@ CURVATURE ON A CLASS OF MANIFOLDS WITH
DIMENSION AT LEAST 5

FENGBO HANG AND PAUL C. YANG

ABSTRACT. For a smooth compact Riemannian manifold with positive Yam-
abe invariant, positive Q curvature and dimension at least 5, we prove the
existence of a conformal metric with constant @ curvature. Our approach is
based on the study of extremal problem for a new functional involving the
Paneitz operator.

1. INTRODUCTION

Recall the definition of the fourth order Paneitz operator and its associated @)
curvature [B, P]: when (M,g) is a smooth compact n dimensional Riemannian
manifold with n # 5, the @ curvature is given by

1 n3 —4n? 4+ 16n — 16

2 2 2
= ——AR— — |R|" + R 1.1
@ 2(n—1) (n—2)2‘ | 8(71—1)2(71—2)2 (1)
- AT 24P+ gﬁ.
Here R is the scalar curvature, Rc is the Ricci tensor and
R 1
= A= —— - . 1.2
= gy A= g B o) (12)
The Paneitz operator is given by
Py (1.3)
4 n? —4n+8 n—4
= Ao+ ——di ei) — s di —
<,0+n_2 iv(Re (Vo,e;) ;) ICECE) iv(RVyp) + 5 Qe
—4
= A%p+div(4A (Ve e)e; — (n—2) JVp) + nTng
Here eq,--- ,e, is a local orthonormal frame with respect to g. Under conformal
change of the metric, the operator satisfies
_n+4
P 4 p=p "5P(pp). (1.4)

prig
This is similar to the conformal Laplacian operator, which appears naturally when
considering transformation law of the scalar curvature under conformal change of
metric ([LP]). As a consequence we have

P 4 p-pdu s = Py(pp)- pdu,. (1.5)
P g P g

Here p, is the measure associated with metric g.
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In dimension four, the Paneitz operator is given by
Py = A%p+2div (Re(V,e;)e;) — % div (RVy), (1.6)
and its conformal covariance property takes the following form
Pougp=e " Pp. (1.7)

Following the basic work [CGY] in dimension four on the fourth order @ curvature
equation, there has been several studies on this equation in dimension three by
[HY1, XY, YZ], and in dimensions greater than four by [DHL, DM, HeR1, HeR2,
HuR, QR1, QR2].

While it is important to determine conditions under which the Paneitz operator
is positive, we discover that it is sufficient for our purpose in this article to deter-
mine when its Green’s function is positive. This is a property that is conformally
invariant: observe that by (1.4),

ker Py =0 kerP 4 =0, (1.8)
P n—4 g
and under this assumption, the Green’s functions Gp satisfy the transformation
law
-1 -1
bt @) =p @) " p(e)  Grg(pq). (1.9)
g
In analogy with the preliminary study of the classical Yamabe problem ([LP]),
the first question would be whether one can find a conformal invariant condition for
the existence of a conformal metric with positive  curvature. In the case Yamabe
invariant Y (g) > 0, the existence of a conformal metric with positive @ curvature
is equivalent to the requirements that ker P = 0 and the Green’s function Gp > 0
([HY4]).
The basic question of interest is to find constant () curvature metric in a con-
formal class, in the same spirit as Yamabe problem. The main aim of the present
article is to prove the following

Theorem 1.1. Let (M, g) be a smooth compact n dimensional Riemannian man-
ifold with n > 5, Y (g) > 0, Q@ > 0 and not identically zero, then ker P = 0, the
Green’s function of P is positive and there exists a conformal metric g with Q = 1.

The fundamental difficulty of the lack of maximum principle in this fourth or-
der equation has recently been overcome by the work in [GM]. Following this
development, similar results in dimension 3 were proved in [HY3, HY4]. Dimen-
sion 4 case does not suffer from this difficulty and was treated in many articles
like [CY, DM, FR] and so on. For locally conformally flat manifold with positive
Yamabe invariant and Poincare exponent less than 254 (see [SY]), Theorem 1.1
was proved in [QR2] by apriori estimates and connecting the equation to Yamabe
equation through a path of integral equations. Under the slightly more stringent
conditions R > 0 and @ > 0, Theorem 1.1 as well as the positivity of mass of the
4th order Paneitz operator was proved in [GM] through the study of a non-local
flow. Here we will derive Theorem 1.1 by maximizing a functional (see (1.16) and

(2.2)) involving the Paneitz operator (see Theorem 1.3 for more details).
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For u,v € C* (M), we denote the quadratic form associated with P as

E (u,v) (1.10)
= / Pu - vdu
M
4 n? —4n+8
= /M (A’U,A’U — e 2RC (Vu, V’U) + mRVu . VU
+n;4qu) du
—4
= / (AuAv —4A(Vu,Vu)+ (n—2) JVu- Vo + n2qu> du,
M
and
E (u) = E (u,u). (1.11)

By the integration by parts formula in (1.10) we know FE (u,v) also makes sense for
u,v € H? (M).

To find the metric g in Theorem 1.1, we write g = pﬁg, then the equation
@ = 1 becomes

Pyp = pr=i, peC™(M),p>0. (1.12)

Let
E (u)

Ya(g) = A
1) = o el 2,

: (1.13)

then Y} (Tﬁg) = Y4 (g) for any positive smooth function 7. Hence Yy (g) is a

conformal invariant. If (M, g) is not locally conformally flat and n > 8, or (M, g)
is locally conformally flat with Y (g) > 0, ker P = 0 and the Green’s function of
P, Gp >0, 0orn =5,6,7 with Y (g9) > 0, ker P = 0 and Gp > 0, one can show
Y4 (g) is achieved (see [ER, R, GM]), but in general it is difficult to know whether
the minimizer is positive. Under the additional assumption Yy (¢) > 0 and Gp > 0,
it was observed in [R] that the minimizer can not change sign. Combine with the
positivity criterion of Green’s function in [HY4], we arrive at

Theorem 1.2. Let (M, g) be a smooth compact n dimensional Riemannian mani-
fold with n >5,Y (g) > 0,Y4(g9) > 0,Q > 0 and not identically zero, then

(1) Ya(g) < Y4 (S™), equality holds if and only if (M,g) is conformal diffeo-
morphic to the standard sphere.

(2) Yi(g) is always achieved. Any minimizer must be smooth and can not
change sign. In particular we can find a constant QQ curvature metric in
the conformal class.

(3) If (M, g) is not conformal diffeomorphic to the standard sphere, then the
set of all minimizers u for Yy (g), after normalizing with ||u||L% =1, is
compact in C* topology.

In general it is not known whether Y (g) > 0,Q > 0 and not identically zero

would imply Yy (g) > 0. To get around this difficulty when proving Theorem 1.1
we note that by [HY4, Proposition 1.1] if Y (¢g) > 0, @ > 0 and not identically zero
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then ker P = 0, and the Green’s function of P, Gp > 0. Hence we can define an
integral operator (the inverse of P) as

Grf(p) = /M Gr (p.0) f (a)du (q) (1.14)

If we denote f = p%, then equation (1.12) becomes
2 n—
Gpf =35, [eC®(M).f>0. (1.15)
Let
Gpf - fdu
Oilg) = sp JuCrfldn
2 IF1I 20
feLn+1(M)\{0} Ln+d
B “ Jarsenr Ge (0,0) £ (p) £ (q) dps () dpa (q)
s 1712 2
feLn+T(M)\{0} L7+

It follows from the classical Hardy-Littlewood-Sobolev inequality ([S]) that O4 (g)
is always finite. Moreover it follows from (1.9) that for positive smooth function p,

(1.16)

Oy (pﬁg> =04 (g) i.e. O4(g) is a conformal invariant. If ©4 (g) is achieved by a

maximizer f, using the fact Gp > 0, we easily deduce that f can not change sign.
©4 (g) has a nice invariant description (see Lemma 2.1):

2 Sy Qi

sup e [g] (1.17)

—12
HQHL%(M,@)
Here [g] denotes the conformal class of g i.e.

[9] = {p?9:p e C*(M),p>0}. (1.18)
Theorem 1.3. Assume (M, g) is a smooth compact n dimensional Riemannian

manifold with n > 5, Y (g) > 0, Q@ > 0 and not identically zero, then

(1) B4(g) > ©4(S™), here S™ has the standard metric. O4(g) = O4(S™) if
and only if (M, g) is conformal diffeornorphic to the standard sphere.
(2) B4(g) is always achieved. Any mazimizer f must be smooth and can not

change sign. Say f > 0, then after scaling we have Gpf = ﬁf% i.e.

4 =

fr¥ig
(3) If (M,g) is not conformal diffeomorphic to the standard sphere, then the
set of all mazimizers f for ©4(g), after normalizing with ||f||L 2, = 1, is

compact in C*° topology.

It is worthwhile to note the similarity of Theorem 1.2 and 1.3 to classical Yamabe
problem ([LP]) and the integral equation considered in [HWY1, HWY2]. Indeed,
the formulation of our approach follows that of [HWY2]. A similar functional
for the conformal Laplacian operator, O2 (see (5.19)) is also considered in [DZ].
In section 2 below we will first give other expressions for O (g) and discuss its
relation with Yy (g), then we will derive an almost sharp Sobolev inequality related
to extremal problem of ©4 (¢) and find the asymptotic expansion formula for the
Green’s function of Paneitz operator. In section 3 we will apply the concentration
compactness principle to deduce a criterion for the existence of maximizers of G4 (g).
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In section 4 we will show maximizers always exist and they are smooth. In particular
Theorem 1.3 follows. At last in section 5 we will prove Theorem 1.2. Moreover we
will show the approach to Theorem 1.3 gives another way to find constant scalar
curvature metrics in a conformal class.

The authors would like to thank Gursky and Malchiodi for making their work
available.

