Notes for a talk on cohomology of compact Lie groups

ANDREW YARMOLA

BASED ON THE PAPER OF MARK REEDER “On the cohomology of compact Lie groups,”
L’ENSEIGNEMENT MATH., T. 41, (1995), PAGES 181-200 AND NOTES OF YANG ZHANG

1 Introduction

Let G be a compact connected Lie group with Lie algebra g and 7 a maximal torus of
G with Lie algebra t. Let W = Ng(T)/T be the Weyl group of T in G. Recall that W
acts on t through the Ad-representation. W is generated by reflections across kernels
of roots of t in g ® C or if you like the positive real roots.

The main result of these notes is that H(G/T) vanishes in odd degrees. We will, in fact,
provide a ring isomorphism H(G/T) to a purely algebraic structure.

2 Background/Review

Let (, ) be the Ad-invariant inner product on g (average all inner products on g or
take the negative of the Killing Form). We then have an orthogonal decomposition
g=mdt. For X,Y,Z € g, the inner product satisfies ([X, Y],X) + (Y,[X,Z]) = 0.
Note that Ad(7) has no nonzero invariant vectors in m and no nonzero element of m
has zero bracket with all of t (by the maximally of t as an abelian subalgebra).

An element Hy € t is called regular or generic, if the powers of exp Hy are dense in
T. Note that Hy € ¢ is regular iff its Ad(G)-centralizer is precisely Ad(7"). For the
remainder of this text, we choose some particular generic element Hy € t

Let m = m; @ ... ®m, be an orthogonal decomposition given by the real irreducible
representations of 7', which are 2 dimensional. For H € ¢, the eigenvalues of Ad(exp H)
on m; are {exp(+v/—1a;(H)}, where a; € t*. We let the set of positive roots
AT ={ay,...,q,} be the set of roots that take positive values on our generic element
Hp. Note that since W acts faithfully on t, its image in GL(t) is generated by reflections
about the kernels of elements in AT,
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Since the m; are preserved by ad(t), we can choose an orthonormal basis {X;, Xj1,}
for m; such that the matrix for ad(H) |, with H € t is
0 a;(H)
*O[,'(H) 0 '

By the ad-invariance of the inner product,
(H,[Xi, X;1) = —([X;, H], X;) = ([H,Xi], X;) = —ci(H)(Xitv, X)

for 1 <i<v,1<j<2v. Above, the right hand side can be nonzero only if j =i + v.
Thus, if j # i £ v, then [X;, X;] € m.

For 1 <i < v, we let H; = [X;, Xi4,], which is Ad(T)-invariant so H; € m and
ad(H;) m; C m;. The span of X;, X;;,,H; is a Lie subalgebra of g that is actually
isomorphic to su(2).

3 Invariant Theory

Let & = @;io 2P be the symmetric algebra on t* (i.e. 9P = (t*)®P/ ~ where
M. QN ~ A1) @ ... ® Ag(p) for o € Sp,). One can think of &7 as polynomials
over R where the monomials are products of functionals on t. The adjoint action of
W on t induces an action/representations of W on & by degree-preserving algebra
automorphisms (for A\ € t* and w € W, the action is A — X o Ad(w™')). We will be
interested in the W-invariant polynomials 22V .

Example 1 For U(n), 2" is generated by elementary symmetric polynomials. For
U(n), t is the set of diagonal complex matrices with aj/—1 on the diagonal and W
acts as S, t on by permuting a;.

Theorem 2 (Chevalley) The ring &% has algebraically independent homogeneous
generators Fy, ..., F; with 2V = R[F,...,F], where | = dimt. (Recall: alge-
braically independent means that the homomophism R[X|, ..., X;] = R[F,..., Fi]
given by X; — F; is an isomorphism)

The generators are numbered such that deg F;, < ..., deg F;. We will call the numbers
m; = deg F; — 1 the exponents of W acting on t. Itis known that my + ... +m =v
and (1 +mp)...(1 +my) = |W|.

Example 3 For SU(n), {m;} is {1,...,n — 1} and for G, they are {1,5}. Note that
for SU(n) you loose the generator in degree 1, which you had for U(n), because of
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linear dependence. For G, the Lie algebra of T is that of SU(3) but the action of W is
extended by an inversion.

