairs $\{i, i + \nu\}$, and possibly switches the order of members. Note that $\sigma(\sigma)$ is minus one the number of switches, so it follows that

$$\omega_1 \wedge \ldots \wedge \omega_{\nu}(X_1, X_{1+\nu}, \ldots, X_{\nu}, X_{2\nu}) =$$

1 and 2

$$= \frac{2^{\nu}}{(2\nu)!} \sum_{\sigma \in S_{\nu}} \alpha_1([X_{\sigma(1)}, X_{\sigma(1)+\nu}]) \cdots \alpha_{\nu}([X_{\sigma(\nu)}, X_{\sigma(\nu)+\nu}]) =$$
$$= \frac{2^{\nu}}{(2\nu)!} \sum_{\sigma \in S_{\nu}} \alpha_1(H_{\sigma(1)}) \cdots \alpha_{\nu}(H_{\sigma(\nu)}) = \frac{2^{\nu}}{(2\nu)!} \partial_1 \cdots \partial_{\nu} \Pi$$

where ∂_i is the derivation of \mathscr{P} extending $\lambda \mapsto \lambda(H_i)$. Since the pairing $\mathscr{D} \otimes \mathscr{P} \to \mathbb{R}$ given by $(D, f) \mapsto (Df)(0)$ is perfect, it follows that there is a degree ν differential operator that pairs non trivially with Π . Further, since an irreducible *W*-module can only pair non trivially with its dual, and the self-dual character ε ocurs with multiplicity one in \mathscr{D}^{ν} , afforded by $\partial_1 \cdots \partial_{\nu}$, it follows that $\partial_1 \cdots \partial_{\nu} \Pi \neq 0$ and $c(\Pi) \neq 0$.

We may now inductively assume that $c : \mathscr{H}^k \to H^{2k}(G/T)$ is injective for some $k \leq \nu$. Let $V = \mathscr{H}^{k-1} \cap \ker c$. Note that V is preserved by W since c is W-equivariant. Since the sign character is absent from \mathscr{H}^{k-1} , there is a possible root α such that the reflection s_{α} along the associated hyperplane does not act like -I on V. We can then decompose $V = V_+ \oplus V_-$ according to the eigenspaces of s_{α} . If $V \neq 0$, then $V_+ \neq 0$ so we may take some $f \in V_+$. Now $c(\alpha f) = c(\alpha)c(f) = 0$ and αf is in degree k, so $\alpha f \in \mathscr{J}$ by assumption. Let $h_1, \ldots, h_{|W|}$ be a basis for \mathscr{H} with $h_1, \ldots, h_r \ s_{\alpha}$ -skew and the rest s_{α} -invariant. By Chevalley's Theorem, we can write $\alpha f = \sum_i h_i \tau_i$, with τ_i W-invariant of positive degree. Since αf is s_{α} -skew by construction, the sum only goes up to r. For $i \leq r$, the polynomial h_i must vanish on $\ker \alpha$ and therefore $h_i = \alpha h'_i$ for some $h'_i \in \mathscr{P}$. Then it follows that $f = \sum_{i=1}^r h'_i \tau_i \in \mathscr{J}$ and f is harmonic. Thus, we must have that f = 0 and c is injective on \mathscr{H}^{k-1} . By induction, c is injective and since H(G/T) vanishes in odd degree, the proof is complete.

8