2. SOME PREPARATIONS

2.1. The conformal invariants Y} (g),Y," (g) and ©4 (g). Throughout this sub-
section we will assume (M, g) is a smooth compact n dimensional Riemannian
manifold with n > 5. Recall

E Pu-ud
Yilg)= i W g M 2.1)
w2 AONO) [[uf? 2, wEC= OO} [l 2,

If in addition Y (g) > 0, @ > 0 and not identically zero, then

Sy Gpf - fdu

O4(9) = _Sup W (2.2)
feLn+a (M)\{0} =
_ sup fM Pu - udp
Mo
wew 1 (anpqoy 1Pl 2

The second equality in (2.2) is very useful for us later on because the expression
is local. Tt will facilitate our calculations in estimating ©4 (g). ©4(g) also has an
invariant description.

Lemma 2.1. If n >5,Y (g) > 0,Q > 0 and not identically zero, then

2 (~Qd~
sup —fM a ]
n—4

O4(9) = €lgl p- (2.3)

112
4], 2
Ln+3 (M,df)
Here [g] is the conformal class of Riemannian metrics associated with g.

Proof. Note that

2 Qdi - _
sup IQMQ a 1 g € [g]
n—4 ~
Rl s
L7 (M, dfi)
Sy Pu - udp -
supq = r——s——:u € C* (M), u >0
|Pul® 2
L+l

IN

O4(9) -
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On the other hand, by the positivity of Gp we have

04 (9)
Gpf- fd n
— sup { ORI oy g2 0
1P 2,
Gpf - fdu -
= s { ORI o oy g2 0
1P =,
Jag P udp oo
= sup{ “r——s——:uc C* (M)\{0},Pu>0
1Pulf
Pu - ud
< sup M:ueC“(M),u>O
1Pull} 2z,
2 Qdii
= n_4sup ~f2M 1 g €[]
] -
In between we have used the fact for smooth function u, Pu > 0 and u not identi-
cally zero implies u > 0. a

To better understand the relation between Yy (¢g) and O4 (g), we define

Pu - ud
Y (9) = inf M:ueC“(M),uM) (2.4)
[l 2,
n—4, @dﬁ ~
- 2 lnf{ ,\,fM n—4 :g € [g]} N
(n(M)) =
Clearly we have
Yi(9) <Y (9). (2.5)
Lemma 2.2. Ifn>5,Y (g) >0, Q >0 and not identically zero, then
Y, (9)©4(9) < 1. (2.6)

Moreover if Y, (g) is achieved, then Y, (g) ©4 (g) = 1 and ©4 (g) must be achieved
too.

Proof. Tt is clear that ©4 (g) > 0. To prove the inequality we only need to deal
with the case Y, (g) > 0. Under this assumption for u € C>™ (M), u > 0, we have
Jys Pu-udp > 0. By Holder’s inequality we have

(S Pu- “dﬂ)Q

<1.
[l 2o [PulP 2,
Ln-1 Lntd
It follows that
Pu - ud
i (g) Do L

2
2n
[ nta

[Pl
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By the proof of Lemma 2.1 we have

Pv-vd
WZWGCW(M)7U>O s
2n
L

n+4

©4(9) = sup

hence Y," (9) ©4 (g) < 1.
If Y," (g) is achieved, say at u € C>° (M), u > 0, then

n+4
Py = kun=1

for some constant k. Since Gp > 0, we see k > 0. Hence

Sy Pu-udp 1 -8 1
04(9) > g =~ ul| 5" =~ >04(g).
1Pl 2y % Y (g)
Hence all the inequalities are equalities. ©4(g) = Y+(g) and is achieved at u
4
too. d

Remark 2.1. Assume Y, (g)©4(g) = 1. Later we will show ©4(g) is always
achieved by positive smooth functions i.e.

_ fMpr-fdu: Sy Pv-vdp

©4(9) 2 2 ’
P 2 PO 2
here f € C>*°(M),f >0, v=Gpf. Hencev € C>* (M) ,v >0 and
ntd

Pv = kyn—1

for some constant k. Using Gp > 0 we see k > 0. On the other hand

Jos Pv-vdp __8_
@4g:M :Iﬂilv n;él.
(0) = pe = ol
[ nt4
Hence f

8 Pv-vdu
V() = sl = Pl

Lr-d [V 2n

=

In another word, positive mazimizers for ©4 (g) are also minimizers for Y, (g).

2.2. The sphere S™. On S™ (n > 5) with standard metric we have
n(n+2)(n—2)

= 2.
Q 2 (27)
and )
Pu= A% — %Au 4+ (”16’ Am=4), (2.8)

Let N be the north pole and 7wy : S™\ {N} — R™ be the stereographic projection,
use r = 7wy as the coordinate, then the Green’s function of P with pole at N is
given by

7 1 9 =
Grn = n(n—2)(n—4)2" 3w, (|$| + 1) ’ (2:9)

Here w,, is the volume of the unit ball in R" i.e.
TF

NEESIE (2.10)

Wnp =
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I" is the Gamma function given by

oo
I'(a) = / e "t tdt  for a > 0. (2.11)
0
From [CLO, Li] we know
1AU||Z 2 )
Y (S") = inf —_— 2.12
1(S™) ungol(rﬁan)\ T ( )
L7—1(Rm)
||AU1||i2(Rn)
A,
 n(n+2)(n—2)(n—4)2ix 5
B 16 ntly
(%)
= (5")
Here
u1 () (|m| +1) (2.13)
For A > 0, let
uy (z) = A" , 2.14
then
A%uy =n(n+2)(n—2) (n74)u;’4. (2.15)
On the other hand it follows from [CLO, Li] that
©4(S™) (2.16)
1 fRn <R ‘z(i?)l.lfnyzl dl'dy
= sup
2n(n —2) (n —4) wn fer2@)\ {0} Kl L2
_ Jon (Au)?d
o oo n 2
ueoz (RM)\{0} [|A “”Lm(w)
) | S s o5y dwdy
(=2 -, ||fl||Ln+4 (R™)
- 1
Y, (Sn)'
Here
T
fi(z) = (|:1:|2 + 1) . (2.17)
For A > 0, let
HTH
_ngs A
) [ A , 2.18
falz) = fl( > <|x|2+)\2> ( )
then

APuy =n(n+2)(n—2)(n—4)fy (2.19)
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2.3. Almost sharp Sobolev inequalities. Note by (2.16) for v € C° (R"),

/n (D) da < 04 (5™ || A% (2.20)

anile (]Rn) :
The aim of this subsection is to derive the following almost sharp Sobolev inequality,
which will be useful when applying the concentration compactness principle to
extremal problem of ©,4 (g) in section 3.

Lemma 2.3. Assume M is a smooth compact Riemannian manifold with dimen-
sionn > 5. Then for any € > 0, we have

AUl (ar) < (©4 (S™) + ) [ Pull? 2, C (&) ull? (2.21)

LnFa ()
for all u € Wi (M).
Before proving the inequality, we recall some basic facts. The Sobolev embedding
theorem tells us
W (M) c Wz (M) c W22 (M) c Whas (M) C Lt (M), (2.22)

Moreover, the embedding becomes compact if we are willing to lower the integrable
power a little bit, for example

Whats (M) c W39 (M) (2.23)

2n
n+2°

is a compact embedding for any 1 < g < These facts can be used to get the

interpolation inequalities.
We will frequently use the following fact: for 1 < p < co and a,b >0, € > 0,

(a+b)" < (1+¢e)a? +C (g,p)b". (2.24)
Indeed we can choose

C (g,p) :sgp((t+1)p7(1+€)tp) < oo

By standard elliptic estimates we have for every u € Wt (M),

) (2.25)

el oz <€ (1Pl 2,

ntd —
and

‘n+4 T

(- <cmA%Hzn+numﬂ) (2.26)

[ n+d
On the other hand, the usual compactness argument tells us for € > 0,

lull o2 <ellullaze, +C(e) (2.27)
Hence
lull, o 2, < € 1Pullzn, +C (€ ], (2.28)
and
lull oy <& [ A%] 20 +C (&)l 2, - (2.29)
To prove the Lemma 2.3 we only need to show for € > 0,
IIAUII"“ < (146)04(S™)743 ||A2u||"+24" C () |lu ”tf‘” : (2.30)
+

In fact, once (2.30) is known we have

||Au||L2 < (1 +6) £y @4 Sn HAQU‘ on_ (6) ||u|| 2n_ .

Lntd [ nta
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In another way it is

[l s < (1420 04 (5™ [|A%] 2s, +C (1) Jull 2z,
for any €; > 0. Hence
([ Aul| 2
< (L+61)04 (8™ || Pul +Clull 2 2n, +C (e1) llull | 2

77+4

< (1+201)04(5") [Pull| 20, +C(e1)

Taking square on both sides we get

+

2 3 n 2 2
1AulZ < (14260)° 04 (™) [ Pull® , +C (o) [l 2,

and Lemma 2.3 follows.

