Notes for a talk on cohomology of compact Lie groups

ANDREW YARMOLA
BASED ON THE PAPER OF MARK REEDER "On the cohomology of compact Lie groups,"
L'Enseignement Math., t. 41, (1995), pages 181-200 and notes of Yang Zhang

1 Introduction

Let G be a compact connected Lie group with Lie algebra \mathfrak{g} and T a maximal torus of G with Lie algebra \mathfrak{t}. Let $W=N_{G}(T) / T$ be the Weyl group of T in G. Recall that W acts on \mathfrak{t} through the Ad-representation. W is generated by reflections across kernels of roots of \mathfrak{t} in $\mathfrak{g} \otimes \mathbb{C}$ or if you like the positive real roots.

The main result of these notes is that $H(G / T)$ vanishes in odd degrees. We will, in fact, provide a ring isomorphism $H(G / T)$ to a purely algebraic structure.

2 Background/Review

Let \langle,$\rangle be the Ad-invariant inner product on \mathfrak{g}$ (average all inner products on \mathfrak{g} or take the negative of the Killing Form). We then have an orthogonal decomposition $\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{t}$. For $X, Y, Z \in \mathfrak{g}$, the inner product satisfies $\langle[X, Y], X\rangle+\langle Y,[X, Z]\rangle=0$. Note that $\operatorname{Ad}(T)$ has no nonzero invariant vectors in \mathfrak{m} and no nonzero element of \mathfrak{m} has zero bracket with all of \mathfrak{t} (by the maximally of \mathfrak{t} as an abelian subalgebra).

An element $H_{0} \in \mathfrak{t}$ is called regular or generic, if the powers of $\exp H_{0}$ are dense in T. Note that $H_{0} \in t$ is regular iff its $\operatorname{Ad}(G)$-centralizer is precisely $\operatorname{Ad}(T)$. For the remainder of this text, we choose some particular generic element $H_{0} \in \mathfrak{t}$

Let $\mathfrak{m}=\mathfrak{m}_{1} \oplus \ldots \oplus \mathfrak{m}_{v}$ be an orthogonal decomposition given by the real irreducible representations of T, which are 2 dimensional. For $H \in t$, the eigenvalues of $\operatorname{Ad}(\exp H)$ on \mathfrak{m}_{i} are $\left\{\exp \left(\pm \sqrt{-1} \alpha_{i}(H)\right\}\right.$, where $\alpha_{i} \in \mathfrak{t}^{*}$. We let the set of positive roots $\Delta^{+}=\left\{\alpha_{1}, \ldots, \alpha_{v}\right\}$ be the set of roots that take positive values on our generic element H_{0}. Note that since W acts faithfully on \mathfrak{t}, its image in $\operatorname{GL}(\mathfrak{t})$ is generated by reflections about the kernels of elements in Δ^{+}.

Since the \mathfrak{m}_{i} are preserved by ad(\mathfrak{t}), we can choose an orthonormal basis $\left\{X_{i}, X_{i+v}\right\}$ for \mathfrak{m}_{i} such that the matrix for $\left.\operatorname{ad}(H)\right|_{\mathfrak{m}_{i}}$ with $H \in \mathfrak{t}$ is

$$
\left[\begin{array}{cc}
0 & \alpha_{i}(H) \\
-\alpha_{i}(H) & 0
\end{array}\right] .
$$

By the ad-invariance of the inner product,

$$
\left\langle H,\left[X_{i}, X_{j}\right]\right\rangle=-\left\langle\left[X_{i}, H\right], X_{j}\right\rangle=\left\langle\left[H, X_{i}\right], X_{j}\right\rangle=-\alpha_{i}(H)\left\langle X_{i+v}, X_{j}\right\rangle
$$

for $1 \leq i \leq v, 1 \leq j \leq 2 v$. Above, the right hand side can be nonzero only if $j=i+v$. Thus, if $j \neq i \pm v$, then $\left[X_{i}, X_{j}\right] \in \mathfrak{m}$.

