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Abstract. For a smooth compact Riemannian manifold with positive Yam-
abe invariant, positive Q curvature and dimension at least 5, we prove the
existence of a conformal metric with constant Q curvature. Our approach is
based on the study of extremal problem for a new functional involving the
Paneitz operator.

1. Introduction

Recall the de�nition of the fourth order Paneitz operator and its associated Q
curvature [B, P]: when (M; g) is a smooth compact n dimensional Riemannian
manifold with n 6= 5, the Q curvature is given by

Q = � 1

2 (n� 1)�R�
2

(n� 2)2
jRcj2 + n3 � 4n2 + 16n� 16

8 (n� 1)2 (n� 2)2
R2 (1.1)

= ��J � 2 jAj2 + n

2
J2:

Here R is the scalar curvature, Rc is the Ricci tensor and

J =
R

2 (n� 1) ; A =
1

n� 2 (Rc� Jg) : (1.2)

The Paneitz operator is given by

P' (1.3)

= �2'+
4

n� 2 div (Rc (r'; ei) ei)�
n2 � 4n+ 8

2 (n� 1) (n� 2) div (Rr') +
n� 4
2

Q'

= �2'+ div (4A (r'; ei) ei � (n� 2) Jr') +
n� 4
2

Q':

Here e1; � � � ; en is a local orthonormal frame with respect to g. Under conformal
change of the metric, the operator satis�es

P
�

4
n�4 g

' = ��
n+4
n�4Pg (�') : (1.4)

This is similar to the conformal Laplacian operator, which appears naturally when
considering transformation law of the scalar curvature under conformal change of
metric ([LP]). As a consequence we have

P
�

4
n�4 g

' �  d�
�

4
n�4 g

= Pg (�') � � d�g: (1.5)

Here �g is the measure associated with metric g.
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In dimension four, the Paneitz operator is given by

P' = �2'+ 2div (Rc (r'; ei) ei)�
2

3
div (Rr') ; (1.6)

and its conformal covariance property takes the following form

Pe2wg' = e�4wPg': (1.7)

Following the basic work [CGY] in dimension four on the fourth order Q curvature
equation, there has been several studies on this equation in dimension three by
[HY1, XY, YZ], and in dimensions greater than four by [DHL, DM, HeR1, HeR2,
HuR, QR1, QR2].
While it is important to determine conditions under which the Paneitz operator

is positive, we discover that it is su¢ cient for our purpose in this article to deter-
mine when its Green�s function is positive. This is a property that is conformally
invariant: observe that by (1.4),

kerPg = 0, kerP
�

4
n�4 g

= 0; (1.8)

and under this assumption, the Green�s functions GP satisfy the transformation
law

G
P;�

4
n�4 g

(p; q) = � (p)
�1
� (q)

�1
GP;g (p; q) : (1.9)

In analogy with the preliminary study of the classical Yamabe problem ([LP]),
the �rst question would be whether one can �nd a conformal invariant condition for
the existence of a conformal metric with positive Q curvature. In the case Yamabe
invariant Y (g) > 0, the existence of a conformal metric with positive Q curvature
is equivalent to the requirements that kerP = 0 and the Green�s function GP > 0
([HY4]).
The basic question of interest is to �nd constant Q curvature metric in a con-

formal class, in the same spirit as Yamabe problem. The main aim of the present
article is to prove the following

Theorem 1.1. Let (M; g) be a smooth compact n dimensional Riemannian man-
ifold with n � 5, Y (g) > 0, Q � 0 and not identically zero, then kerP = 0, the
Green�s function of P is positive and there exists a conformal metric eg with eQ = 1.
The fundamental di¢ culty of the lack of maximum principle in this fourth or-

der equation has recently been overcome by the work in [GM]. Following this
development, similar results in dimension 3 were proved in [HY3, HY4]. Dimen-
sion 4 case does not su¤er from this di¢ culty and was treated in many articles
like [CY, DM, FR] and so on. For locally conformally �at manifold with positive
Yamabe invariant and Poincare exponent less than n�4

2 (see [SY]), Theorem 1.1
was proved in [QR2] by apriori estimates and connecting the equation to Yamabe
equation through a path of integral equations. Under the slightly more stringent
conditions R > 0 and Q > 0, Theorem 1.1 as well as the positivity of mass of the
4th order Paneitz operator was proved in [GM] through the study of a non-local
�ow. Here we will derive Theorem 1.1 by maximizing a functional (see (1.16) and
(2.2)) involving the Paneitz operator (see Theorem 1.3 for more details).
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For u; v 2 C1 (M), we denote the quadratic form associated with P as

E (u; v) (1.10)

=

Z
M

Pu � vd�

=

Z
M

�
�u�v � 4

n� 2Rc (ru;rv) +
n2 � 4n+ 8

2 (n� 1) (n� 2)Rru � rv

+
n� 4
2

Quv

�
d�

=

Z
M

�
�u�v � 4A (ru;rv) + (n� 2) Jru � rv + n� 4

2
Quv

�
d�;

and

E (u) = E (u; u) : (1.11)

By the integration by parts formula in (1.10) we know E (u; v) also makes sense for
u; v 2 H2 (M).
To �nd the metric eg in Theorem 1.1, we write eg = �

4
n�4 g, then the equationeQ = 1 becomes

Pg� =
n� 4
2

�
n+4
n�4 ; � 2 C1 (M) ; � > 0: (1.12)

Let

Y4 (g) = inf
u2H2(M)nf0g

E (u)

kuk2
L

2n
n�4

; (1.13)

then Y4
�
�

4
n�4 g

�
= Y4 (g) for any positive smooth function � . Hence Y4 (g) is a

conformal invariant. If (M; g) is not locally conformally �at and n � 8, or (M; g)
is locally conformally �at with Y (g) > 0, kerP = 0 and the Green�s function of
P , GP > 0, or n = 5; 6; 7 with Y (g) > 0, kerP = 0 and GP > 0, one can show
Y4 (g) is achieved (see [ER, R, GM]), but in general it is di¢ cult to know whether
the minimizer is positive. Under the additional assumption Y4 (g) > 0 and GP > 0,
it was observed in [R] that the minimizer can not change sign. Combine with the
positivity criterion of Green�s function in [HY4], we arrive at

Theorem 1.2. Let (M; g) be a smooth compact n dimensional Riemannian mani-
fold with n � 5, Y (g) > 0; Y4 (g) > 0; Q � 0 and not identically zero, then

(1) Y4 (g) � Y4 (S
n), equality holds if and only if (M; g) is conformal di¤eo-

morphic to the standard sphere.
(2) Y4 (g) is always achieved. Any minimizer must be smooth and can not

change sign. In particular we can �nd a constant Q curvature metric in
the conformal class.

(3) If (M; g) is not conformal di¤eomorphic to the standard sphere, then the
set of all minimizers u for Y4 (g), after normalizing with kuk

L
2n
n�4

= 1, is
compact in C1 topology.