For any € > 0, we can find a § > 0 such that if u is supported in By (p), then

| Aull; "*4 <(14¢e)04(S™) i HA2 "*;‘f +C (e) Hu "*4 (2.31)
Indeed, let xy,---,2, be the normal coordinate at p, then g = g;jdx;dv; with
gij (p) = 0;; and the Euclidean metric gy = 0;;dz;dz;. We have

|Au — Agu| < &1 |D?u| + C | Dyl
and
|A%u — Adu| < ey [D*u| + C (|Du| + | D*u| + | Dul)
if 6 is small enough. Then
[Aull,

< [[Aoulle +e1 || D?ul| . + C | Dull

S ||AOUHL2 + +051 HD4UH 271 + C ||u|| 3 2n

< ( +51)@4 Sn HA UHL 2 + Ceq HD4uHLn2]:4 + CHUH 8,722

< (1+e1)04(5")2 ||A2u|| o+ Cer || D*ul| | 2+ Cllull o, 20,

< (14 Ce1)B4(S™)2 HA2u” 20 4+ C(g1) ||u|| 2 -

[ n+4

Hence

||Au||"+4 (1 +C’sl)n+4+1 ©4(S™) ﬂ+4 ||A2u||"+24$ +C (e1) Hu||" -

(2.31) follows.
To continue, following [DHL] we choose 1y, - ,n,, € C*(

M) such that 0 <

n; < 1, n¢ € O (M) for any o > 0, n, is supported in B; (p;) for some p; and
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> m; = 1. We have

% 2n_
A7 = H|Aun+4 »
L n
m 2
< Z i [Au[ "+
’ L=
=1
m n+td 2
— 2n
Dl N
i=1
m ntd %
< > [|a(mF w) |+ c4pul+ |

i=1

i ntd nQJ:sz 2n
< (1+sl);HA(mzn W[+ C el
9 n 5 nt4 2 2n
< (1+€1) Oy (Sn)n+4 Z ’A (,r]iQn U) o —|—O(51) ”u 77,-;4 .
P n+a wnta
m _2n
3 nY\ o ||mHe 7124114
< (14e1)704(8")™F Y 0™ A%l on +C (1) ull 7 2.
Ln wnta

i=1

n 2n_ 2n_
e eu (M A%, + O e P,

Ln2r4 W n+d
4 n\ mia 2 n2r4 n2$4

< (I+4e1)" 04 (S ||A%]| "5, +C (1) [Jull ™,
Lnt+d Ln+d

This proves (2.30).

2.4. Expansion of Green’s function of Paneitz operator. In [LP], the expan-
sion formula of Green’s function of conformal Laplacian operator plays important
role. Here we determine the expansion formulas for Green’s function of Paneitz
operator. These formulas will be crucial in the choice of test function in section 4.

We use the same strategy as [LP, section 6], but since there are more lower
order terms, some efforts are needed in doing the algebra. Let us introduce some
notations. For m € Z, let

P, = {homogeneous degree m polynomials on R"}, (2.32)

and
H,», = {harmonic degree m homogeneous polynomials} . (2.33)

Let f be a function defined on a neighborhood of 0 except at 0, namely U\ {0},
m be nonnegative integer, and § € R. Then we write f = O™ (7“9) as r — 0 if

feC™U\{0}) and 0;,...;, f (z) = O (') asr — 0 (2.34)

for k=0,1,--- ,m. Here r = |z|.

Another useful notation is as follows. Let f be a function defined on a neighbor-
hood of 0, namely U, m and k be nonnegative integers. Then we write f = O,, (rk)
if feC™(U)and f(z)=0 (r*) asr — 0.

Let M be a smooth compact manifold with a conformal class of Riemannian
metrics. For a point p € M, choose a conformal normal coordinate at p, namely
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x1, - ,Tn. Let the metric g = g;jdz;dzx;. Then we have([LP])

J) = 0, Ji(p)=0, AJ(p):_m, (2.35)
Aij(p) = 0, Ayr(p)zizjor =0, (2.36)
and

Aiji (p) miwjzra = e > (Wi (p) miz;)* — 5 (P @iz (2.37)

kl

Proposition 2.1. Assumen > 5 and kerP = 0. Then under the conformal normal
coordinate at p, we have the following statements:

o If the original conformal class is conformal flat on a neighborhood of p, then
we may choose g such that it is flat near p, and

2 (2-n)(4—n)w,Gpy =7""4+ 04 (1). (2.38)
o Ifn is odd, then

2n (2 —n) (4 —-n)w,Gp, =r*"" (1 + i wi) +04(1). (2.39)

Here v; € P;.
o Ifn is even and larger than or equal to 8, then
2n(2—n)(4—n)w,Gpyp (2.40)
= i <1 + sz> +r* " logr Z WL+t log? r Z 0
i=4 i=n—4 i=n—2

+rt T log? - + 04 (1)

Here 1,45, 47,47 € Py
e Ifn=20, then

96weGpy = 172149y + 5+ 1) +7 2 logr (V) + ¢ +v5)  (2.41)
+r72log® -y + 04 (1).
Here 1, V%, € P;.
In another way, we have
o [fn=>5,6,7 or M is conformal flat near p, then
2n(2—n)(4—n)w,Gpp=7"+A+0W (r). (2.42)
Here A is a constant.

o [fn =238, then

1774 2
384wsGp, =r 1 — % logr +OW (1). (2.43)

o Ifn>9, then
2 (2 —n)(4—n)w,Gpp = 14" 47", + OW (r*=my, (2.44)
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here ¢, € Py and in fact

Uy (2.45)
= : 25w, 2w W, W, 2
- m-2) 5%:( ikjt (p) Ti;) —m%;( ikt () @i + Wik (p) i)
N WP r? 4

) Z (Wit (p) i + Witk (p) 1)
jkl

(n? + 6n — 32) [W (p)|2T2
6n(n+4)(n—1)

3(n+2)(ntd) | 48(n—06) |9(n+4

—2(n—6) Jij (p) xiz; —

 (n—4) (30> — 20— 64) W (p)[?
576n (n+2)(n—1)(n—6)(n—8)

The terms in the square brackets are harmonic polynomials.

+rt

To derive these expansions, we need some algebraic preparations. Note that P,
has the following decomposition (see [S])

[%]
Pm = (TQkafmc) . (246)
k=0
Under this decomposition, we have

(r*A)]|

Here A denotes the Laplacian operator with respect to the Euclidean metric.
For o € R, let

= 2k (2m — 2k + n — 2) fork:0,1,2,~-~,[7;]. (2.47)

2R H o ok,

Ay =1?A+ 2070, +a(a+n—2), (2.48)
and
B, = %Aa =2rd, + 2a+n—2), (2.49)
then
A(rtg) = 17 Aap,
Ao (rPe) = P Aaipe,
Aa (plogr) = (Aap)logr + Bap,
B, (rP¢) = 1°Baisp,
B, (plogr) = (Bap)logr+ 2¢p.
In addition,
Aolp, = mA+am+a+n-2), (2.50)
Balp, = 2m+2a+n-2, (2.51)
and
Aalyory, . = (@+2k)(2m =2k +a+n—2) (2.52)
for k=0,1,2,---, [%] In particular,
(Ao—nAa—n)l,onng,, (2.53)

= (2m—2k)2m—2k+2)2k+2—n)(2k+4—n),
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for k=0,1,2,---, [2].
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Lemma 2.4. For any real numbers o and B, and any nonnegative integer k, we

have
B, (<p log’c r) =
Aq (90 log" r) =

and

By -logh r + 2kologh ' r,

Aqp -loghr 4+ kB -log" ' r + k (k — 1) plogh™

AL Ap (ap loglc 7")

= A Agp - loghr + k (AaBsp + BaAgp)logh ' r

1

+k(k—1) (Ao + Agp + BoBap) logh 2 r
+k(k—1) (k —2) (Baw + Bgp) logh 3 r
+k(k—1)(k—2)(k—3)plog"*r.

Proof. Observe

0 0?
Y Bop=2p, ——B,o=0.
O L4 4 Oa? 4

Now since B, (rﬁgp) = rﬁBaHggo, we know

B, (cp logk r) =

ak

87,8’“ B, (rﬂgo)

B=0

P Basoe)
—_— 7° Boy g
6,6”“ 0 +8

1

= Bayp-loghr+ 2kploghtr,

2

T,

here we have used the Newton-Lebniz formula. For the second equation, we start

with

Oa

Define an operator

2 3

0 0 0
7= Ao = Bap, w540 =20, —=5Aap=0,

Oa? oo’
ak

87616 Ao (Tﬁ <P)

B=0

Al
—_— P Agipp
8ﬂk 0 +8

Anp -loghr 4+ kB -log" ' r + k (k — 1) plogh™

Mgp =4div(A(Vgp,e)e) +(2—n)div(JVyep).

The Paneitz operator can be written as

n—4
PQCP:A§SD+M9<P+ 5 Q.

2

T.

(2.54)

(2.55)
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For any o € R, define
Nogp = r*Myp+8ar’A(ro,,Vyp) +2(2 —n)ar] -rd.p (2.56)
+4ar? div (A (roy, e;) e;) o + (2 —n)ar? -rd.J - ¢
+da(a—2) A(rdp,r0,) o+ (2 —n)a(a+n—2)r*Jp,
then
My (r*¢) = " Na,g¢p. (2.57)
At first, we claim that
Py(r*™") =2n(2—n) (4 —n)w,é, + fr ", (2.58)
with f = O (7“4).

Indeed, because 7"

is radial, we have
A (r'7") =202 = n) (4 = n) wndy. (2.59)
On the other hand,
My (r*") = 17" Ny_p41.
In view of the facts
div (A (r0r, e;) €;)
= O (w:4i;97%)
= g7A;+ %’akAijgjk + O (1"2)
J + ;A (p) 6k + Oco (1?)
= 23 (p) + Ocs (r?)
= O (1"2) ,
and
A(rd,,rdy) = Ajjziz; = Ay (p) izjazk + Oso (') = Oss (r?),

we see Ny_p gl € On (7’4)7 (2.58) follows.
To continue, first we introduce a notation. For any o € R, let

Ang =Ny + 2010, + a(a+n—2), (2.60)
then
Dg(r%) = 1972 Aa 40,
Aoy (7"690) = P Aaip.49;
Aag(plogr) = Aagp-logr+ Bagp.
Note that
Aqg=Aa+12(Ag — A) = Ay +7%0; (97 — b45) 0;) - (2.61)
Computation shows
Py (r*¢) = 1 (A 240 + Kagp) (2.62)
where
Ko (2.63)
= Aa— (7"2 (Ag—A) 90) +r? (Ag = A) A gp + Na g + - 47’4Q90~
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We easily see that for any nonnegative integer k, ¢ = O (r*) implies Ko =

One (r72).
We also introduce the following two operators,
KWy % Ko (2.64)
= Baa(r’(Ay—A)p)+7*(A;—A)B
+872A (r0,, V) +2(2 —n)r’J - r0.¢p
+4r? div (A (r0y, e5) e)) o + (2 —n)r? - 70, J -
+8(a—1)A(rd,,70,) p + (2 —n) (2a +n — 2) 7 ¢,
and
K®y 9 g (2.65)
o ot
= 4 (A, —A)o+8A(rd.,rd)p+2(2—n)r*Je
= K(2)90

because it is independent of a. Clearly, ¢ = O (rk) for some nonnegative integer
would imply Kél)go, K® g =04 (rk+2). In addition, they satisfy the following

( ) = TﬁKO&B‘Pv
Ko (plogr) = Kap-logr+ KMo,
K (%) = KL
K(l) (plogr) = Kl(xl)go-logr—l—K&Q)(p,
K(Q) ( ) = PPK®y,
D (plogr) = K@y logr.