Let & be the ring of constant coefficient differential operators on &7. We can think of
2 as the symmetric algebra S(t), where H € t corresponds to the function on t* given
by evaluation at H (e.g. H - (A1 A2) = A\(H)A2 + Mo(H)A; or the directional derivative
for the vector H). We have that W acts naturally on & (by it’s action on S(t)) and we
define the “harmonic polynomials” in & to be those annihilated by the W-invariant
differential operators

H ={feP:P"f =0}
One can think of .77 as the solution to a set of differential equations.

Let 7P = 7 N PP, then S = @, 7 since a differential operator is W invariant if
and only if each homogeneous component in W invariant (think of about the action
of W on S(t)). Note that the action of W on & preserves 7 (for g € W, p € &,
D € 2, we have that D(g - p) = (g~' - D)(p)).

Proposition 4 If ¢ is the ideal generated by the elements of 2V of positive degree,
then & = # & ¢ and multiplication is a linear isomorphism 3¢ @ 2V = 2.

The former gives us that &7/ ¢ is isomorphic to .7 as W modules (Note: they are in
fact isomorphic to the regular representation of W). The isomorphism % @ 2V ~ &
implies

[
Zdim%ﬂtﬂ - H(l +t+ 24 ...+ ") (where [ = dim t)
p>0 i=1

which shows that dim " = 1 and J#” = 0 for p > v. This formula is deduced from
> dim 2P = (Z dim yﬂ’ﬂ’) (Z dim(2" N @P)f) :
p p p

Zdimgzprp:(1+r+t2+...)l— !

= gy and
> (I-0

I
1
: w 74 _
Ep dim(Z" N PPy = ilzll a

The primordial harmonic polynomial is IT = [[ .+ @ € 5. For U(n) this is the
Vandermonde determinant [ [, <j(xi — xj), which is transformed by the sign character
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via the action of S,,. In general, W acts like the sign character on the span of II, where
the sign character £ : W — {£1} gives the parity of the number of reflections for
each g € W. Any other polynomial whose span is preserved by the action of the sign
character vanishes on all root hyperplanes and so is divisible by 1I. Thus II generates
FC as dim 7 = 1.

We may now state the theorem we will discuss at the end of this talk

Theorem 5 (Borel) There is a degree-doubling W -equivariant ring isomorphism
c: 2/ 7 — HG/T).

Consequently, .#{») ~ H(G/T), where the subscript indicated degree doubling.

4 Invariant Differential Forms

Let G act transitively on a manifold M (think M = G/T). If 7, is the diffeomorphism
given by g € G, then a differential p-form w € QP(M) is G-invariant if 7;w = w for
all g € G. Since G acts transitively, such a form is determined by its value at one point
on M.

Lemma 6 Every de Rham cohomology class of M is represented by a G -invariant
form and the complex of G-invariant forms is preserved by the exterior derivative.

Definition 7 We define A’n* as the set of all skew-symmetric multilinear maps
w:nX...xn— R where the domain has p terms.

Proposition 8 The complex {(A’n*)X §} computes H*(M), where K is the stabilizer
of apoint o € M, g = v @ n with v the Lie algebra of K, and ¢ is defined below.

Proof Identify M = G/K and note that T,(M) is naturally identified with n. Thus, an
invariant form @ is determined by a skew-symmetrc multilinear map
W=, :nxX...xn—>R,

that is w € APn*. The invariance of @ under K implies that w is Ad(K) invariant.
Conversely, any element w € (A”n*)X determines a G invariant form & by

We.o((dT)X1, ..., (dT)X)) = WX, ..., X)),
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for Xy,...,X, € n ~ T,(M) and g € G. Thus, we may identify the G-invariant
p-forms with (A?n*)X . The exterior derivative then becomes § : (APn*)K — (APF1n*)K
given by

1 " .
0w(Xo, .., Xp) = —— > (=D™Mw((X;, Xjn, Xo, -, Kiy . Xy Xp).
Pt 1z
Where [X;, Xj], is the projection of [X;,X;] on n along v and " means the term is
omitted. By the Lemma, the complex {(A”n*)X 6} computes H*(M).