In general it is not known whether Y (g) > 0; Q � 0 and not identically zero
would imply Y4 (g) > 0. To get around this di¢ culty when proving Theorem 1.1
we note that by [HY4, Proposition 1.1] if Y (g) > 0, Q � 0 and not identically zero
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then kerP = 0, and the Green�s function of P , GP > 0. Hence we can de�ne an
integral operator (the inverse of P ) as

GP f (p) =

Z
M

GP (p; q) f (q) d� (q) : (1.14)

If we denote f = �
n+4
n�4 , then equation (1.12) becomes

GP f =
2

n� 4f
n�4
n+4 ; f 2 C1 (M) ; f > 0: (1.15)

Let

�4 (g) = sup

f2L
2n
n+4 (M)nf0g

R
M
GP f � fd�
kfk2

L
2n
n+4

(1.16)

= sup

f2L
2n
n+4 (M)nf0g

R
M�M GP (p; q) f (p) f (q) d� (p) d� (q)

kfk2
L

2n
n+4

:

It follows from the classical Hardy-Littlewood-Sobolev inequality ([S]) that �4 (g)
is always �nite. Moreover it follows from (1.9) that for positive smooth function �,

�4

�
�

4
n�4 g

�
= �4 (g) i.e. �4 (g) is a conformal invariant. If �4 (g) is achieved by a

maximizer f , using the fact GP > 0, we easily deduce that f can not change sign.
�4 (g) has a nice invariant description (see Lemma 2.1):

�4 (g) =
2

n� 4 sup

8>><>>:
R
M
eQde�


 eQ


2

L
2n
n+4 (M;de�)

: eg 2 [g]
9>>=>>; (1.17)

Here [g] denotes the conformal class of g i.e.

[g] =
�
�2g : � 2 C1 (M) ; � > 0

	
: (1.18)

Theorem 1.3. Assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5, Y (g) > 0, Q � 0 and not identically zero, then

(1) �4 (g) � �4 (S
n), here Sn has the standard metric. �4 (g) = �4 (S

n) if
and only if (M; g) is conformal di¤eomorphic to the standard sphere.

(2) �4 (g) is always achieved. Any maximizer f must be smooth and can not
change sign. Say f > 0, then after scaling we have GP f = 2

n�4f
n�4
n+4 i.e.

Q
f

4
n+4 g

= 1.

(3) If (M; g) is not conformal di¤eomorphic to the standard sphere, then the
set of all maximizers f for �4 (g), after normalizing with kfk

L
2n
n+4

= 1, is
compact in C1 topology.

It is worthwhile to note the similarity of Theorem 1.2 and 1.3 to classical Yamabe
problem ([LP]) and the integral equation considered in [HWY1, HWY2]. Indeed,
the formulation of our approach follows that of [HWY2]. A similar functional
for the conformal Laplacian operator, �2 (see (5.19)) is also considered in [DZ].
In section 2 below we will �rst give other expressions for �4 (g) and discuss its
relation with Y4 (g), then we will derive an almost sharp Sobolev inequality related
to extremal problem of �4 (g) and �nd the asymptotic expansion formula for the
Green�s function of Paneitz operator. In section 3 we will apply the concentration
compactness principle to deduce a criterion for the existence of maximizers of�4 (g).



Q CURVATURE ON A CLASS OF MANIFOLDS WITH DIMENSION AT LEAST 5 5

In section 4 we will show maximizers always exist and they are smooth. In particular
Theorem 1.3 follows. At last in section 5 we will prove Theorem 1.2. Moreover we
will show the approach to Theorem 1.3 gives another way to �nd constant scalar
curvature metrics in a conformal class.
The authors would like to thank Gursky and Malchiodi for making their work

available.

2. Some preparations

2.1. The conformal invariants Y4 (g) ; Y +4 (g) and �4 (g). Throughout this sub-
section we will assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5. Recall

Y4 (g) = inf
u2H2(M)nf0g

E (u)

kuk2
L

2n
n�4

= inf
u2C1(M)nf0g

R
M
Pu � ud�

kuk2
L

2n
n�4

: (2.1)

If in addition Y (g) > 0, Q � 0 and not identically zero, then

�4 (g) = sup

f2L
2n
n+4 (M)nf0g

R
M
GP f � fd�
kfk2

L
2n
n+4

(2.2)

= sup

u2W 4; 2n
n+4 (M)nf0g

R
M
Pu � ud�

kPuk2
L

2n
n+4

:

The second equality in (2.2) is very useful for us later on because the expression
is local. It will facilitate our calculations in estimating �4 (g). �4 (g) also has an
invariant description.

Lemma 2.1. If n � 5; Y (g) > 0; Q � 0 and not identically zero, then

�4 (g) =
2

n� 4 sup

8>><>>:
R
M
eQde�


 eQ


2

L
2n
n+4 (M;de�)

: eg 2 [g]
9>>=>>; : (2.3)

Here [g] is the conformal class of Riemannian metrics associated with g.

Proof. Note that

2

n� 4 sup

8>><>>:
R
M
eQde�


 eQ


2

L
2n
n+4 (M;de�)

: eg 2 [g]
9>>=>>;

= sup

8<:
R
M
Pu � ud�

kPuk2
L

2n
n+4

: u 2 C1 (M) ; u > 0

9=;
� �4 (g) :
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On the other hand, by the positivity of GP we have

�4 (g)

= sup

8<:
R
M
GP f � fd�
kfk2

L
2n
n+4

: f 2 L 2n
n+4 (M) n f0g ; f � 0

9=;
= sup

8<:
R
M
GP f � fd�
kfk2

L
2n
n+4

: f 2 C1 (M) n f0g ; f � 0

9=;
= sup

8<:
R
M
Pu � ud�

kPuk2
L

2n
n+4

: u 2 C1 (M) n f0g ; Pu � 0

9=;
� sup

8<:
R
M
Pu � ud�

kPuk2
L

2n
n+4

: u 2 C1 (M) ; u > 0

9=;
=

2

n� 4 sup

8>><>>:
R
M
eQde�


 eQ


2

L
2n
n+4 (M;de�)

: eg 2 [g]
9>>=>>; :

In between we have used the fact for smooth function u, Pu � 0 and u not identi-
cally zero implies u > 0. �

To better understand the relation between Y4 (g) and �4 (g), we de�ne

Y +4 (g) = inf

8<:
R
M
Pu � ud�

kuk2
L

2n
n�4

: u 2 C1 (M) ; u > 0

9=; (2.4)

=
n� 4
2

inf

( R
M
eQde�

(e� (M))n�4n : eg 2 [g]) :
Clearly we have

Y4 (g) � Y +4 (g) : (2.5)

Lemma 2.2. If n � 5, Y (g) > 0, Q � 0 and not identically zero, then
Y +4 (g)�4 (g) � 1: (2.6)

Moreover if Y +4 (g) is achieved, then Y
+
4 (g)�4 (g) = 1 and �4 (g) must be achieved

too.