More generally, we have

Lemma 2.5. For any nonnegative integer k, we have

Kél) (<p logk 7‘) = K&l)go . logk r+ kK(2)<p . log’“1 T,
k(k—1
o (g@loglC 7‘) = Kag)-logkr+kK((yl)gp~logk_1r+ %K(z)wdogk_2 ®.

This follows from the same proof of Lemma 2.4.
Case 2.1. The dimension n is odd.
In this case, we claim that we may find a ¢ = Y., ¢,, with ¢; € P; such that
AsenAamnth + Kant + f = O (1) (2.66)
Once this has been done, then we have
r " (Ao Ay + Ky pb+ f) € CY for any 0 < a < 1.
If the domain is small enough, then we may find a 1 € C*® such that
P_ﬂ =—r " (A Ay v+ Ky + f).

Then
Py(r* " (1+9) +9) =2n (2 —n) (4 — n) wpd,. (2.67)
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Hence the Green’s function satisfies

2n(2—n) (4 —n)w,Gp=1*"(1+ ) + 9+ Oux (1). (2.68)
To define ¢y, -+ ,4,,, we let ¢, = 0,795 = 0 and 15 = 0. One easily see
f3 = As Ay n (V1 + Uy +13) + Kan (Y1 + 00 +903) +f (2.69)
f =0« (r4) .

Assume we have found ¥y, 15, - ¥ for 3 <k <n — 1, such that ¢, € P; and

k k
Ji=Az-nAsn (Z m) + Kiy (Z wi> +f = O (1),

i=1 i=1
then we write fr = ¢5,1 + O (’I“k+2) s Opa1 € Pry1. Since

Az nAsnli2ipg,
= QK1) —2)) (2(k+1) =2 +2) (2 +2—n) (2 +4—n) £0
for j =0,1,2, -+, [®], As_, A4_y, is invertible on Pyy1. We may find a unique

Y41 € Pry1, such that
AQ—nA4—nwk+1 + ¢k+1 =0. (270)
Then

k+1 k+1
fern = Ay nAiy, <Z m) + Kin (Z wi> +f
=1

i=1
= fo+AsnAs g + Koty = O (FF2).
This finishes the induction.

Case 2.2. n is even and larger than or equal to 8.

In this case, we first set ¢; = 0,15 = 0 and 13 = 0. Since As_, A4_,, is invertible
on Py, for 0 < k < n — 5, by the same induction procedure as Case 2.1, we can find
Yy, ¥, _s such that ¢, € P; and

n—>5 n—>5
fn—5 = A2—nA4—n (Z ¢z> + K4—n (Z ¢z> + f = Ooo (rn—4) .

i=1 i=1
To continue, we write
Jn—s5=0¢p_4+O0x (7"”73) s Pp—a € Pn—u.
Let %107)4 = aﬁfLL + 52024 log r with a£07)4, 551034 € P4, then
Az nAs-ntP)y

= AsnAsna?y + (Ao Ban + B Aay) B4 + AsAa_ B, - logr.

Let 5207)4 € r"~%Hy, then since
(A2-nBa—pn + Bo—nAs—n)|n-ag, = —2(n —2) (n —4) #0,

and

As—nAa—nliongy, , o,
= 2(n—4)—2k)(2(n—4)—2k+2)(2k+2—n) (2k+4—n) £0,
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for 0 <k < 5 — 3, we may find a a(ol4 € Pp—4 and a 55107)4 € r"~%Hy such that
A2 nA4 n¢ 4+¢n 4 =Y
This implies
fn74
n—>5 n—>5
= Ay nAiy (Z i+ wﬁ?h) + Ky (Z i+ wﬁ?h) +f
i=1 i=1
= fn 5 +A2 nA4 ndj —4 +K4 nqp(())
= O (7" ) + Oso (7" )logr.
Next we write

faca=¢,_ 5+ Ou (r" ) logr + O (1" 2),  ¢,_3 € Py_s.

Again by similar arguments, we can find a wflozs € Pn_3 +r""*H; logr such that

A2 nA4 nd} 3+¢n 3_0

Then
fn—S
n—>5
= A nAin (Zw + P+ s ) + Kion (Zwﬁw‘%w ) f
i=1
= As p Ay 0Py + Ky o
fn—4 + A2_n 4—n1/)n_3 + 4—n¢n_3
= O (7'”*2) logr + O (r"*Q) .
We write

fn—3 = <Z5£Ll,)2 logr + Oco (r"72) + Oug (r" 1) logr.

Similar as before, we may find a
¢£Ll—)2 € Pn_zlogr+ (r"*Ho + r”*4H2) log? r

such that
A Ay + 0y logr € Py

Indeed, for 1/}&117)2 = agzllQ logr + 5;72 log? r, with 04217)2,@22 € Pp—_2, we have
Ag- st
- (A2 wAsnaDy +2(Ay_ By + Bo_nAs_p) B ) log 7
—|—A2,nA4,n65172 . log2 r+ Pr_a.
Let 8, € r"=2H, + r"~4H,. Since

2 (AQ—TLB4—7L + BQ—TLA4—TL) rm=2H, T dn (n - 2) 7& Oa
2 (A27nB47n + B27nA4fn)|rnf4H2 = —4n (n + 2) 7& 0,

and

As A nloin, .
= (2n-2)—-2k)(2(Mn—2)—2k+2)(2k+2—n)(2k+4—n) £0
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for 0 <k < 5 — 3, we may find the above needed 1/17(117)2. Then
1
e
n—>»5
= A2—7LA4—TL (Z 1/11 + ’(rbgzolzl + 1/}(0)3 + 1/} )

i=1
n—>5
+Kq, (Z i+, + 905 + 9l ) +f
i=1
= fao_z+ A27nA4fn¢£22 + K4fn¢51132
= O (7’”*2) 4+ O (r"il) logr 4+ Ou (r™) log? r.
The next step is to remove the P,_5 term in Ou (r"72), then the P,_;logr term

in O (r"~!) logr and so on, until we reach O (r"*1) log?r + Ou (r"*1) logr +
Ouo (r"*1) + Ouo (r"+2) log® r. That is, we find

w(o) € Pu_s+r""*Hylogr,

n-4
%(1023 € Pu_s+r""*Hilogr,
¢£ll_)2 € Pa_slogr + (r"?Ho +r""*Hy) logr,
%0)2 € Pp_o+ (r”*QHO + r"74H2) logr,
oM e Pu_ilogr+ (r" My + 1" M) log?
1/}51021 € Pp_1+ (r”_2H1 + 7""_47-(3) log T,
wﬁf) e P, log2 T+ (7‘"727'(2 + r"74H4) log3 T,
o) e Pologr+ (r" Mo + 1" Hy) log®
and
WO € Py + (1" My + 7" Hy) log
such that
fo = AsnAi, (ZS P, + Z ¥ + Z pit + wﬁ?)
i=1 i=n—4 i=n—2
+Kyp <Z¢ + Z v + Z it + wﬁ?) +f
i=n—4 i=n—2

= O (r”“) log?r + Ouo (r”“) logr + Ose (T"“) + O (r"“) log® r.

Clearly =" f,, € C for any 0 < o < 1. This implies locally we may find a P € CH
such that Py = —r~" f,,. Let

)= Zw + Z P + Z P + @,

i=n—4 it=n—2

then
Py (r' ™" (14 4) +9) = 2n.(2 = n) (4 — n) wnby
on a small disk. Hence

2n(2—n) (4 —n)w,Gp=1""(1+9) + 9+ Oux (1).



20 FENGBO HANG AND PAUL C. YANG

Case 2.3. n =6.
This case can be done similarly as Case 2.2. That is, we can find
O e pi+ (r*Ho + r*Hz) log,
éo) € Ps+ (7"4H1 + T2H3) logr,
¢é1) € Pglogr+ (7"47'(2 + 7"27'(4) log? r,
and
1[)530) € Ps + (T4H2 + T2H4) log r,
such that
e
= Acads (087 + 0 + 90+ 0l0) + Koo (v + 0l + 6 +0l) + 1
= O (r7) logr + O (7"7) + Oso (7"8) log2 T,
The remaining argument can be done as before.

Case 2.4. M 1is conformal flat near p.

In this case, we may take the metric g such that it is flat near p. This implies
P, = A2, and hence

Py (r*™") =2n(2 — n) (4 — n) w,dy.
It follows that
2n(2—n) (4 —n)w,Gpp =14+ 0u (1).

Finally, to get the leading terms in the expansion for n > 8, by computation we
have f3 = f = ¢, + Ouo (TS), with ¢, € P4 and

¢, (2.71)

- T T o9 Z (Wikjt (p) wiw5)? + 2 (n — 4) (n — 6) 72 T35 (p) wiw;
%l

=W o),
24 (n—1) '

From this, we can compute the leading terms of Gp, directly from the arguments
in Case 2.2.
3. A CRITERION FOR THE EXISTENCE OF MAXIMIZERS

Here we apply the concentration compactness principle in [Ln] to extremal prob-
lem (2.2).