For $1 \leq i \leq v$, we let $H_{i}=\left[X_{i}, X_{i+v}\right]$, which is $\operatorname{Ad}(T)$-invariant so $H_{i} \in \mathfrak{m}$ and $\operatorname{ad}\left(H_{i}\right) \mathfrak{m}_{i} \subset \mathfrak{m}_{i}$. The span of X_{i}, X_{i+v}, H_{i} is a Lie subalgebra of \mathfrak{g} that is actually isomorphic to $\mathfrak{s u}(2)$.

3 Invariant Theory

Let $\mathscr{P}=\bigoplus_{p=0}^{\infty} \mathscr{P}^{p}$ be the symmetric algebra on \mathfrak{t}^{*} (i.e. $\mathscr{P}^{p}=\left(\mathfrak{t}^{*}\right)^{\otimes p} / \sim$ where $\lambda_{1} \otimes \ldots \otimes \lambda_{p} \sim \lambda_{\sigma(1)} \otimes \ldots \otimes \lambda_{\sigma(p)}$ for $\sigma \in S_{p}$). One can think of \mathscr{P} as polynomials over \mathbb{R} where the monomials are products of functionals on \mathfrak{t}. The adjoint action of W on \mathfrak{t} induces an action/representations of W on \mathscr{P} by degree-preserving algebra automorphisms (for $\lambda \in \mathfrak{t}^{*}$ and $w \in W$, the action is $\lambda \mapsto \lambda \circ \operatorname{Ad}\left(w^{-1}\right)$). We will be interested in the W-invariant polynomials \mathscr{P}^{W}.

Example 1 For $U(n), \mathscr{P}^{W}$ is generated by elementary symmetric polynomials. For $U(n), \mathfrak{t}$ is the set of diagonal complex matrices with $a_{j} \sqrt{-1}$ on the diagonal and W acts as $S_{n} \mathfrak{t}$ on by permuting a_{j}.

Theorem 2 (Chevalley) The ring \mathscr{P}^{W} has algebraically independent homogeneous generators F_{1}, \ldots, F_{l} with $\mathscr{P}^{W}=\mathbb{R}\left[F_{1}, \ldots, F_{l}\right]$, where $l=\operatorname{dim} \mathrm{t}$. (Recall: algebraically independent means that the homomophism $\mathbb{R}\left[X_{1}, \ldots, X_{l}\right] \rightarrow \mathbb{R}\left[F_{1}, \ldots, F_{l}\right]$ given by $X_{i} \mapsto F_{i}$ is an isomorphism)

The generators are numbered such that $\operatorname{deg} F_{1}, \leq \ldots, \operatorname{deg} F_{l}$. We will call the numbers $m_{i}=\operatorname{deg} F_{i}-1$ the exponents of W acting on \mathfrak{t}. It is known that $m_{1}+\ldots+m_{l}=v$ and $\left(1+m_{1}\right) \ldots\left(1+m_{l}\right)=|W|$.

Example 3 For $S U(n),\left\{m_{i}\right\}$ is $\{1, \ldots, n-1\}$ and for G_{2} they are $\{1,5\}$. Note that for $S U(n)$ you loose the generator in degree 1, which you had for $U(n)$, because of
linear dependence. For G_{2}, the Lie algebra of T is that of $S U(3)$ but the action of W is extended by an inversion.

Let \mathscr{D} be the ring of constant coefficient differential operators on \mathscr{P}. We can think of \mathscr{D} as the symmetric algebra $S(\mathfrak{t})$, where $H \in \mathfrak{t}$ corresponds to the function on \mathfrak{t}^{*} given by evaluation at H (e.g. $H \cdot\left(\lambda_{1} \lambda_{2}\right)=\lambda_{1}(H) \lambda_{2}+\lambda_{2}(H) \lambda_{1}$ or the directional derivative for the vector H). We have that W acts naturally on \mathscr{D} (by it's action on $S(\mathfrak{t})$) and we define the "harmonic polynomials" in \mathscr{P} to be those annihilated by the W-invariant differential operators

$$
\mathscr{H}=\left\{f \in \mathscr{P}: \mathscr{D}^{W} f=0\right\}
$$

One can think of \mathscr{H} as the solution to a set of differential equations.
Let $\mathscr{H}^{p}=\mathscr{H} \cap \mathscr{P}^{p}$, then $\mathscr{H}=\oplus_{p} \mathscr{H}^{p}$ since a differential operator is W invariant if and only if each homogeneous component in W invariant (think of about the action of W on $S(\mathfrak{t})$). Note that the action of W on \mathscr{P} preserves \mathscr{H} (for $g \in W, p \in \mathscr{P}$, $D \in \mathscr{D}$, we have that $\left.D(g \cdot p)=\left(g^{-1} \cdot D\right)(p)\right)$.