Proof. It is clear that �4 (g) > 0. To prove the inequality we only need to deal
with the case Y +4 (g) > 0. Under this assumption for u 2 C1 (M) ; u > 0, we haveR
M
Pu � ud� > 0. By Holder�s inequality we have�R

M
Pu � ud�

�2
kuk2

L
2n
n�4

kPuk2
L

2n
n+4

� 1:

It follows that

Y +4 (g)

R
M
Pu � ud�

kPuk2
L

2n
n+4

� 1:
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By the proof of Lemma 2.1 we have

�4 (g) = sup

8<:
R
M
Pv � vd�

kPvk2
L

2n
n+4

: v 2 C1 (M) ; v > 0

9=; ;

hence Y +4 (g)�4 (g) � 1.
If Y +4 (g) is achieved, say at u 2 C1 (M) ; u > 0, then

Pu = �u
n+4
n�4

for some constant �. Since GP > 0, we see � > 0. Hence

�4 (g) �
R
M
Pu � ud�

kPuk2
L

2n
n+4

=
1

�
kuk�

8
n�4

L
2n
n+4

=
1

Y +4 (g)
� �4 (g) :

Hence all the inequalities are equalities. �4 (g) =
1

Y +
4 (g)

and is achieved at u

too. �

Remark 2.1. Assume Y +4 (g)�4 (g) = 1. Later we will show �4 (g) is always
achieved by positive smooth functions i.e.

�4 (g) =

R
M
GP f � fd�
kfk2

L
2n
n+4

=

R
M
Pv � vd�

kPvk2
L

2n
n+4

;

here f 2 C1 (M) ; f > 0, v = GP f . Hence v 2 C1 (M) ; v > 0 and

Pv = �v
n+4
n�4

for some constant �. Using GP > 0 we see � > 0. On the other hand

�4 (g) =

R
M
Pv � vd�

kPvk2
L

2n
n+4

= ��1 kvk�
8

n�4

L
2n
n�4

:

Hence

Y +4 (g) = � kvk
8

n�4

L
2n
n�4

=

R
M
Pv � vd�

kvk2
L

2n
n�4

:

In another word, positive maximizers for �4 (g) are also minimizers for Y
+
4 (g).

2.2. The sphere Sn. On Sn (n � 5) with standard metric we have

Q =
n (n+ 2) (n� 2)

8
(2.7)

and

Pu = �2u� n2 � 2n� 4
2

�u+
n (n+ 2) (n� 2) (n� 4)

16
u: (2.8)

Let N be the north pole and �N : Snn fNg ! Rn be the stereographic projection,
use x = �N as the coordinate, then the Green�s function of P with pole at N is
given by

GP;N =
1

n (n� 2) (n� 4) 2n�3!n

�
jxj2 + 1

�n�4
2

: (2.9)

Here !n is the volume of the unit ball in Rn i.e.

!n =
�
n
2

�
�
n
2 + 1

� ; (2.10)
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� is the Gamma function given by

� (�) =

Z 1

0

e�tt��1dt for � > 0: (2.11)

From [CLO, Li] we know

Y4 (S
n) = inf

u2C1
c (Rn)nf0g

k�uk2L2(Rn)
kuk2

L
2n
n�4 (Rn)

(2.12)

=
k�u1k2L2(Rn)
ku1k2

L
2n
n�4 (Rn)

=
n (n+ 2) (n� 2) (n� 4)

16

2
4
n�

2(n+1)
n

�
�
n+1
2

� 4
n

= Y +4 (S
n) :

Here

u1 (x) =
�
jxj2 + 1

��n�4
2

: (2.13)

For � > 0, let

u� (x) = ��
n�4
2 u1

�x
�

�
=

 
�

jxj2 + �2

!n�4
2

; (2.14)

then

�2u� = n (n+ 2) (n� 2) (n� 4)u
n+4
n�4
� : (2.15)

On the other hand it follows from [CLO, Li] that

�4 (S
n) (2.16)

=
1

2n (n� 2) (n� 4)!n
sup

f2L2(Rn)nf0g

R
Rn�Rn

f(x)f(y)

jx�yjn�4 dxdy

kfk2
L

2n
n+4 (Rn)

= sup
u2C1

c (Rn)nf0g

R
Rn (�u)

2
dx

k�2uk2
L

2n
n+4 (Rn)

=
1

2n (n� 2) (n� 4)!n

R
Rn�Rn

f1(x)f1(y)

jx�yjn�4 dxdy

kf1k2
L

2n
n+4 (Rn)

=
1

Y4 (Sn)
:

Here

f1 (x) =
�
jxj2 + 1

��n+4
2

: (2.17)

For � > 0, let

f� (x) = ��
n+4
2 f1

�x
�

�
=

 
�

jxj2 + �2

!n+4
2

; (2.18)

then
�2u� = n (n+ 2) (n� 2) (n� 4) f�: (2.19)
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2.3. Almost sharp Sobolev inequalities. Note by (2.16) for u 2 C1c (Rn) ;Z
Rn
(�u)

2
dx � �4 (Sn)



�2u

2
L

2n
n+4 (Rn)

: (2.20)

The aim of this subsection is to derive the following almost sharp Sobolev inequality,
which will be useful when applying the concentration compactness principle to
extremal problem of �4 (g) in section 3.

Lemma 2.3. Assume M is a smooth compact Riemannian manifold with dimen-
sion n � 5. Then for any " > 0, we have

k�uk2L2(M) � (�4 (S
n) + ") kPuk2

L
2n
n+4 (M)

+ C (") kuk2
L

2n
n+4 (M)

(2.21)

for all u 2W 4; 2n
n+4 (M).

Before proving the inequality, we recall some basic facts. The Sobolev embedding
theorem tells us

W 4; 2n
n+4 (M) �W 3; 2n

n+2 (M) �W 2;2 (M) �W 1; 2n
n�2 (M) � L

2n
n�4 (M) : (2.22)

Moreover, the embedding becomes compact if we are willing to lower the integrable
power a little bit, for example

W 4; 2n
n+4 (M) �W 3;q (M) (2.23)

is a compact embedding for any 1 � q < 2n
n+2 . These facts can be used to get the

interpolation inequalities.
We will frequently use the following fact: for 1 � p <1 and a; b � 0, " > 0,

(a+ b)
p � (1 + ") ap + C ("; p) bp: (2.24)

Indeed we can choose

C ("; p) = sup
t�0

((t+ 1)
p � (1 + ") tp) <1:

By standard elliptic estimates we have for every u 2W 4; 2n
n+4 (M) ;

kuk
W

4; 2n
n+4

� C
�
kPuk

L
2n
n+4

+ kuk
L

2n
n+4

�
(2.25)

and
kuk

W
4; 2n
n+4

� C
�

�2u



L
2n
n+4

+ kuk
L

2n
n+4

�
: (2.26)

On the other hand, the usual compactness argument tells us for " > 0,

kuk
W

3; 2n
n+4

� " kuk
W

4; 2n
n+4

+ C (") kuk
L

2n
n+4

: (2.27)

Hence
kuk

W
3; 2n
n+4

� " kPuk
L

2n
n+4

+ C (") kuk
L

2n
n+4

(2.28)

and
kuk

W
3; 2n
n+4

� "


�2u



L
2n
n+4

+ C (") kuk
L

2n
n+4

: (2.29)

To prove the Lemma 2.3 we only need to show for " > 0,

k�uk
2n
n+4

L2 � (1 + ")�4 (Sn)
n

n+4


�2u

 2n

n+4

L
2n
n+4

+ C (") kuk
2n
n+4

L
2n
n+4

: (2.30)