Lemma 3.1. Let M be a smooth compact Riemannian manifold with dimension
2n 2n
n >5, kerP =0, f; € L*+1 (M) such that f; — [ weakly in L»+3. Let u;,u €
Wt (M) such that Pu; = f;, Pu= f. Assume
i 751 dp — o in M (M) (3.1)

and
|Aw;|* dpp — v in M (M), (3.2)
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here M (M) is the space of all Radon measures on M. Then there exists countably
many points p; € M such that

o=|f

T dp+ Y 0iy, (3.3)

and

v=|Aul*dp+ Y vy, (3.4)

here o, = o ({p:}),vi = v ({pi}). Moreover

z (3.5)

n+4
i .

V; S @4 (S”) g
Proof. First assume f = 0, then f; — 0 weakly in L%, u; — 0 weakly in Wt
2n
and u; — 0 in W> 7+, Fix a ¢ € C® (M), then
P(oui) = ¢fi + gi (3.6)

with g; — 0 in L7, Let v; € W% such that Pv; = g;, then v; — 0 in Whta,
We have

P(pu; —v;) = ¢f;. (3.7)
By Lemma 2.3 we know for any € > 0,
2 2 2
1A (pui = vi)llL2 < (©4(S™) +&) e fill | 2n, +C (&) llpus —vill | 2n, - (3.8)

Let ¢+ — oo, using u; — 0 weakly in W4’n+4, uw — 0in W7+ and v; — 0 in
WhaF1 | we see u; — 0 weakly in W22, u; — 0 in W2 and v; — 0 in W22, hence

/M P dv < (04 (S™) +¢) (/M [ -

2n "
n+1 do
n+4

[ Fav<eusn ( [ 1ol da) " (3.9)

Since ¢ is an arbitrary smooth function,
v(E) < 04(5") 0 (B) " (3.10)

for any Borel set E. Now we can follow the argument in [Ln] to determine the

structure of o and v. Indeed by the fact v is absolutely continuous with respect to

o, let x = g—g. Define

Let ¢ — 0 we get

B={peM:o({p})>0}.
Then B is countable and we write points in it as p;. On the other hand for o a.e.
p ¢ B, we have

. v(Br(p) _
X (p) = lim ———— < lim inf ©4 (S") 0 (B, (p
) r—0 o (BT (p)) r—0 ( ) ))
Hence v =3, vi0p,, 0 >3 .00, and v; < O4(S") 0,
In general f may not be zero, we can apply the previous discussion to f; — f.
After passing to a subsequence we have

Ifi — fI™ T dp — & and (Au; — Aw)?dp — di in M (M),

3k

=0.

n+4
n
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moreover
G> Giby, U= Tiby
i i
n44
with 0, = 0 ({p;}),vs = v ({pi}) and ¥; < ©4(S™) 7, . On the other hand, for
any ¢ € C (M),

/ © (Au; — Au)? dp
M

= / [@(Aui)Q—QwAuiAu—i-ap(Auf dp
M

— /@dy—/ @(Au)2d,u.
M M

Hence 7 = v — (Au)® dp. In another way,

v=(Au)du+ Y v,

and Vi =V ({pz}) = fljl
For any ¢ € C (M) we have

[l (i = DI, 26, = lefill 2

L ntd ntd

<lefll, 2, -

Lnt+d
Let 1 — o0 we get

n+4 n+4 n+4+4

2n_ 2n- 2n_ 2n 2n_ 2n_ ED

( [ 1o do) ( [ 1o do) g( Ptk du) |
M M M

Hence with respect to i, 0 and ¢ have the same singular part. In particular,
o> Z 0i0p,
i

with 0; = o ({p;}) = ;. Because o > |f|"%1 dp, we get
2n_
o> I du+ " 0idy,
i

n+4

and v; <Oy (S")o; ™ . O

Now we are ready to derive a criterion for the existence of maximizers. Such
kind of criterion is an analog statement for those of Yamabe problems ([LP]) and
integral equations considered in [HWY1, HWY2].

Proposition 3.1. Assume (M, g) is a smooth compact n dimensional Riemannian
manifold with n > 5, ker P = 0. Let

v Gpf - fdu
O4(9) = QV'SLUP M”T
FEL™FT (M)\{0} Lafa
If©4(g) > ©4(S™) and f; € L7t satisfies HfiHLn"‘Tn4 =1, [,,Gpfi- fidp — O4(g),

then after passing to a subsequence, we can find a f € L##7 such that fi— fin
=1 and fM Gpf - fdu = 04(9), f is a maximizer

=) particular, ||fHL

for ©4(g).

2n
n+4
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Proof. After passing to a subsequence we can assume f; — f weakly in Li#7. Let
Ui, u € W ¥ such that Pu; = f;y, Pu = f. Then u; — u weakly in W‘L%,
u; — u in W3 and u; — win WH2, After passing to another subsequence we
have )

|fil 7 dp — do and (Aw;)? dp — dv in M (M),

moreover it follows from Lemma 3.1 that

o> |f|”2% d,u—I—Zaiépi, v= (Au)2du—|—zyi6m,

here 0; = o0 ({p:}) ,vi = v ({pi}) and
)
v; <04 (Sn)dl" .
It follows that o (M) =1 and

/M Gpfi- fidp

= / w; Puidp = E (u;)
M
—4
— / <(Aui)2 —4A (Vu;, Vu;)) + (n—2)J \Vui|2 + n—s 3 Qu?) dp
M

— E(u)—l—ZuZ

Hence
Oi(g) = E@w+Y v
i
< Ou(9)IfI2 22, + 64 (sn)zai",t“
2 ntd i )
< ey l(llfllf;‘h) "y Za;n]
i

< 0. <||f| o +Za>

< Oilg).
Hence all inequalities become equalities. In particular, o; = 0, v; = 0, HfH,;fL —1
HencefiﬁfinL%,E(u):fMGPf-fdu=@4(9)- 0

4. EXISTENCE AND REGULARITY OF MAXIMIZERS

The main aim of this section is to show the strict inequality between ©4 (g)
and ©4 (S™) in the assumption of Proposition 3.1 is valid as long as (M, g) is not
conformal equivalent to the standard sphere. As in the Yamabe problem case ([LP]),
this is achieved by a careful choice of test function. More precisely we have

Proposition 4.1. Assume (M, g) is a smooth compact n dimensional Riemannian
manifold with n > 5, Y (g) > 0, Q@ > 0 and not identically zero, then

©4(9) = ©4(5") (4.1)
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and equality holds if and only if (M,g) is conformal equivalent to the standard
sphere.

Before we start the proof of Proposition 4.1, we list several basic identities which
will facilitate the calculations. For b > —n and 2a — b > n,

b b+n _ b+n b+n _ b+tn
/ ( |233| )adaj:nwnr(z)r(a 2):7Tgr(2)r(a 2)_ (4.2)
" et +1

2 T (a) ['(a)T (%)

If we fix an orthonormal frame at p, then

A (Wi (p) wizs)? (4.3)
k,l

= AWirji (p) Wikmi (P) € Zm + dWikji (p) Witms (P) ZjTm
= 2 Z (Wikg (p) 25 + Wi (p) z;)

ikl
= 2> (Wijnt (p) @i + Wi; (p) )%,
ki
and
AN (Wi (p) wiwj)* = 8 (lW (0)* + Wikji (p) Wit (P)) =12|W (p)*, (4.4)
kl
here we have used )
Wikt (p) Wi (p) = 3 W ()|, (4.5)
which follows from the usual Bianchi identity. Hence
Z (Wikji (p) i) (4.6)
kl
2 r? 2
= D Wi (p) wiy)* — e > (Wijnt (p) @i + Wk (p) )
ki ki
WP e [ (Wi ()@ + W, (p)22)°
2(n+2)(n+4) n+4jkl / /
3 2 2 4 2
- |W W .
g W]t )
The polynomials in the square brackets are harmonic. In particular,
3wn 2
Wik ; N2dS = — 2" W . 4.7
Jos W )i = s W ) (47)
Recall
Gpf- fdu Pu - udp
O4(g) = _sup fMgi = sup L‘;)Q (4.8)
recttione M2 wew* ooy 10022

Fix a function n; € C*° (R, R) such that 7, |_.. 1) =0, 71|20y = 1and 0 <7y < 1.
Denote n, =1 —1n;.

Case 4.1. M is conformally flat near p, n > 5.



@ CURVATURE ON A CLASS OF MANIFOLDS WITH DIMENSION AT LEAST 5 25

In this case we may assume the metric g is flat near p. Under the Euclidean
coordinate at p, namely x1,--- ,x, we have

2m(2—n) (4 —n)w,Gpy =7*""+ Ay + a. (4.9)

Here Ay is a constant, & = O, () is a biharmonic function (with respect to Euclid-
ean metric). For convenience we denote

H=2n2-n)(4—-n)w,Gpyp. (4.10)
For 0 < A < 4, let
A 2
uy = | —-—— 4.11
A <|332 —|—)\2> ( )
and
B=NT At . (4.12)

4—n
4—n

Denote ¢ (z) = |z|*" — (|x\2 + 1) * L then B=A"T7 ¢ (%). Define

n—4 n—4
oy =1 WEm (5)B+A7 Ag+AX7 a, on Bss(p), (4.13)
A AT H, on M\Bss (p).