Proposition 4 If \mathscr{J} is the ideal generated by the elements of \mathscr{P}^{W} of positive degree, then $\mathscr{P}=\mathscr{H} \oplus \mathscr{J}$ and multiplication is a linear isomorphism $\mathscr{H} \otimes \mathscr{P}^{W} \xrightarrow{\sim} \mathscr{P}$.

The former gives us that $\mathscr{P} / \mathscr{J}$ is isomorphic to \mathscr{H} as W modules (Note: they are in fact isomorphic to the regular representation of W). The isomorphism $\mathscr{H} \otimes \mathscr{P}^{W} \simeq \mathscr{P}$ implies

$$
\sum_{p \geq 0} \operatorname{dim} \mathscr{H}^{p} t^{p}=\prod_{i=1}^{l}\left(1+t+t^{2}+\ldots+t^{m_{i}}\right)(\text { where } l=\operatorname{dim} \mathfrak{t})
$$

which shows that $\operatorname{dim} \mathscr{H}^{v}=1$ and $\mathscr{H}^{p}=0$ for $p>v$. This formula is deduced from

$$
\begin{gathered}
\sum_{p} \operatorname{dim} \mathscr{P}_{t} t^{p}=\left(\sum_{p} \operatorname{dim} \mathscr{H}^{p} t^{p}\right)\left(\sum_{p} \operatorname{dim}\left(\mathscr{P}^{W} \cap \mathscr{P}^{p}\right) t^{p}\right) \\
\sum_{p} \operatorname{dim} \mathscr{P}^{p} t^{p}=\left(1+t+t^{2}+\ldots\right)^{l}=\frac{1}{(1-t)^{l}}, \text { and } \\
\sum_{p} \operatorname{dim}\left(\mathscr{P}^{W} \cap \mathscr{P}^{p}\right) t^{p}=\prod_{i=1}^{l} \frac{1}{\left(1-t^{m_{i}+1}\right)}
\end{gathered}
$$

The primordial harmonic polynomial is $\Pi=\prod_{\alpha \in \Delta+} \alpha \in \mathscr{H}^{v}$. For $U(n)$ this is the Vandermonde determinant $\prod_{i<j}\left(x_{i}-x_{j}\right)$, which is transformed by the sign character
via the action of S_{n}. In general, W acts like the sign character on the span of Π, where the sign character $\varepsilon: W \rightarrow\{ \pm 1\}$ gives the parity of the number of reflections for each $g \in W$. Any other polynomial whose span is preserved by the action of the sign character vanishes on all root hyperplanes and so is divisible by Π. Thus Π generates \mathscr{H}^{v} as $\operatorname{dim} \mathscr{H}^{v}=1$.

We may now state the theorem we will discuss at the end of this talk

Theorem 5 (Borel) There is a degree-doubling W-equivariant ring isomorphism

$$
c: \mathscr{P} / \mathscr{J} \rightarrow H(G / T)
$$

Consequently, $\mathscr{H}_{(2)} \simeq H(G / T)$, where the subscript indicated degree doubling.

4 Invariant Differential Forms

Let G act transitively on a manifold M (think $M=G / T$). If τ_{g} is the diffeomorphism given by $g \in G$, then a differential p-form $\omega \in \Omega^{p}(M)$ is G-invariant if $\tau_{g}^{*} \omega=\omega$ for all $g \in G$. Since G acts transitively, such a form is determined by its value at one point on M.

Lemma 6 Every de Rham cohomology class of M is represented by a G-invariant form and the complex of G-invariant forms is preserved by the exterior derivative.

Definition 7 We define $\Lambda^{p} \mathfrak{n}^{*}$ as the set of all skew-symmetric multilinear maps $\omega: \mathfrak{n} \times \ldots \times \mathfrak{n} \rightarrow \mathbb{R}$ where the domain has p terms.