In fact, once (2.30) is known we have

k�ukL2 � (1 + ")
n+4
2n �4 (S

n)
1
2


�2u



L
2n
n+4

+ C (") kuk
L

2n
n+4

:
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In another way it is

k�ukL2 � (1 + "1)�4 (S
n)

1
2


�2u



L
2n
n+4

+ C ("1) kuk
L

2n
n+4

for any "1 > 0. Hence

k�ukL2
� (1 + "1)�4 (S

n)
1
2 kPuk

L
2n
n+4

+ C kuk
W

2; 2n
n+4

+ C ("1) kuk
L

2n
n+4

� (1 + 2"1)�4 (S
n)

1
2 kPuk

L
2n
n+4

+ C ("1) kuk
L

2n
n+4

:

Taking square on both sides we get

k�uk2L2 � (1 + 2"1)
3
�4 (S

n) kPuk2
L

2n
n+4

+ C ("1) kuk2
L

2n
n+4

and Lemma 2.3 follows.
For any " > 0, we can �nd a � > 0 such that if u is supported in B� (p), then

k�uk
2n
n+4

L2 � (1 + ")�4 (Sn)
n

n+4


�2u

 2n

n+4

L
2n
n+4

+ C (") kuk
2n
n+4

L
2n
n+4

: (2.31)

Indeed, let x1; � � � ; xn be the normal coordinate at p, then g = gijdxidxj with
gij (p) = �ij and the Euclidean metric g0 = �ijdxidxj . We have

j�u��0uj � "1
��D2u

��+ C jDuj
and ���2u��20u�� � "1

��D4u
��+ C ���D3u

��+ ��D2u
��+ jDuj�

if � is small enough. Then

k�ukL2
� k�0ukL2 + "1



D2u



L2
+ C kDukL2

� k�0ukL2 ++C"1


D4u




L

2n
n+4

+ C kuk
W

3; 2n
n+4

� (1 + "1)�4 (S
n)

1
2


�20u

L 2n

n+4
+ C"1



D4u



L

2n
n+4

+ C kuk
W

3; 2n
n+4

� (1 + "1)�4 (S
n)

1
2


�2u



L
2n
n+4

+ C"1


D4u




L

2n
n+4

+ C kuk
W

3; 2n
n+4

� (1 + C"1)�4 (S
n)

1
2


�2u



L
2n
n+4

+ C ("1) kuk
L

2n
n+4

:

Hence

k�uk
2n
n+4

L2 � (1 + C"1)
2n
n+4+1�4 (S

n)
n

n+4


�2u

 2n

n+4

L
2n
n+4

+ C ("1) kuk
2n
n+4

L
2n
n+4

:

(2.31) follows.
To continue, following [DHL] we choose �1; � � � ; �m 2 C1 (M) such that 0 �

�i � 1, ��i 2 C1 (M) for any � > 0, �i is supported in B� (pi) for some pi and
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i=1 �i = 1. We have

k�uk
2n
n+4

L2 =



j�uj 2nn+4





L
n+4
n

�
mX
i=1




�i j�uj 2nn+4





L
n+4
n

=
mX
i=1




� n+4
2n
i �u




 2n
n+4

L2

�
mX
i=1




������ n+4
2n
i u

����+ C (jDuj+ juj)


 2n
n+4

L2

� (1 + "1)
mX
i=1




��� n+4
2n
i u

�


 2n
n+4

L2
+ C ("1) kuk

2n
n+4

W 1;2

� (1 + "1)
2
�4 (S

n)
n

n+4

mX
i=1




�2 �� n+4
2n
i u

�


 2n
n+4

L
2n
n+4

+ C ("1) kuk
2n
n+4

W
3; 2n
n+4

� (1 + "1)
3
�4 (S

n)
n

n+4

mX
i=1




� n+4
2n
i �2u




 2n
n+4

L
2n
n+4

+ C ("1) kuk
2n
n+4

W
3; 2n
n+4

= (1 + "1)
3
�4 (S

n)
n

n+4


�2u

 2n

n+4

L
2n
n+4

+ C ("1) kuk
2n
n+4

W
3; 2n
n+4

� (1 + "1)
4
�4 (S

n)
n

n+4


�2u

 2n

n+4

L
2n
n+4

+ C ("1) kuk
2n
n+4

L
2n
n+4

:

This proves (2.30).

2.4. Expansion of Green�s function of Paneitz operator. In [LP], the expan-
sion formula of Green�s function of conformal Laplacian operator plays important
role. Here we determine the expansion formulas for Green�s function of Paneitz
operator. These formulas will be crucial in the choice of test function in section 4.
We use the same strategy as [LP, section 6], but since there are more lower

order terms, some e¤orts are needed in doing the algebra. Let us introduce some
notations. For m 2 Z+, let

Pm = fhomogeneous degree m polynomials on Rng ; (2.32)

and

Hm = fharmonic degree m homogeneous polynomialsg : (2.33)

Let f be a function de�ned on a neighborhood of 0 except at 0, namely Un f0g ;
m be nonnegative integer, and � 2 R. Then we write f = O(m)

�
r�
�
as r ! 0 if

f 2 Cm (Un f0g) and @i1���ikf (x) = O
�
r��k

�
as r ! 0 (2.34)

for k = 0; 1; � � � ;m. Here r = jxj.
Another useful notation is as follows. Let f be a function de�ned on a neighbor-

hood of 0, namely U , m and k be nonnegative integers. Then we write f = Om
�
rk
�

if f 2 Cm (U) and f (x) = O
�
rk
�
as r ! 0.

Let M be a smooth compact manifold with a conformal class of Riemannian
metrics. For a point p 2 M , choose a conformal normal coordinate at p, namely
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x1; � � � ; xn. Let the metric g = gijdxidxj . Then we have([LP])

J (p) = 0; Ji (p) = 0; �J (p) = � jW (p)j2

12 (n� 1) ; (2.35)

Aij (p) = 0; Aijk (p)xixjxk = 0; (2.36)

and

Aijkl (p)xixjxkxl = �
2

9 (n� 2)
X
kl

(Wikjl (p)xixj)
2 � r2

n� 2Jij (p)xixj : (2.37)

Proposition 2.1. Assume n � 5 and kerP = 0. Then under the conformal normal
coordinate at p, we have the following statements:

� If the original conformal class is conformal �at on a neighborhood of p, then
we may choose g such that it is �at near p, and

2n (2� n) (4� n)!nGP;p = r4�n +O1 (1) : (2.38)

� If n is odd, then

2n (2� n) (4� n)!nGP;p = r4�n

 
1 +

nX
i=4

 i

!
+O4 (1) : (2.39)

Here  i 2 Pi.
� If n is even and larger than or equal to 8, then

2n (2� n) (4� n)!nGP;p (2.40)

= r4�n

 
1 +

nX
i=4

 i

!
+ r4�n log r

nX
i=n�4

 0i + r
4�n log2 r

nX
i=n�2

 00i

+r4�n log3 r �  000n +O4 (1) :

Here  i;  
0
i;  

00
i ;  

000
i 2 Pi.

� If n = 6, then

96!6GP;p = r�2 (1 +  4 +  5 +  6) + r
�2 log r

�
 04 +  

0
5 +  

0
6

�
(2.41)

+r�2 log2 r �  006 +O4 (1) :

Here  i;  
0
i;  

00
i 2 Pi.