It is clear that ¢, € C*° (M). Note that

Po, (4.14)
_n+d
n(n+2)(n—2)(n—4)\% (|x|2+)\2) * onBs(p),
- 0 ()‘%> ’ on Bas (p) \Bs (p)
0, on M\Ba; (p) .-
Hence
/ [Py | #H7 dy (4.15)
M
i D)8
= (nn+2)(n=2) (0= )T 20 (M+4) .
It follows that
2
1Pl 2, (4.16)
T (n HTH ntd
= i+ (-2 (-4 =2+ 0(3F).
(n=11) =
On the other hand,
/ Py - prdp (4.17)
M

= n(n+2)(n—2)(n—4)1—£
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Hence
Po, - oyd
Jos Pex - oadp (4.18)
| P
4((n—1H"
= 0,(8") + n= o) AN o (AT

n?(n+2)°(n—2)(n—4)T(2) " =2

If (M, g) is not conformal diffeomorphic to the standard sphere, then it follows from
the arguments in [HY4, section 6] that Ag > 0. Fix § small and let A | 0, we see
O4(g) > ©4(5").

Case 4.2. n =5,6,7.

In this case by conformal change of the metric we can assume exp,, preserves the

volume near p. Under the normal coordinate at p, namely z1,--- ,x,, we have
2n(2—n) (4 —n)w,Gp, =1+ Ag + a. (4.19)
Here Ay is a constant and a = O™ (r). Denote
H=2n(12-n)(4- n) wnGpp. (4.20)
For 0 < A <6, let ¢ (z) = |a|*” (\x| +1> = ,
- ( ) = N AT gy (4.21)
ot
A
uy= | —55——= 4.22
’ <|:c2 + A2> “22)
and
S un et (B)BHAT Ag+ AT @, on B (p),
O\ = n—d (4.23)
A? H, on M\Bss (p) .

then ¢, € W5 (M). On Bs (p)\ {p},
Po, (4.24)
= PU)\ — )\HT_ZLP (T4_n)
n—4

= A%uy —4div(A (VS e)e) + (n—2)div (JVB) — 5

n+4

= n(n+2)(n—2)(n—4)\"* (|x|2 + )\2>_T +0 (A% |x|2*”) .
Here we will need to use (2.35) and (2.36). On Bas (p) \Bs (p),
T n
Py, = —P (n2 (5) 6) -0 ()\) (4.25)
and on M\ Bss (p), Py, = 0. Hence

2n
[ 1P a
M

QB

= (n(n+2)(n—2)(n—4))%Fn(%ﬁ—&-o()\"%),
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and

2
||PSO>\||LTL2—J;L4

Dy o
= 42— -4 2T 4o
(n=1)1) =
On the other hand,
/ Py - o dp (4.26)
M
L(3)r%  4(n-2)(n—4)n? —4 —4
= 2) (n —2) (n—4) —2 Ap\" A
nn2)(n=2) (0= 4 B+ N o (A1)
Sum up we have
fMPSD/\'SOAdM (4.27)
T R .
HP<P,\HL,3;@4
n+4
4 —1HhH
— @4 (Sn)_’_ ((n )) Ao)\n74+0<>\n74).

n2(n—|—2)2(n—2)(n—4)l"(%)2n7#7r2

By [HY4, section 6] we know when (M, g) is not conformal diffeomorphic to the
standard sphere, Ay is strictly positive. Letting A | 0, we get O4(g) > ©4 (S™) in
this case.

Case 4.3. (M, g) is not locally conformally flat and n = 8.

In this case we can choose p such that W (p) # 0. By conformal change of
the metric we can assume exp,, preserves the volume near p. Under the normal

coordinate at p, namely x1,--- ,xg, we have
2
_ W
384wsGpy =1 1440 logr + o (4.28)
Here a = O™ (1). Denote
H = 384W8Gp7p. (429)

-2
For 0 < A <6, let ¢ (x) = |:v|74 — (|:v|2 + 1) ,B=)1"% (%) = N4y,

2
A
uy = | ——= 4.30
A <|x|2 + >\2> (4.30)
and
2
0y = ux + 1M (%) B - ml/ii())‘ \? logr + /\2a7 on Bss (p) , (4'31)
A N H, on M\Bss (p) .

Then ¢ € W3 (M). On Bs (p)\ {p},

— 1920\ (|x\2 n AQ) T Ldiv(A (V8,6 e) + 6div (JVB) — 208

= 10200° (1o + X2) 4+ 0(8) + 0 (B7) + 0 (3"2).
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Here we have used (2.35) and (2.36). On Bas (p) \Bs (p),
- _ r - 4
Py, = —P (nQ (5) ﬂ) 0 (\Y (4.33)
and on M\ Bss (p), Py = 0. Note that

A= NN ()

B = —AN 0 4N’ (r*+ )\2)_3 T,
B" = 20M%70 — 2407 (r2 £ A%) T2 4 N2 (12 4 02)
Hence we have ,
/M|P¢A|%du: %TLJFO(X‘), (4.34)

and

19207t W (p)] 4. 1 4
Pop, o dp = + Atlog —+ 0O (X7).
/M ATA 840 90 A (%)

It follows that

JuPex-erdn _ o (5% + 2103
PAT
||PS0,\||L§

Hence ©4 (g) > 04 (58).
Case 4.4. M is not conformally flat and n = 9.

24, 1 4
720002 W ()" Atlog 5+ 0 (X).

In this case we can choose p such that W (p) # 0. By a conformal change
of metric we can assume exp, preserves the volume near p. Under the normal

coordinate at p, namely z1,--- , g9, we have
630weGp, =1 + 1 5, +a. (4.35)
Here a = O™ (1) and
Uy (4.36)
_ L gZ(W»~()x»x')2—ir2Z(W~~ (p) i + Wik (p) 2:)*
280 | 9 = ikjl \P) TiZ; 117 ‘s ijkl \P) T4 ilkj \P) i
W (P)|2 4 r? 4 2
+ 429 r 144 117 % (kal (p) Zq + Wzlk:j (p) xz)
Vg — 203 2 o 805 2 4
6.5 () ity — S W 72| + o W )
Denote
H = 630wyGpyp. (4.37)

For 0 < A <6, let ¢ (z) = |z|° — (|x|2 + 1>_§, 8= /\_%qﬁ (2) = \Zp—5 uy,

5
)\ 2
Uy = | —5—— 4.38
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and
o - { Y (5) 8+ A=y, + ala, o ﬁt\i éﬁ’(p) | (4.39)
Then ¢ € WS (M). On Bs (p) \{p},
Py = Puy— AP (r7) (4.40)

— 34650\ % (|x\2 + AQ)_7 — 4div (A (VB,e;) e;) + Tdiv (JVB) — gQﬁ

_13 N
= 346 (o +27) T -2 (ﬂ) A (p) Tizjz 21

T T
+g <€l> rJij (p) wiw; + %%/Jij (p) iz — 102 W (p)]* B
+0 (Br) + O (B'7%) + O (B"r?).
On Bas (p) \Bs (p),
Py, = —P (n2 (g) 5) =0 (f) (4.41)

and on M\ Bss (p), Py, = 0. Note that

_5
2

Bo= Ao A3 (24032,

5 _7
B = —sAErO AR (52 4 02) 7,
g 5 7 52 \2\"%
— = =bAzr 4 5A2 (r +)\) ,
.

_9 _7

8" = 30A3rT—35A3 (12 + %) T2 4503 (P2 4 0%) 7,

9
2

35A5r 78 — 3503 (12 4+ A2 21

EAY
(%)
Calculation shows
[ 1ot an (1.42)
M

34651§7r5[ <94208 1 41

JECIRETIOIE

6144 4459455 © 9009
hence
2
1Pl 15 (4.43)
346527 S 94208 1 41

_ 3465°79 1 - \
T 614 {1+(30873157T 6237> W @I A"+ 0 (A )]

On the other hand,
/ Po,y - ordp (4.44)
M

1155 04208 1 41 - s
Ll bl - Y A
2048 [ <30873157r 12474) W @A +o (X)
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Sum up we get

Jur Px - oxdp 41
W:@‘l (57) +T474|W( PP X +o (M) ). (4.45)
L13

Hence we see O4 (g) > ©4 (5).
Case 4.5. M is not conformally flat and n > 10.

We can find a point p such that W (p) # 0. For A > 0, denote

n—4
uy (z) = <x|2)\—+-)\2> 2 . (4.46)
Let z1,--- ,x, be a conformal normal coordinate at p, § be a small fixed positive
number,
©x = ux (), (|:§|) : (4.47)
Then on Bas (p) \Bs (p),
Py, =0 ()\;> . (4.48)
On B;s (p)
Py, (4.49)
= n(n+2)(n—2) (|:r| +)\2) =
g - (m|+Aﬁ’%§ja%mmmzxﬁ2

kl

— 4 3
+n 5 = (|x| + )\2) (4 (n—6) |ac|2 + (n2 — 16) )\2) Jij (p) miz;

n—4
n — n—4 2 2\ 2
7)\
e WOl +¥)
_n—4
+O (A (|a:|2 v )\2> ? |x|> :
Using the basic inequality
2n 2n 2n_
1+t —1— ——t| < Ct|~* (4.50)

n+4
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we see on By (p),

|1D<P,\|ﬁ
DD m iy ()

8 (1ol +22) .
Tt (mid) (-2 %: (Wikji (p) wix;)

(et ) SR

+(n+2)(n+4)(n_2) (4(n76)|$\ + (n2 = 16) A )Jij(p)xixj
AW () ,
+12(n+2)(n+4)( 1) (n )(I al? +A)

+O< |x| +)\ x|> ( an \$| +)\2>n8$4>
+0< el +>\) |$|n+4)].