Proposition 8 The complex $\left\{\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}, \delta\right\}$ computes $H^{*}(M)$, where K is the stabilizer of a point $o \in M, \mathfrak{g}=\mathfrak{r} \oplus \mathfrak{n}$ with \mathfrak{r} the Lie algebra of K, and δ is defined below.

Proof Identify $M=G / K$ and note that $T_{o}(M)$ is naturally identified with \mathfrak{n}. Thus, an invariant form $\tilde{\omega}$ is determined by a skew-symmetrc multilinear map

$$
\omega=\tilde{\omega}_{o}: \mathfrak{n} \times \ldots \times \mathfrak{n} \rightarrow \mathbb{R}
$$

that is $\omega \in \Lambda^{p} \mathfrak{n}^{*}$. The invariance of $\tilde{\omega}$ under K implies that ω is $\operatorname{Ad}(K)$ invariant. Conversely, any element $\omega \in\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}$ determines a G invariant form $\tilde{\omega}$ by

$$
\tilde{\omega}_{g . o}\left(\left(d \tau_{g}\right) X_{1}, \ldots,\left(d \tau_{g}\right) X_{p}\right)=\omega\left(X_{1}, \ldots, X_{p}\right)
$$

for $X_{1}, \ldots, X_{p} \in \mathfrak{n} \simeq T_{o}(M)$ and $g \in G$. Thus, we may identify the G-invariant p-forms with $\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}$. The exterior derivative then becomes $\delta:\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K} \rightarrow\left(\Lambda^{p+1} \mathfrak{n}^{*}\right)^{K}$ given by

$$
\delta \omega\left(X_{0}, \ldots, X_{p}\right)=\frac{1}{p+1} \sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right]_{\mathfrak{n}}, X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{p}\right) .
$$

Where $\left[X_{i}, X_{j}\right]_{\mathfrak{n}}$ is the projection of $\left[X_{i}, X_{j}\right]$ on \mathfrak{n} along \mathfrak{r} and ${ }^{\wedge}$ means the term is omitted. By the Lemma, the complex $\left\{\left(\Lambda^{p} \mathfrak{n}^{*}\right)^{K}, \delta\right\}$ computes $H^{*}(M)$.

Example 9 Define $\omega(X, Y, Z)=\langle X,[Y, Z]\rangle$ then $[\omega] \neq 0 \in H^{3}(G)$. In particular, S^{n} is not a Lie group for $n>3$.

5 Cohomology of Flag Manifolds

We will use Morse Theory to show that the odd dimensional cohomology of G / T vanishes. We can further use this approach to decompose the flag manifold G / T into cells. This is called the Bruhat Decomposition. This process will be the generalization of decomposing the $S^{2}=S U(2) / T$ into a 0 -cell and a 2 -cell.
We will find a Morse function f on G / T. For a smooth manifold M, a morse function $f: M \rightarrow \mathbb{R}$ is a smooth function with non-singular Hessian $H_{x} f$ at each critical point x. The function we find will be the analogue of the dot product of vectors on a 2 -sphere with the vector pointing to the north pole. The span of the gradient flow lines emanating from a critical point will provide us with a cell decomposition. For the sphere the flow lines from the south pole give us the 2-cell and the north pole, which has no flow lines emanating, gives us the 0 -cell.
If f is a Morse function and x is critical point, let $\lambda(x)$ be the number of negative eigenvalues of $H_{x} f$. Then the Morse polynomial is $\mathcal{M}_{t}(f)=\sum t^{\lambda(x)}$ over the critical points x of f.

Theorem 10 For a morse function $f: M \rightarrow \mathbb{R}$, we have that $\mathcal{M}_{t}(f) \geq \sum_{i} \operatorname{dim} H^{i}(M) t^{i}$. Moreover, if the morse polynomial has no consecutive exponents, equality holds.