In another way, we have

� If n = 5; 6; 7 or M is conformal �at near p, then

2n (2� n) (4� n)!nGP;p = r4�n +A+O(4) (r) : (2.42)

Here A is a constant.
� If n = 8, then

384!8GP;p = r�4 � jW (p)j2

1440
log r +O(4) (1) : (2.43)

� If n � 9, then

2n (2� n) (4� n)!nGP;p = r4�n + r4�n 4 +O
(4)
�
r9�n

�
; (2.44)
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here  4 2 P4 and in fact
 4 (2.45)

=
1

40 (n� 2)

242
9

X
kl

(Wikjl (p)xixj)
2 � 2r2

9 (n+ 4)

X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2

+
jW (p)j2

3 (n+ 2) (n+ 4)
r4

#
+

r2

48 (n� 6)

24 4

9 (n+ 4)

X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2

�2 (n� 6) Jij (p)xixj �
�
n2 + 6n� 32

�
jW (p)j2

6n (n+ 4) (n� 1) r2

#

+r4 �
(n� 4)

�
3n2 � 2n� 64

�
jW (p)j2

576n (n+ 2) (n� 1) (n� 6) (n� 8) :

The terms in the square brackets are harmonic polynomials.

To derive these expansions, we need some algebraic preparations. Note that Pm
has the following decomposition (see [S])

Pm =
[m2 ]M
k=0

�
r2kHm�2k

�
: (2.46)

Under this decomposition, we have�
r2�

���
r2kHm�2k

= 2k (2m� 2k + n� 2) for k = 0; 1; 2; � � � ;
hm
2

i
: (2.47)

Here � denotes the Laplacian operator with respect to the Euclidean metric.
For � 2 R, let

A� = r2�+ 2�r@r + � (�+ n� 2) ; (2.48)
and

B� =
@

@�
A� = 2r@r + (2�+ n� 2) ; (2.49)

then

�(r�') = r��2A�';

A�
�
r�'

�
= r�A�+�';

A� (' log r) = (A�') log r +B�';

B�
�
r�'

�
= r�B�+�';

B� (' log r) = (B�') log r + 2':

In addition,

A�jPm = r2�+ � (2m+ �+ n� 2) ; (2.50)

B�jPm = 2m+ 2�+ n� 2; (2.51)

and
A�jr2kHm�2k

= (�+ 2k) (2m� 2k + �+ n� 2) (2.52)

for k = 0; 1; 2; � � � ;
�
m
2

�
. In particular,

(A2�nA4�n)jr2kHm�2k
(2.53)

= (2m� 2k) (2m� 2k + 2) (2k + 2� n) (2k + 4� n) ;
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for k = 0; 1; 2; � � � ;
�
m
2

�
.

Lemma 2.4. For any real numbers � and �, and any nonnegative integer k, we
have

B�

�
' logk r

�
= B�' � logk r + 2k' logk�1 r;

A�

�
' logk r

�
= A�' � logk r + kB�' � logk�1 r + k (k � 1)' logk�2 r;

and

A�A�

�
' logk r

�
= A�A�' � logk r + k (A�B�'+B�A�') logk�1 r

+k (k � 1) (A�'+A�'+B�B�') logk�2 r
+k (k � 1) (k � 2) (B�'+B�') logk�3 r
+k (k � 1) (k � 2) (k � 3)' logk�4 r:

Proof. Observe
@

@�
B�' = 2';

@2

@�2
B�' = 0:

Now since B�
�
r�'

�
= r�B�+�', we know

B�

�
' logk r

�
=

@k

@�k

����
�=0

B�
�
r�'

�
=

@k

@�k

����
�=0

�
r�B�+�'

�
= B�' � logk r + 2k' logk�1 r;

here we have used the Newton-Lebniz formula. For the second equation, we start
with

@

@�
A�' = B�';

@2

@�2
A�' = 2';

@3

@�3
A�' = 0;

then

A�

�
' logk r

�
=

@k

@�k

����
�=0

A�
�
r�'

�
=

@k

@�k

����
�=0

�
r�A�+�'

�
= A�' � logk r + kB�' � logk�1 r + k (k � 1)' logk�2 r:

�

De�ne an operator

Mg' = 4div (A (rg'; ei) ei) + (2� n) div (Jrg') : (2.54)

The Paneitz operator can be written as

Pg' = �
2
g'+Mg'+

n� 4
2

Q': (2.55)
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For any � 2 R, de�ne
N�;g' = r4Mg'+ 8�r

2A (r@r;rg') + 2 (2� n)�r2J � r@r' (2.56)

+4�r2 div (A (r@r; ei) ei)'+ (2� n)�r2 � r@rJ � '
+4� (�� 2)A (r@r; r@r)'+ (2� n)� (�+ n� 2) r2J';

then
Mg (r

�') = r��4N�;g': (2.57)

At �rst, we claim that

Pg
�
r4�n

�
= 2n (2� n) (4� n)!n�p + fr�n; (2.58)

with f = O1
�
r4
�
.

Indeed, because r4�n is radial, we have

�2g
�
r4�n

�
= 2n (2� n) (4� n)!n�p: (2.59)

On the other hand,
Mg

�
r4�n

�
= r�nN4�n;g1:

In view of the facts

div (A (r@r; ei) ei)

= @k
�
xiAijg

jk
�

= gijAij + xi@kAijg
jk +O1

�
r2
�

= J + xiAijk (p) �jk +O1
�
r2
�

= xiJi (p) +O1
�
r2
�

= O1
�
r2
�
;

and
A (r@r; r@r) = Aijxixj = Aijk (p)xixjxk +O1

�
r4
�
= O1

�
r4
�
;

we see N4�n;g1 2 O1
�
r4
�
, (2.58) follows.

To continue, �rst we introduce a notation. For any � 2 R, let
A�;g = r2�g + 2�r@r + � (�+ n� 2) ; (2.60)

then

�g (r
�') = r��2A�;g';

A�;g
�
r�'

�
= r�A�+�;g';

A�;g (' log r) = A�;g' � log r +B�':
Note that

A�;g = A� + r
2 (�g ��) = A� + r

2@i
��
gij � �ij

�
@j
�
: (2.61)

Computation shows

Pg (r
�') = r��4 (A��2A�'+K�') ; (2.62)

where

K�' (2.63)

= A��2
�
r2 (�g ��)'

�
+ r2 (�g ��)A�;g'+N�;g'+

n� 4
2

r4Q':
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We easily see that for any nonnegative integer k, ' = O1
�
rk
�
implies K�' =

O1
�
rk+2

�
.