O

Example 9 Define w(X,Y,Z) = (X,[Y,Z]) then [w] # 0 € H*(G). In particular, S"
is not a Lie group for n > 3.

5 Cohomology of Flag Manifolds

We will use Morse Theory to show that the odd dimensional cohomology of G/T
vanishes. We can further use this approach to decompose the flag manifold G/T into
cells. This is called the Bruhat Decomposition. This process will be the generalization
of decomposing the §? = SU(2)/T into a 0-cell and a 2-cell.

We will find a Morse function f on G/T. For a smooth manifold M, a morse function
f : M — R is a smooth function with non-singular Hessian H, f at each critical point x.
The function we find will be the analogue of the dot product of vectors on a 2-sphere
with the vector pointing to the north pole. The span of the gradient flow lines emanating
from a critical point will provide us with a cell decomposition. For the sphere the flow
lines from the south pole give us the 2-cell and the north pole, which has no flow lines
emanating, gives us the 0-cell.

If f is a Morse function and x is critical point, let A(x) be the number of negative
eigenvalues of H, f. Then the Morse polynomial is M,(f) = 3" t’® over the critical
points x of f.

Theorem 10 For a morse function f : M — R, we have that M,(f) > ), dim H(M)Y .
Moreover, if the morse polynomial has no consecutive exponents, equality holds.

To construct a Morse function on G/T, we take the regular element Hy € t that we
chose for the positive roots. Recall that the Ad(G) centralizer of Hy is exactly Ad(T),
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so we may view G/T C g as the Ad(G) orbit of Hy (analogous to $%2 C R3). We define
f:G/T — R by
f(gT) = (Ad(g)Ho, Hy)-

For X € g, we can compute the vector field

S d
Xf(8T) = —f (exp(sX)gT) ls=0= (Ad(g)Ho, [Ho, X]),

where the last equality is given by ad invariance of the inner product. Since the centralizer
of Hy in g is exactly t as Hy is regular, it follows that the image of ad(Hy) is m. So
gT is a critical point of f if and only if (Ad(g)Hp, m) = 0. Therefore, Ad(g)Hy € t
by the orthogonal decomposition of g. It follows that Ad(g)Hy = Ad(w)H( for some
w € W and that wT', for w € W, are precisely the critical points of f.

Let Xi,...,X>, be the orthonormal basis for m we discussed earlier. Note that the
differential of 7 : G — G/T maps Ad(w) m = m isomorphically onto 7,,7(G/T), so
we may use our basis to compute the Hessian at each point wT'. If h;; is the ij entry in
H,,rf, then using our identities for the inner product

hy(wT) = X Xif WT) = (X, Adw)Hol, [Ho, X;1) = —ci(Ad(w)Ho)cj(Ho) (Xitv, Xjtv)-

Note that it follows that h;; = 0 for i # j and h;(WT) = —o;(Ad(w)Hp)o;(Hp). Since
H) is regular, then so is Ad(w)Hy and therefore h;(w) # 0 and H,,7f is non singular.
Thus, as dimm = 2, the index A(wT) is twice the number m(w) of positive roots «
such that H — a(Adw)H) (.e. w™ ! a)is again a positive root.

The Morse polynomial of f is then M,(f) = > cw 2" Since all the exponents
of My(r) are odd, Mt(f) = ZiHi(M)ti and it follows that H (M) = 0 for i odd. In
particular, >, dim H*(G/T) = |W|.

The Schubert cell X,, in the Bruhat Decomposition is the cell spanned by the flow lines
of the gradient of f emanating from wT. The dimension of this cell is then the number
of positive eigenvalues of the H,,rf, or, equivalently, twice the number of positive roots

that become negative under w™! - .

Note that W acts on G/T by w - gT = gw™!T, which gives us an action of W on
H(G/T). Since H(G/T) vanishes in odd degrees, the Lefschetz number associated to w
is equal to the trace of its action on H(G/T). If w # 1, then it has not fixed points so
the Lefshetz number is zero. If w = 1, then the Lefshetz number is simply the Euler
characteristic, which is |W|. Hence, the action is that of the regular representation, so
H(G/T) ~ R[W] as W-modules.