To construct a Morse function on G / T, we take the regular element $H_{0} \in \mathfrak{t}$ that we chose for the positive roots. Recall that the $\operatorname{Ad}(G)$ centralizer of H_{0} is exactly $\operatorname{Ad}(T)$,
so we may view $G / T \subset \mathfrak{g}$ as the $\operatorname{Ad}(G)$ orbit of H_{0} (analogous to $S^{2} \subset \mathbb{R}^{3}$). We define $f: G / T \rightarrow \mathbb{R}$ by

$$
f(g T)=\left\langle\operatorname{Ad}(g) H_{0}, H_{0}\right\rangle .
$$

For $X \in \mathfrak{g}$, we can compute the vector field

$$
\bar{X} f(g T)=\left.\frac{d}{d s} f(\exp (s X) g T)\right|_{s=0}=\left\langle\operatorname{Ad}(g) H_{0},\left[H_{0}, X\right]\right\rangle,
$$

where the last equality is given by ad invariance of the inner product. Since the centralizer of H_{0} in \mathfrak{g} is exactly \mathfrak{t} as H_{0} is regular, it follows that the image of $\operatorname{ad}\left(H_{0}\right)$ is \mathfrak{m}. So $g T$ is a critical point of f if and only if $\left\langle\operatorname{Ad}(g) H_{0}, \mathfrak{m}\right\rangle=0$. Therefore, $\operatorname{Ad}(g) H_{0} \in \mathfrak{t}$ by the orthogonal decomposition of \mathfrak{g}. It follows that $\operatorname{Ad}(g) H_{0}=\operatorname{Ad}(w) H_{0}$ for some $w \in W$ and that $w T$, for $w \in W$, are precisely the critical points of f.

Let $X_{1}, \ldots, X_{2 v}$ be the orthonormal basis for \mathfrak{m} we discussed earlier. Note that the differential of $\pi: G \rightarrow G / T$ maps $\operatorname{Ad}(w) \mathfrak{m}=\mathfrak{m}$ isomorphically onto $T_{w T}(G / T)$, so we may use our basis to compute the Hessian at each point $w T$. If $h_{i j}$ is the $i j$ entry in $H_{w T} f$, then using our identities for the inner product
$h_{i j}(w T)=\bar{X}_{i} \bar{X}_{j} f(w T)=\left\langle\left[X_{i}, \operatorname{Ad}(w) H_{0}\right],\left[H_{0}, X_{j}\right]\right\rangle=-\alpha_{i}\left(\operatorname{Ad}(w) H_{0}\right) \alpha_{j}\left(H_{0}\right)\left\langle X_{i \pm v}, X_{j \pm v}\right\rangle$.
Note that it follows that $h_{i j}=0$ for $i \neq j$ and $h_{i i}(w T)=-\alpha_{i}\left(\operatorname{Ad}(w) H_{0}\right) \alpha_{i}\left(H_{0}\right)$. Since H_{0} is regular, then so is $\operatorname{Ad}(w) H_{0}$ and therefore $h_{i i}(w) \neq 0$ and $H_{w T} f$ is non singular. Thus, as $\operatorname{dim} \mathfrak{m}=2 \nu$, the index $\lambda(w T)$ is twice the number $m(w)$ of positive roots α such that $H \mapsto \alpha(\operatorname{Ad}(w) H)$ (i.e. $\left.w^{-1} \cdot \alpha\right)$ is again a positive root.

The Morse polynomial of f is then $M_{t}(f)=\sum_{w \in W} t^{2 m(w)}$. Since all the exponents of $M_{f}(t)$ are odd, $M_{t}(f)=\sum_{i} H^{i}(M) t^{i}$ and it follows that $H^{i}(M)=0$ for i odd. In particular, $\sum_{i} \operatorname{dim} H^{2 i}(G / T)=|W|$.
The Schubert cell X_{w} in the Bruhat Decomposition is the cell spanned by the flow lines of the gradient of f emanating from $w T$. The dimension of this cell is then the number of positive eigenvalues of the $H_{w T} f$, or, equivalently, twice the number of positive roots that become negative under $w^{-1} \cdot \alpha$.
Note that W acts on G / T by $w \cdot g T=g w^{-1} T$, which gives us an action of W on $H(G / T)$. Since $H(G / T)$ vanishes in odd degrees, the Lefschetz number associated to w is equal to the trace of its action on $H(G / T)$. If $w \neq 1$, then it has not fixed points so the Lefshetz number is zero. If $w=1$, then the Lefshetz number is simply the Euler characteristic, which is $|W|$. Hence, the action is that of the regular representation, so $H(G / T) \simeq \mathbb{R}[W]$ as W-modules.