Calculation shows

/ [Pl d (4.51)
M
on 2D (2
= (n(N+2)(n—2)(n—4))n+4(n_(l2)!)'
1 n?—4n —4 o
<1 3T T ) m— o m_g " @IA (A )>
Hence
1Pl (4.52)
= (n(n+2)(n—2)(n_4))2%,
(n—1)H ™
1 n2 —dn —4 - )
(13n(n+2)(n—2)(n_6)(n_8) W ()" A" + 0 (A )>
On the other hand,
/ Peox-exdu (4.53)
M

- n(n+2)(n—2)(n—4>ﬁ'

n® —4n —4 - \
(16n(n+2)(n—2)(n_6)(n_8) W ()" A" +o (A )>.
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Sum up we get

Jor Py - adp 154
||P90>\||2Ln2¢4 (454
n nZ—4n —4 2.4 4
= Ou(8 )(H6n(n+2)(n—2)(n—6)(n—8) W @)F A" +o (A )>'

It follows that ©4 (g) > 04 (S™).

Next we turn to the regularity issue for maximizers of ©4 (g) in (1.16). Assume
fe L (M), f > 0 and not identically zero, and it is a maximizer for Oy (g),
then after scaling we have

2 e
— faz=3 (4.55)

Gpf =

Note this equation is critical in the sense that if we start with f € L##7 and
use the equation, the usual bootstrap method simply ends with f € Lt again.
Approaches in deriving further regularity for such kind of equations has been well
understood (see for example [DHL, ER, R, V] and so on). Here we state a result
particularly tailored for our purpose. To facilitate our discussion of compactness of
solutions later, we also sketch a proof.

Proposition 4.2. Assume (M, g) is a smooth compact n dimensional Riemannian
2n n

manifold with n > 5, 2% < ¢ < %, ue Whwt (M), b € LT (M), f € LI (M)

such that

Ay =bu+ f, (4.56)
then uw € W1 (M).

Proof. First we assume u is supported in Bpg (p) for some R > 0 small. Let
Z1, - ,Zy be a normal coordinate at p, then using the integral expression of
we have for |z] < 2R,

Ju(2)| < C Mdy—kC/ _FwL

n—4 n—4
Bar |x - y| 2R |x - y|

Let 7 be chosen as £ = 1 —2 then fB2R Mdy € L" (Bag). If Ris small enough,

AT |z —y|"*
then ”b”L%(an) is small and it follows from [L, Theorem 1.3] that w € L" (Bg). It

follows that A%y € L (M) and hence u € W*9 (M).
In general assume n € C* (M) is a smooth cut-off function supported in a small
ball, then
A? (nu) = byu +nf + f1.
Here f1 € Lotz If qg< ”2%, then by previous discussion we know nu € W+ (M).
Since this is true for any cut-off function with small support, we get u € W44 (M).

If ¢ > n2f2, then we can apply the usual bootstrap method. In fact we have

nu € Wit (M), hence u € Witz (M). By Sobolev embedding theorem we
have f; € L2. If ¢ < 2, then nu € W4 (M) and u € W*9(M). If ¢ > 2, then we
have u € W%2 (M) and go back to the bootstrap process. Eventually we arrive at
u € WhHa (M). O
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Corollary 4.1. Assume (M,g) is a smooth compact n dimensional Riemannian
manifold with n > 5, Y (g) > 0, @ > 0 and not identically zero, f € Lwia (M),
f >0 and not identically zero, moreover

2

— faz=3 (4.57)

Gpf =

Then f € C* (M), f>0.

Proof. Tt follows from [HY4, Proposition 1.1] that Gp > 0. Let u = Gpf, then
w>ce>0,ueWHHs (M) C LT (M), u = -2 f+71 and

4 ntd
— n—4 n
Pu = (” . ) n=3 (4.58)
In another way, it is
4 n+i
AQU: (n; ) u%u-f—fl,

where

£ = —Adiv (A (VU, ei) €i) + (n —2)div (JV’U,) — nT_élQu

Since un-7 € L# (M) and f; € W2t (M) c L? (M), it follows from Proposition
42 that w € Whatite ¢ [rrate (M) for some €,e; > 0. Now the standard

bootstrap method and elliptic theory together with the fact u > ¢ > 0 tell us
u€ C® (M) and u > 0. Hence f € C* (M), f > 0. O

On the other hand, assume v € H? (M) is a minimizer for Y, (g) in (1.13), after
scaling we can assume ||uHL%(M) =1, then wu satisfies

Pu =Y, (g) |ul"" w (4.59)

Corollary 4.2. Assume (M,g) is a smooth compact n dimensional Riemannian
manifold with n > 5, u € H? (M) satisfies (4.59), then u € C** (M) for all
a € (0,1).

Proof. Since u € Wt (M) C L+ (M), we see |u|ﬁ w e Lt (M). Hence
uwe Whnts (M). (4.59) becomes
A2u =Y, (g) |ul ™ u+ fi
with
—4
fi=—-4div(A(Vu,e;)e;) + (n—2)div (JVu) — nTQu.

Since [u| ™% € L (M) and f; € W75 (M) C L2 (M), it follows from Proposition
2n

4.2 that uw € Whatate ¢ Latate (M) for some €,e; > 0. Standard bootstrap
method and elliptic theory implies u € C*% (M) for any « € (0, 1). O

Now we have all the ingredients to prove Theorem 1.3. Theorem 1.1 clearly
follows from Theorem 1.3.
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Proof of Theorem 1.3. If (M, g) is conformal equivalent to the standard sphere,
then everything follows from discussions in section 2.2. From now on we assume
(M, g) is not conformal equivalent to the standard sphere. By Proposition 4.1 we
know ©4 (g) > ©4 (S™). [HY4, Proposition 1.1] tells us ker P = 0 and Gp > 0. By
Proposition 3.1 we know the set

M={ £ € L3 QD) 518l ) =1 [ God - Sin=04()}

is nonempty and compact in L (M). If f € M, we can assume f1 # 0, then f~
must be equal to zero. Indeed

B4 (g)
Gpf- fdu
M

/M (Gpf* - [+ —2Gpf* [~ +Gpf - f)dp

A

< /Gplfl-lfldu
M
< O4(9).

Hence [,,Gpf*t - f~du = 0. Using the fact Gp > 0 and f* # 0, we see f~ =
0. In another word, f does not change sign. It follows from Corollary 4.1 that
feC> (M) and f > 0. Moreover the compactness of M under C* (M) topology

follows from its compactness in Lt (M) and the proofs of Proposition 4.2 and
Corollary 4.1. O

5. SOME DISCUSSIONS

5.1. Yy (g) revisited. Recall
: E (u)
Yi(g)=  inf — 5.1
YO el Tl an o

here F (u) is given in (1.10) and (1.11).
Proposition 5.1. Let (M,g) be a smooth compact n dimensional Riemannian

manifold with n > 5, Y (g) > 0, Q@ > 0 and not identically zero, then

(1) Yz(g) <Yy (S™), here S™ has the standard metric. Yy (g) = Y4 (S™) if and
only if (M, g) is conformal diffeomorphic to the standard sphere.
(2) Yi(g) is always achieved. Let

Mp = {u € H?(M): |\u||L%(M) =land E(u)=Y, (g)}, (5.2)

then Mp is not empty. For any o € (0,1), Mp C C** (M) and when
(M, g) is not conformal diffeomorphic to the standard sphere, Mp is com-
pact under C*H* topology.

We start with some basic well known facts on compact Riemannian manifolds
(see for example [DHL]).

Lemma 5.1. For any u € H? (M),
ull gz < C([1Aull g2 + fJull L2) - (5.3)
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This follows from standard elliptic estimate.

Lemma 5.2. Assume u € H? (M), then for any € > 0, we have
lull g1 < e ]| D?ul| o + C (e) [|ull 2 (5-4)
and

[ull g < el Aullgz + C (&) [|ull 2 - (5-5)

Proof. Using compact embedding H? (M) C H' (M), standard compactness argu-
ment shows

[ull g < € llull gz + C (&) ull L2 -
Hence
lull g7 < e[| D*ul| , + ellull g + C () llull 2 -
(5.4) follows. On the other hand, by (5.3) we know
[ull g < Ce ([Au] 2 + [lull2) + C () lull L2 -
(5.5) follows. O

By (2.12) for any u € C° (R™),

1 2
Il gy < gy 102 ca - (5.6)

Here is a well known almost sharp Sobolev inequality on compact manifolds. We
present a proof for reader’s convenience and completeness.

Lemma 5.3. For any € > 0, we have
14¢ 2 2
[91? gy < Ty 180 Eacan + € (6) Il (57)
for all u € H? (M).

Proof. The derivation follows the same line as arguments in [DHL] or the proof of
Lemma 2.3. First we claim that for any ¢ > 0, we can find a § > 0 such that if u
is supported in Bs (p), then

1+e¢
I 2 0y < gy 100200y + € (@) Bl (5.8)
Indeed let xy,--- , 2z, be a normal coordinate at p, then we have g = g;;dx;dx; with

gij (p) = 0;; and the Euclidean metric gg = d;;dz;dz;. If § is small enough, then
|Au — Agu| < &1 |D2u| + C|Dul.

Here ¢ is a small positive number. Then using (5.6) we have

14+

< W [Aoul| 2

1+e4 2
< —||A ,+C D C||D 2
< o 1l + ey [ %], + C Dl

< 1+C€1
A (Sn)

1+C€1
1S V(5

lull, 2n,

[Aul[2 + C (1) [|ull 2 -

Hence

[l 1Au]Z2 + C (e1) llullz:
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(5.8) follows.
To continue, following [DHL] we choose n,---,n,, € C*> (M) such that 0 <

n; < 1, \/; € C*® (M), n; is supported in Bs (p;) for some p; and ", n; = 1.
Then

lal? 2, = Hu2HL’—:4

< Z nu?

Ln
2
= n;u anf};
1—|—51 -
< 1 LA (A L + € el
(1+€1)2
< ey 1w 172 + C (e1) ull3
( 1+e)°
< TARD |Aul7 + C (e1) [Jul7- -
(5.7) follows. O

Lemma 5.4. Let
Mp = {u € H?(M): Hu||L%(M) =land E(u)=Y, (g)}

If Yy (9) < Y3 (S™), then Mp is nonempty. Moreover for any a € (0,1), Mp C
CH® (M) and it is compact in C*< topology.