We also introduce the following two operators,

K(1)
� ' =

@

@�
K�' (2.64)

= B��2
�
r2 (�g ��)'

�
+ r2 (�g ��)B�'

+8r2A (r@r;rg') + 2 (2� n) r2J � r@r'
+4r2 div (A (r@r; ei) ei)'+ (2� n) r2 � r@rJ � '
+8 (�� 1)A (r@r; r@r)'+ (2� n) (2�+ n� 2) r2J';

and

K(2)
� ' =

@

@�
K(1)
� ' (2.65)

= 4r2 (�g ��)'+ 8A (r@r; r@r)'+ 2 (2� n) r2J'
= K(2)'

because it is independent of �. Clearly, ' = O1
�
rk
�
for some nonnegative integer

would imply K(1)
� ';K(2)' = O1

�
rk+2

�
. In addition, they satisfy the following

K�

�
r�'

�
= r�K�+�';

K� (' log r) = K�' � log r +K(1)
� ';

K(1)
�

�
r�'

�
= r�K

(1)
�+�';

K(1)
� (' log r) = K(1)

� ' � log r +K(2)
� ';

K(2)
�
r�'

�
= r�K(2)';

K(2) (' log r) = K(2)' � log r:
More generally, we have

Lemma 2.5. For any nonnegative integer k, we have

K(1)
�

�
' logk r

�
= K(1)

� ' � logk r + kK(2)' � logk�1 r;

K�

�
' logk r

�
= K�' � logk r + kK(1)

� ' � logk�1 r + k (k � 1)
2

K(2)' � logk�2 ':

This follows from the same proof of Lemma 2.4.

Case 2.1. The dimension n is odd.

In this case, we claim that we may �nd a  =
Pn

i=1  i, with  i 2 Pi such that
A2�nA4�n +K4�n + f = O1

�
rn+1

�
: (2.66)

Once this has been done, then we have

r�n (A2�nA4�n +K4�n + f) 2 C� for any 0 < � < 1.

If the domain is small enough, then we may �nd a  2 C4;� such that
Pg = �r�n (A2�nA4�n +K4�n + f) :

Then
Pg
�
r4�n (1 +  ) +  

�
= 2n (2� n) (4� n)!n�p: (2.67)
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Hence the Green�s function satis�es

2n (2� n) (4� n)!nGp = r4�n (1 +  ) +  +O1 (1) : (2.68)

To de�ne  1; � � � ;  n, we let  1 = 0;  2 = 0 and  3 = 0. One easily see
f3 = A2�nA4�n ( 1 +  2 +  3) +K4�n ( 1 +  2 +  3) + f (2.69)

= f = O1
�
r4
�
:

Assume we have found  1;  2; � � � ;  k for 3 � k � n� 1, such that  i 2 Pi and

fk = A2�nA4�n

 
kX
i=1

 i

!
+K4�n

 
kX
i=1

 i

!
+ f = O1

�
rk+1

�
;

then we write fk = �k+1 +O1
�
rk+2

�
; �k+1 2 Pk+1. Since

A2�nA4�njr2jHk+1�2j

= (2 (k + 1)� 2j) (2 (k + 1)� 2j + 2) (2j + 2� n) (2j + 4� n) 6= 0
for j = 0; 1; 2; � � � ;

�
k+1
2

�
, A2�nA4�n is invertible on Pk+1. We may �nd a unique

 k+1 2 Pk+1, such that
A2�nA4�n k+1 + �k+1 = 0: (2.70)

Then

fk+1 = A2�nA4�n

 
k+1X
i=1

 i

!
+K4�n

 
k+1X
i=1

 i

!
+ f

= fk +A2�nA4�n k+1 +K4�n k+1 = O1
�
rk+2

�
:

This �nishes the induction.

Case 2.2. n is even and larger than or equal to 8.

In this case, we �rst set  1 = 0;  2 = 0 and  3 = 0. Since A2�nA4�n is invertible
on Pk for 0 � k � n� 5, by the same induction procedure as Case 2.1, we can �nd
 4; � � � ;  n�5 such that  i 2 Pi and

fn�5 = A2�nA4�n

 
n�5X
i=1

 i

!
+K4�n

 
n�5X
i=1

 i

!
+ f = O1

�
rn�4

�
:

To continue, we write

fn�5 = �n�4 +O1
�
rn�3

�
; �n�4 2 Pn�4:

Let  (0)n�4 = �
(0)
n�4 + �

(0)
n�4 log r with �

(0)
n�4; �

(0)
n�4 2 Pn�4, then

A2�nA4�n 
(0)
n�4

= A2�nA4�n�
(0)
n�4 + (A2�nB4�n +B2�nA4�n)�

(0)
n�4 +A2�nA4�n�

(0)
n�4 � log r:

Let �(0)n�4 2 rn�4H0, then since

(A2�nB4�n +B2�nA4�n)jrn�4H0
= �2 (n� 2) (n� 4) 6= 0;

and

A2�nA4�njr2kHn�4�2k

= (2 (n� 4)� 2k) (2 (n� 4)� 2k + 2) (2k + 2� n) (2k + 4� n) 6= 0;
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for 0 � k � n
2 � 3, we may �nd a �

(0)
n�4 2 Pn�4 and a �

(0)
n�4 2 rn�4H0 such that

A2�nA4�n 
(0)
n�4 + �n�4 = 0:

This implies

fn�4

= A2�nA4�n

 
n�5X
i=1

 i +  
(0)
n�4

!
+K4�n

 
n�5X
i=1

 i +  
(0)
n�4

!
+ f

= fn�5 +A2�nA4�n 
(0)
n�4 +K4�n 

(0)
n�4

= O1
�
rn�3

�
+O1

�
rn�2

�
log r:

Next we write

fn�4 = �n�3 +O1
�
rn�2

�
log r +O1

�
rn�2

�
; �n�3 2 Pn�3:

Again by similar arguments, we can �nd a  (0)n�3 2 Pn�3 + rn�4H1 log r such that

A2�nA4�n 
(0)
n�3 + �n�3 = 0:

Then

fn�3

= A2�nA4�n

 
n�5X
i=1

 i +  
(0)
n�4 +  

(0)
n�3

!
+K4�n

 
n�5X
i=1

 i +  
(0)
n�4 +  

(0)
n�3

!
+ f

= fn�4 +A2�nA4�n 
(0)
n�3 +K4�n 

(0)
n�3

= O1
�
rn�2

�
log r +O1

�
rn�2

�
:

We write
fn�3 = �

(1)
n�2 log r +O1

�
rn�2

�
+O1

�
rn�1

�
log r:

Similar as before, we may �nd a

 
(1)
n�2 2 Pn�2 log r +

�
rn�2H0 + r

n�4H2

�
log2 r

such that
A2�nA4�n 

(1)
n�2 + �

(1)
n�2 log r 2 Pn�2:

Indeed, for  (1)n�2 = �
(1)
n�2 log r + �

(1)
n�2 log

2 r, with �(1)n�2; �
(1)
n�2 2 Pn�2, we have

A2�nA4�n 
(1)
n�2

=
�
A2�nA4�n�

(1)
n�2 + 2 (A2�nB4�n +B2�nA4�n)�

(1)
n�2

�
log r

+A2�nA4�n�
(1)
n�2 � log

2 r + Pn�2:

Let �(1)n�2 2 rn�2H0 + r
n�4H2. Since

2 (A2�nB4�n +B2�nA4�n)jrn�2H0
= 4n (n� 2) 6= 0;

2 (A2�nB4�n +B2�nA4�n)jrn�4H2
= �4n (n+ 2) 6= 0;

and

A2�nA4�njr2kHn�2�2k

= (2 (n� 2)� 2k) (2 (n� 2)� 2k + 2) (2k + 2� n) (2k + 4� n) 6= 0
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for 0 � k � n
2 � 3, we may �nd the above needed  

(1)
n�2. Then

f
(1)
n�2

= A2�nA4�n

 
n�5X
i=1

 i +  
(0)
n�4 +  

(0)
n�3 +  

(1)
n�2

!