We can now give the proof of our final result, which we restate here.

Theorem 11 (Borel) There is a degree-doubling W-equivariant ring isomorphism

$$
c: \mathscr{P} / \mathscr{J} \rightarrow H(G / T) .
$$

Consequently, $\mathscr{H}_{(2)} \simeq H(G / T)$, where the subscript indicated degree doubling.
Proof The idea is to describe $H(G / T)$ in terms of G-invariant differential forms. For each $\lambda \in \mathfrak{t}^{*}$, we extend λ to all of \mathfrak{g} by making it zero on \mathfrak{m} and define an $\operatorname{Ad}(T)$-invariant 2 -form on \mathfrak{m} by

$$
\omega_{\lambda}(X, Y)=\lambda([X, Y])
$$

We can identify ω_{λ} with an honest G-invariant differential form $\tilde{\omega}_{\lambda}$ as before. The action of W on G-invariant forms is given by its action on G / T. One can compute that $w \cdot \omega_{\lambda}=\omega_{w \cdot \lambda}$. Further, the Jacobi identity implies that $\delta \omega_{\lambda}(X, Y, Z)=\frac{1}{3}\left(\left[[X, Z]_{\mathfrak{m}}, Y\right]-\right.$ $\left.\left[[X, Y]_{\mathfrak{m}}, Z\right]-\left[[Y, Z]_{\mathfrak{m}}, X\right]\right)=0$. We let $c(\lambda)=\left[\tilde{\omega}_{\lambda}\right] \in H^{2}(G / T)$ and extend it to degree-doubling map

$$
c: \mathscr{P} \rightarrow H(G / T)
$$

which preserves the W-action on both sides. Since $H(G / T)$ is the regular representation of W, its W-invariants are 1-dimensional and can therefore only occur in $H^{0}(G / T)$. Since c is W-equivariant, it follows that the kernel of c contains the ideal \mathscr{J}. The rest of the proof deals with showing that \mathscr{J} is exactly the kernel of c.
To prove that ker $c=\mathscr{J}$, it suffices to show that c is injective on \mathscr{H} as $\mathscr{P}=\mathscr{H} \oplus \mathscr{J}$. This is done by induction starting at the highest degree of 2ν and descending down. For degree 2ν it suffices to show that $c(\Pi)$, where Π is the primordial harmonic polynomial, is non zero in $H^{2 \nu}(G / T)$.
For each root $\alpha_{i} \in \Delta^{+}$, we have element $X_{i}, X_{i+\nu}$ that form a basis for \mathfrak{m}_{i} such that $\left[X_{i}, X_{i+\nu}\right]=H_{i} \mathrm{im} \mathfrak{t}$. Recall that $\left[X_{i}, X_{j}\right] \in \mathfrak{m}$ is $j \neq i+\nu$ where $1 \leq i \leq \nu$. For each i, write $\omega_{i}=\omega_{\alpha_{i}}$. Then by definition $c(\Pi)=\left[\tilde{\omega}_{\alpha_{1}} \wedge \ldots \wedge \tilde{\omega}_{\alpha_{\nu}}\right]$ and we can evaluate

$$
\begin{gathered}
\omega_{1} \wedge \ldots \wedge \omega_{\nu}\left(X_{1}, X_{1+\nu}, \ldots, X_{\nu}, X_{2 \nu}\right)= \\
=\frac{1}{(2 \nu)!} \sum_{\sigma \in S_{2 \nu}} \operatorname{sgn}(\sigma) \omega_{1}\left(X_{\sigma(1)}, X_{\sigma(1+\nu)}\right) \cdots \omega_{\nu}\left(X_{\sigma(\nu)}, X_{\sigma(2 \nu)}\right)= \\
=\frac{1}{(2 \nu)!} \sum_{\sigma \in S_{2 \nu}} \operatorname{sgn}(\sigma) \alpha_{1}\left(\left[X_{\sigma(1)}, X_{\sigma(1+\nu)}\right]\right) \cdots \alpha_{\nu}\left(\left[X_{\sigma(\nu)}, X_{\sigma(2 \nu)}\right]\right)
\end{gathered}
$$