Proof. If u; € H? (M) such that ||u1|| 2a =1 and E(u;) — Yy (g). Since

1 2 2
E(ui) > ol [willzr= — C'lJullzz

it follows from Holder inequality that sup; ||u;|| ;= < co. Hence after passing to a
subsequence, we may find a u € H? such that u; — u weakly in H?, u; — u in H!
and u; — u a.e.. We have

| Au; — Aull?.

|Au; |72 — || Aull7z + o0 (1)

= E(u)—E@)+o0(1)

Yi(g) = Ya(9) [lull® 22 +o0(1).

=

IA
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On the other hand

1— Jjul]® 2a
L n—4
2 2
= usl? 2y = ull? 2,
n—4
22 22
< llwll " — "
L n—4 [ n—4
n—4
2n n
_ (||uz»—u| e +o<1>)
Ln—4
2
= us = ul? 20, +0(1),
hence
|Au; — Aulf?.
< Yal9) lui —ull? 2, +0(1)
Y +

Yy (S™)
Here Y (g)" = max {Y; (9),0}. Choosing ¢ small enough such that

(1+2)Ya(g)" <Ya(s™),
then we have ||Au; — Au||iz — 0, this implies u; — u in H? (M). It follows that
||u||an%4 =1and E (u) = Y4 (g). Hence u € Mp. The above discussion implies

M p is nonempty and compact in H? (M) C Lt (M). On the other hand for any
u € Mp, Pu=Yi(g)|u 71 . Tt follows from this and the proof of Proposition
4.2 and Corollary 4.2 that Mp C C* (M) and it is compact in C** (M) for any
ae(0,1). O

Now we are ready to deduce Proposition 5.1.

Proof of Proposition 5.1. If (M, g) is conformal to the standard sphere, then the
conclusion follows from discussions in section 2.2. Assume (M,g) is not confor-
mal diffeomorphic to the standard sphere, then it follows from Lemma 2.2 and
Proposition 4.1 that

L 1o 1
T Oulg)  Oa(SM)

Here we want to point out that the fact Yy (g) < Y4 (S™) can be verified, with the
help of positive mass theorem for Paneitz operator ([HuR, GM, HY4]), by choosing
a particular test function in (1.13) (see [ER, R, GM]). In fact the corresponding
calculation is easier than what we have in the proof of Proposition 4.1, but the
statement in Proposition 4.1 is stronger. By Lemma 5.4, we know M p is nonempty
and Mp C C** (M) and it is compact in C*< (M) for any « € (0, 1). O

Yi(9)

Vi (9").

Assume ker P = 0, then we have

Gpf- fdu Pu - udp
©4(g) = sup JuGrl - fon_ sup Sy Pu - udy 5
2n |Pul|” 2x

(5.9)
- 1P 2, . 1Pl e,
FEL™ET (M)\{0} Lnta weW ™ n+1 (M)\{0} Lntd
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Proposition 5.2. Let (M,g) be a smooth compact n dimensional Riemannian
manifold withn >5,Y (g) > 0, Y4 (g9) > 0, Q > 0 and not identically zero. Denote

n74(

Mp = {u € H? (M): Hu||L By = 1 and E(u) =Y, (g)}

and
Mo = e Whats (M) : n = d ———=0
e U (M) Hu“Ln{qM) an ||PU||ifﬁ4 4(9)

then

(1) Mp C C® (M) and for any uw € Mp, either v >0 or —u > 0.

(2) Ya(9)O4(g) =1.
(3) MP - ./\/l@.

Proof. By Proposition 5.1 we know M p is nonempty and for any « € (0,1), Mp C
C*%>(M). By [HY4, Proposition 1.1] we know ker P = 0 and Gp > 0. Assume
u € Mp, without losing of generality we can assume ut # 0. Now we will use an
observation in [R] to show « > 0. In fact u satisfies ||uHL% =1 and

Pu =Y (g) |u|™* u.
Let v = Gp (|Pul), then v € C** (M), v > 0 and |u| < v. We have

n+4
B Jyg 1l v .
V() < 3 vy (o) IRy () ol < Ya ().
ol 2o, ol 2, L
Hence all the inequalities become equalities. In particular HU||L2%L4 =1= ||uHszn4
Since v > |u|, we see v = |u|. This together with 4t # 0 implies u = v > 0.

Standard bootstrap method shows u € C* (M). Hence Mp C C* (M), moreover
when (M, g) is not conformal diffeomorphic to the standard sphere, M p is compact
in C* (M).

For u € Mp, we can assume u > 0, then ||u||L% =1 and

n+4

Pu=Y,(g)ur—=.

It follows that from this equation and Lemma 2.2 that

E (u) 1
0. (g) > -
1(9) 2 1Pl 2 Yal9)

>04(9).

Hence Yy (9) O4(g9) =1 and u € Me.
On the other hand, if u € Mg, let f = Pu, then

0. (g) = I vl _ Ju Crl - fdp
P2 TPz

Lnta [ nta

Hence it follows from Theorem 1.3 that f € C*° (M) and either f > 0 or —f > 0.
Without losing of generality we assume f > 0, then u = Gpf € C®° (M), u > 0
and

n+4
Pu = Kun—4
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for some positive constant . Using ||u||L an =1 we see

E (u) 1
O4(9) = 55— =,
1Pl "
and hence k = Y4 (g). It follows that F (u) = Yy (¢) and hence u € Mp. Sum up
we see Mp = Mg. O

Now we are ready to derive Theorem 1.2.

Proof of Theorem 1.2. 1t is clear Theorem 1.2 follows from Proposition 5.1 and 5.2.
The compactness of Mp in C* topology was shown in the proof of Proposition
5.2. O

5.2. Yamabe problem revisited. In this subsection we will show the above ap-
proach to the @ curvature equation gives another way to find constant scalar cur-
vature metric in a conformal class with positive Yamabe invariant. Here we always
assume (M, g) is a smooth compact n dimensional Riemannian manifold with n > 3

and Y (g) > 0.
The conformal Laplacian is given by
4(n—1
Lo = —%Agp—kfig&. (5.10)
Under the conformal change of metrics, we have
_ni2
Lo, o =p "L (pp). (5.11)
In particular,
n+2
R . =p w2l (5.12)
pn—2g
Hence to find a conformal metric with scalar curvature 1 is the same as solving
Lgpzp%g, peC®(M),p>0. (5.13)
For any u € C* (M) we write
Ey (u) = / Lu - udp (5.14)
M

- / (4(n_1)Vu|2+Ru2) dp.
M n72

Note this formula also makes sense for u € H' (M). To solve (5.13), people consider
the variational problem (see [LP])

, E (u)
Y (9) = ueHll(%\{o} IIUHi% . (5.15)
Note that
Y (9) = inf E227(u) = inf M = inf fMiRdfzz
uEHu(%)\{O} Hu||L% ueg‘;"éM) HUHL% gelal (m(M)) ™
Denote
ML:{ueHl (M)Hu||sz2 =1 and Eg(u):Y(g)}, (5.16)

then it is well known that M is always nonempty, M; C C* (M) and for any
u € My, either u > 0 or —u > 0. If v > 0, then after scaling u solves (5.13).
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Moreover when (M, g) is not conformal diffeomorphic to the standard sphere, we
have Y (g) < Y (S™) and My, is compact in C* topology.

Now we turn to another approach to solve (5.13). Since Y (g) > 0, we know the
Green’s function of L exists and it is always positive. We can define an operator

G0 = [ Gulp.a) f(@)dna). (5.17)
This is the inverse operator of L. Let f = pm7 then (5.13) becomes
GLf=f"3, feC™(M),f>0. (5.18)
Let
G d Lu - ud
0n(g)=  sp  AuCGffd oy ueude )
FEL™E2 (M)\{0} Hf||m+2 wew® 7z ({0} |

Note that this functional is considered in [DZ)].

Lemma 5.5. Let (M, g) be a smooth compact n dimensional Riemannian manifold

withn >3, Y (g) > 0, then

O3 (g) = sup M (5.20)

el HR‘

2 (0, d)
Proof. Using the fact G > 0, we have

G d L d
O (g)=  sup M_ sup Mggz(g)_

FeLwtz (M)\{0} If12 Lt wew? k2 (M)\{0
£>0

u>0
Hence

Lu - ud
0:(9) = wp  Jatu v

2
wew?* s ooy 1L 22
u>0

f Lu - udp

sup
ueC‘x’ M) ||Lu||L 2n,

Rd
= sup —fM a—
< A

LE2 (M, dfi)

With the solution to Yamabe problem ([LP]) we can easily deduce

Lemma 5.6. Let (M, g) be a smooth compact n dimensional Riemannian manifold
with n > 3, Y (g) > 0. Denote

B 2)n2n o E2 (u) o
Mo, =ue W=nt2 (M) : Hu”Ln 2 1 and rLu”Q - O2(9)

Then
(1) Y(9)©2(9) =
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(2) ML = M@Q'

Since the proof is essentially the same as the one for Proposition 5.2, we omit it
here. Roughly speaking Lemma 5.6 tells us the maximization problem for © (g) will
not produce new constant scalar curvature metrics other than those by minimizing
problem for Y (g). However, without using the solution to Yamabe problem, we
can use the same argument as for Theorem 1.3 to show G2 (g) > ©5(S™), with
equality holds if and only if (M,g) is conformal diffeomorphic to the standard
sphere (here one needs to use the positive mass theorem); Mg, is always nonempty,
Me, C C* (M) and any u € Mg, must be either positive or negative; Mg, is
compact in C*° (M) when (M, g) is not conformal diffeomorphic to the standard
sphere. In particular, this gives another way to solve (5.13). The details are left to
interested readers.
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