+K4�n

 
n�5X
i=1

 i +  
(0)
n�4 +  

(0)
n�3 +  

(1)
n�2

!
+ f

= fn�3 +A2�nA4�n 
(1)
n�2 +K4�n 

(1)
n�2

= O1
�
rn�2

�
+O1

�
rn�1

�
log r +O1 (r

n) log2 r:

The next step is to remove the Pn�2 term in O1
�
rn�2

�
, then the Pn�1 log r term

in O1
�
rn�1

�
log r and so on, until we reach O1

�
rn+1

�
log2 r +O1

�
rn+1

�
log r +

O1
�
rn+1

�
+O1

�
rn+2

�
log3 r. That is, we �nd

 
(0)
n�4 2 Pn�4 + rn�4H0 log r;

 
(0)
n�3 2 Pn�3 + rn�4H1 log r;

 
(1)
n�2 2 Pn�2 log r +

�
rn�2H0 + r

n�4H2

�
log2 r;

 
(0)
n�2 2 Pn�2 +

�
rn�2H0 + r

n�4H2

�
log r;

 
(1)
n�1 2 Pn�1 log r +

�
rn�2H1 + r

n�4H3

�
log2 r;

 
(0)
n�1 2 Pn�1 +

�
rn�2H1 + r

n�4H3

�
log r;

 (2)n 2 Pn log2 r +
�
rn�2H2 + r

n�4H4

�
log3 r;

 (1)n 2 Pn log r +
�
rn�2H2 + r

n�4H4

�
log2 r;

and
 (0)n 2 Pn +

�
rn�2H2 + r

n�4H4

�
log r;

such that

fn = A2�nA4�n

 
n�5X
i=1

 i +
nX

i=n�4
 
(0)
i +

nX
i=n�2

 
(1)
i +  (2)n

!

+K4�n

 
n�5X
i=1

 i +
nX

i=n�4
 
(0)
i +

nX
i=n�2

 
(1)
i +  (2)n

!
+ f

= O1
�
rn+1

�
log2 r +O1

�
rn+1

�
log r +O1

�
rn+1

�
+O1

�
rn+2

�
log3 r:

Clearly r�nfn 2 C� for any 0 < � < 1. This implies locally we may �nd a  2 C4;�
such that Pg = �r�nfn. Let

 =

n�5X
i=1

 i +

nX
i=n�4

 
(0)
i +

nX
i=n�2

 
(1)
i +  (2)n ;

then
Pg
�
r4�n (1 +  ) +  

�
= 2n (2� n) (4� n)!n�p

on a small disk. Hence

2n (2� n) (4� n)!nGp = r4�n (1 +  ) +  +O1 (1) :
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Case 2.3. n = 6.

This case can be done similarly as Case 2.2. That is, we can �nd

 
(0)
4 2 P4 +

�
r4H0 + r

2H2

�
log r;

 
(0)
5 2 P5 +

�
r4H1 + r

2H3

�
log r;

 
(1)
6 2 P6 log r +

�
r4H2 + r

2H4

�
log2 r;

and
 
(0)
6 2 P6 +

�
r4H2 + r

2H4

�
log r;

such that

f6

= A�4A�2

�
 
(0)
4 +  

(0)
5 +  

(0)
6 +  

(1)
6

�
+K�2

�
 
(0)
4 +  

(0)
5 +  

(0)
6 +  

(1)
6

�
+ f

= O1
�
r7
�
log r +O1

�
r7
�
+O1

�
r8
�
log2 r:

The remaining argument can be done as before.

Case 2.4. M is conformal �at near p.

In this case, we may take the metric g such that it is �at near p. This implies
Pg = �

2, and hence

Pg
�
r4�n

�
= 2n (2� n) (4� n)!n�p:

It follows that
2n (2� n) (4� n)!nGP;p = r4�n +O1 (1) :

Finally, to get the leading terms in the expansion for n � 8, by computation we
have f3 = f = �4 +O1

�
r5
�
, with �4 2 P4 and

�4 (2.71)

= �4 (n� 4)
9

X
kl

(Wikjl (p)xixj)
2
+ 2 (n� 4) (n� 6) r2Jij (p)xixj

+
(n� 4) jW (p)j2

24 (n� 1) r4:

From this, we can compute the leading terms of GP;p directly from the arguments
in Case 2.2.

3. A criterion for the existence of maximizers

Here we apply the concentration compactness principle in [Ln] to extremal prob-
lem (2.2).

Lemma 3.1. Let M be a smooth compact Riemannian manifold with dimension
n � 5, kerP = 0, fi 2 L

2n
n+4 (M) such that fi * f weakly in L

2n
n+4 . Let ui; u 2

W 4; 2n
n+4 (M) such that Pui = fi; Pu = f . Assume

jfij
2n
n+4 d� * � inM (M) (3.1)

and
j�uij2 d� * � inM (M) ; (3.2)
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hereM (M) is the space of all Radon measures on M . Then there exists countably
many points pi 2M such that

� � jf j
2n
n+4 d�+

X
i

�i�pi (3.3)

and
� = j�uj2 d�+

X
i

�i�pi ; (3.4)

here �i = � (fpig) ; �i = � (fpig). Moreover

�i � �4 (Sn)�
n+4
n

i : (3.5)

Proof. First assume f = 0, then fi * 0 weakly in L
2n
n+4 , ui * 0 weakly in W 4; 2n

n+4

and ui ! 0 in W 3; 2n
n+4 . Fix a ' 2 C1 (M), then

P ('ui) = 'fi + gi (3.6)

with gi ! 0 in L
2n
n+4 . Let vi 2W 4; 2n

n+4 such that Pvi = gi, then vi ! 0 in W 4; 2n
n+4 .

We have
P ('ui � vi) = 'fi: (3.7)

By Lemma 2.3 we know for any " > 0,

k�('ui � vi)k2L2 � (�4 (S
n) + ") k'fik2

L
2n
n+4

+ C (") k'ui � vik2
L

2n
n+4

: (3.8)

Let i ! 1, using ui * 0 weakly in W 4; 2n
n+4 , ui ! 0 in W 3; 2n

n+4 and vi ! 0 in
W 4; 2n

n+4 , we see ui * 0 weakly in W 2;2, ui ! 0 in W 1;2 and vi ! 0 in W 2;2, henceZ
M

'2d� � (�4 (Sn) + ")
�Z

M

j'j
2n
n+4 d�

�n+4
n

:

Let "! 0 we get Z
M

'2d� � �4 (Sn)
�Z

M

j'j
2n
n+4 d�

�n+4
n

: (3.9)

Since ' is an arbitrary smooth function,

� (E) � �4 (Sn)� (E)
n+4
n (3.10)

for any Borel set E. Now we can follow the argument in [Ln] to determine the
structure of � and �. Indeed by the fact � is absolutely continuous with respect to
�, let � = d�

d� . De�ne
B = fp 2M : � (fpg) > 0g :

Then B is countable and we write points in it as pi. On the other hand for � a.e.
p =2 B, we have

� (p) = lim
r!0

� (Br (p))

� (Br (p))
� lim

r!0
inf �4 (S

n)� (Br (p))
4
n = 0.