Since $\alpha_{i}\left(\left[X_{\sigma(i)}, X_{\sigma(i+\nu)}\right]\right)=0$ unless $\left[X_{\sigma} i, X_{\sigma(i+\nu)}\right] \in \mathfrak{m}$, the term for σ is zero unless σ permutes the pairs $\{i, i+\nu\}$, and possibly switches the order of members. Note that $\sigma(\sigma)$ is minus one the number of switches, so it follows that

$$
\omega_{1} \wedge \ldots \wedge \omega_{\nu}\left(X_{1}, X_{1+\nu}, \ldots, X_{\nu}, X_{2 \nu}\right)=
$$

$$
\begin{aligned}
& =\frac{2^{\nu}}{(2 \nu)!} \sum_{\sigma \in S_{\nu}} \alpha_{1}\left(\left[X_{\sigma(1)}, X_{\sigma(1)+\nu}\right]\right) \cdots \alpha_{\nu}\left(\left[X_{\sigma(\nu)}, X_{\sigma(\nu)+\nu}\right]\right)= \\
& =\frac{2^{\nu}}{(2 \nu)!} \sum_{\sigma \in S_{\nu}} \alpha_{1}\left(H_{\sigma(1)}\right) \cdots \alpha_{\nu}\left(H_{\sigma(\nu)}\right)=\frac{2^{\nu}}{(2 \nu)!} \partial_{1} \cdots \partial_{\nu} \Pi
\end{aligned}
$$

where ∂_{i} is the derivation of \mathscr{P} extending $\lambda \mapsto \lambda\left(H_{i}\right)$. Since the pairing $\mathscr{D} \otimes \mathscr{P} \rightarrow \mathbb{R}$ given by $(D, f) \mapsto(D f)(0)$ is perfect, it follows that there is a degree ν differential operator that pairs non trivially with Π. Further, since an irreducible W-module can only pair non trivially with its dual, and the self-dual character ε ocurs with multiplicity one in \mathscr{D}^{ν}, afforded by $\partial_{1} \cdots \partial_{\nu}$, it follows that $\partial_{1} \cdots \partial_{\nu} \Pi \neq 0$ and $c(\Pi) \neq 0$.
We may now inductively assume that $c: \mathscr{H}^{k} \rightarrow H^{2 k}(G / T)$ is injective for some $k \leq \nu$. Let $V=\mathscr{H}^{k-1} \cap \operatorname{ker} c$. Note that V is preserved by W since c is W-equivariant. Since the sign character is absent from \mathscr{H}^{k-1}, there is a possible root α such that the reflection s_{α} along the associated hyperplane does not act like $-I$ on V. We can then decompose $V=V_{+} \oplus V_{-}$according to the eigenspaces of s_{α}. If $V \neq 0$, then $V_{+} \neq 0$ so we may take some $f \in V_{+}$. Now $c(\alpha f)=c(\alpha) c(f)=0$ and αf is in degree k, so $\alpha f \in \mathscr{J}$ by assumption. Let $h_{1}, \ldots, h_{|W|}$ be a basis for \mathscr{H} with $h_{1}, \ldots, h_{r} s_{\alpha}$-skew and the rest s_{α}-invariant. By Chevalley's Theorem, we can write $\alpha f=\sum_{i} h_{i} \tau_{i}$, with $\tau_{i} W$-invariant of positive degree. Since αf is s_{α}-skew by construction, the sum only goes up to r. For $i \leq r$, the polynomial h_{i} must vanish on ker α and therefore $h_{i}=\alpha h_{i}^{\prime}$ for some $h_{i}^{\prime} \in \mathscr{P}$. Then it follows that $f=\sum_{i=1}^{r} h_{i}^{\prime} \tau_{i} \in \mathscr{J}$ and f is harmonic. Thus, we must have that $f=0$ and c is injective on \mathscr{H}^{k-1}. By induction, c is injective and since $H(G / T)$ vanishes in odd degree, the proof is complete.