We can now give the proof of our final result, which we restate here.
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Theorem 11 (Borel) There is a degree-doubling W -equivariant ring isomorphism
c: 2/ 7 — HG/T).
Consequently, 7 ~ H(G/T), where the subscript indicated degree doubling.

Proof The idea is to describe H(G/T) in terms of G-invariant differential forms.
For each A € t*, we extend A to all of g by making it zero on m and define an
Ad(T)-invariant 2-form on m by

wAX,Y) = (X, YD.

We can identify w)y with an honest G-invariant differential form &) as before. The
action of W on G-invariant forms is given by its action on G/T. One can compute that
W-wy = wy.). Further, the Jacobi identity implies that dwy(X,Y,Z) = %([[X, Zlw, Y] —
(X, Y]n,Z] — (1Y, Z]n, X]) = 0. We let c(N\) = [@)] € HZ(G/T) and extend it to
degree-doubling map

c: P — HWG/T)

which preserves the W -action on both sides. Since H(G/T) is the regular representation
of W, its W-invariants are 1-dimensional and can therefore only occur in HO(G/ 7).
Since c is W-equivariant, it follows that the kernel of ¢ contains the ideal _# . The rest
of the proof deals with showing that _# is exactly the kernel of c.

To prove that kerc = _# , it suffices to show that ¢ is injective on ¢ as & = D 7 .
This is done by induction starting at the highest degree of 2 and descending down. For
degree 2v it suffices to show that c¢(II), where II is the primordial harmonic polynomial,
is non zero in H*(G/T).

For each root o; € A™, we have element X;, X;,, that form a basis for m; such that
[Xi, Xi+»] = H;im t. Recall that [X;, X;] € mis j # i + v where 1 < i < v. For each
i, write w; = wq,;. Then by definition c¢(II) = [@q, A ... A &g, ] and we can evaluate

wi A AwyX1, Xisw, . Xy, X)) =

sgn(o)w1(Xo1), Xo(140)) - W Xow), Xo@v) =
gESH,

> sgn(@)ar (Xotry, Xo(140)D) -+ 00 ([Xo(), Xoan])
gESH,

e

1
 (Qv)!

Since a;([Xo(i); Xo(i+1)]) = O unless [Xyi, Xo(iy1)] € m, the term for o is zero unless
o permutes the pairs {i,i + v}, and possibly switches the order of members. Note that
o(o) is minus one the number of switches, so it follows that

wi A AwyX1, Xisw, . Xy, X)) =
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2V
= (2 )' Z al([XU(1)7XO'(1)+y]) v Oll/([XO'(V)JXO'(U)—H/]) =
V). ves,
2,/ 21/
— Ho) - co(Hoo) = O - 9,11
)] ;SUOA( o)+ (Hyw) L ,

where 0; is the derivation of & extending A — A(H;). Since the pairing 2 ® & — R
given by (D, f) — (Df)(0) is perfect, it follows that there is a degree v differential
operator that pairs non trivially with II. Further, since an irreducible W-module can
only pair non trivially with its dual, and the self-dual character € ocurs with multiplicity
one in 2V, afforded by 0, - - - 0,, it follows that 0; - - - 9,11 # 0 and c(II) # 0.

We may now inductively assume that c : S5 — Hz"(G/ T) is injective for some k < v.
Let V = #* ! Nkerc. Note that V is preserved by W since ¢ is W-equivariant.
Since the sign character is absent from %!, there is a possible root o such that the
reflection s, along the associated hyperplane does not act like —/ on V. We can then
decompose V = V. @ V_ according to the eigenspaces of s,. If V £ 0, then V. # 0
so we may take some f € V. Now c(af) = c(a)c(f) = 0 and of is in degree k, so
af € ¢ by assumption. Let Ay, ... , hjw| be a basis for S with hy, ..., h, so-skew
and the rest s, -invariant. By Chevalley’s Theorem, we can write af = ), h;7;, with
7; W-invariant of positive degree. Since of is s, -skew by construction, the sum only
goes up to r. For i < r, the polynomial /; must vanish on ker a and therefore h; = ok
for some i} € &. Then it follows that f = Y[, hi7; € # and f is harmonic. Thus,
we must have that f = 0 and ¢ is injective on .#*~!. By induction, c is injective and
since H(G/T) vanishes in odd degree, the proof is complete.

O
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