Hence � =
P

i �i�pi , � �
P

i �i�pi and �i � �4 (Sn)�
n+4
n

i .
In general f may not be zero, we can apply the previous discussion to fi � f .

After passing to a subsequence we have

jfi � f j
2n
n+4 d� * e� and (�ui ��u)2 d� * de� inM (M) ;
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moreover e� �X
i

e�i�pi ; e� =X
i

e�i�pi
with e�i = e� (fpig) ; e�i = e� (fpig) and e�i � �4 (S

n) e� n+4
n

i . On the other hand, for
any ' 2 C (M), Z

M

' (�ui ��u)2 d�

=

Z
M

h
' (�ui)

2 � 2'�ui�u+ ' (�u)2
i
d�

!
Z
M

'd� �
Z
M

' (�u)
2
d�:

Hence e� = � � (�u)2 d�. In another way,

� = (�u)
2
d�+

X
i

�i�pi

and �i = � (fpig) = e�i.
For any ' 2 C (M) we have���k' (fi � f)k

L
2n
n+4

� k'fik
L

2n
n+4

��� � k'fk
L

2n
n+4

:

Let i!1 we get�����
�Z

M

j'j
2n
n+4 de��n+4

2n

�
�Z

M

j'j
2n
n+4 d�

�n+4
2n

����� �
�Z

M

j'j
2n
n+4 jf j

2n
n+4 d�

�n+4
2n

:

Hence with respect to �, � and e� have the same singular part. In particular,
� �

X
i

�i�pi

with �i = � (fpig) = e�i. Because � � jf j 2nn+4 d�, we get

� � jf j
2n
n+4 d�+

X
i

�i�pi

and �i � �4 (Sn)�
n+4
n

i . �

Now we are ready to derive a criterion for the existence of maximizers. Such
kind of criterion is an analog statement for those of Yamabe problems ([LP]) and
integral equations considered in [HWY1, HWY2].

Proposition 3.1. Assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5, kerP = 0. Let

�4 (g) = sup

f2L
2n
n+4 (M)nf0g

R
M
GP f � fd�
kfk2

L
2n
n+4

:

If �4 (g) > �4 (Sn) and fi 2 L
2n
n+4 satis�es kfik

L
2n
n+4

= 1;
R
M
GP fi �fid�! �4 (g),

then after passing to a subsequence, we can �nd a f 2 L
2n
n+4 such that fi ! f in

L
2n
n+4 . In particular, kfk

L
2n
n+4

= 1 and
R
M
GP f � fd� = �4 (g), f is a maximizer

for �4 (g).
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Proof. After passing to a subsequence we can assume fi * f weakly in L
2n
n+4 . Let

ui; u 2 W 4; 2n
n+4 such that Pui = fi; Pu = f . Then ui * u weakly in W 4; 2n

n+4 ,
ui ! u in W 3; 2n

n+4 and ui ! u in W 1;2. After passing to another subsequence we
have

jfij
2n
n+4 d� * d� and (�ui)

2
d� * d� inM (M) ;

moreover it follows from Lemma 3.1 that

� � jf j
2n
n+4 d�+

X
i

�i�pi ; � = (�u)
2
d�+

X
i

�i�pi ;

here �i = � (fpig) ; �i = � (fpig) and

�i � �4 (Sn)�
n+4
n

i :

It follows that � (M) = 1 andZ
M

GP fi � fid�

=

Z
M

uiPuid� = E (ui)

=

Z
M

�
(�ui)

2 � 4A (rui;rui) + (n� 2) J jruij2 +
n� 4
2

Qu2i

�
d�

! E (u) +
X
i

�i:

Hence

�4 (g) = E (u) +
X
i

�i

� �4 (g) kfk2
L

2n
n+4

+�4 (S
n)
X
i

�
n+4
n

i

� �4 (g)

"�
kfk

2n
n+4

L
2n
n+4

�n+4
n

+
X
i

�
n+4
n

i

#

� �4 (g)

 
kfk

2n
n+4

L
2n
n+4

+
X
i

�i

!n+4
n

� �4 (g) :

Hence all inequalities become equalities. In particular, �i = 0, �i = 0, kfk
L

2n
n+4

= 1.

Hence fi ! f in L
2n
n+4 , E (u) =

R
M
GP f � fd� = �4 (g). �

4. Existence and regularity of maximizers

The main aim of this section is to show the strict inequality between �4 (g)
and �4 (Sn) in the assumption of Proposition 3.1 is valid as long as (M; g) is not
conformal equivalent to the standard sphere. As in the Yamabe problem case ([LP]),
this is achieved by a careful choice of test function. More precisely we have

Proposition 4.1. Assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5, Y (g) > 0, Q � 0 and not identically zero, then

�4 (g) � �4 (Sn) (4.1)
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and equality holds if and only if (M; g) is conformal equivalent to the standard
sphere.

Before we start the proof of Proposition 4.1, we list several basic identities which
will facilitate the calculations. For b > �n and 2a� b > n,Z

Rn

jxjb�
jxj2 + 1

�a dx = n!n
2

�
�
b+n
2

�
�
�
a� b+n

2

�
� (a)

= �
n
2
�
�
b+n
2

�
�
�
a� b+n

2

�
� (a) �

�
n
2

� : (4.2)

If we �x an orthonormal frame at p, then

�
X
k;l

(Wikjl (p)xixj)
2 (4.3)

= 4Wikjl (p)Wikml (p)xjxm + 4Wikjl (p)Wilmk (p)xjxm

= 2
X
ikl

(Wikjl (p)xj +Wiljk (p)xj)
2

= 2
X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2
;

and

�2
X
kl

(Wikjl (p)xixj)
2
= 8

�
jW (p)j2 +Wikjl (p)Wiljk (p)

�
= 12 jW (p)j2 ; (4.4)

here we have used

Wikjl (p)Wiljk (p) =
1

2
jW (p)j2 ; (4.5)

which follows from the usual Bianchi identity. HenceX
kl

(Wikjl (p)xixj)
2 (4.6)

=

24X
kl

(Wikjl (p)xixj)
2 � r2

n+ 4

X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2

+
3

2 (n+ 2) (n+ 4)
jW (p)j2 r4

�
+ r2 �

24 1

n+ 4

X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2

� 3

n (n+ 4)
jW (p)j2 r2

�
+ r4 � 3

2n (n+ 2)
jW (p)j2 :

The polynomials in the square brackets are harmonic. In particular,Z
Sn�1

X
kl

(Wikjl (p)xixj)
2
dS =

3!n
2 (n+ 2)

jW (p)j2 : (4.7)

Recall

�4 (g) = sup

f2L
2n
n+4 (M)nf0g

R
M
GP f � fd�
kfk2

L
2n
n+4

= sup

u2W 4; 2n
n+4 (M)nf0g

R
M
Pu � ud�

kPuk2
L

2n
n+4

: (4.8)

Fix a function �1 2 C1 (R;R) such that �1j(�1;1) = 0; �1j(2;1) = 1 and 0 � �1 � 1.
Denote �2 = 1� �1.

Case 4.1. M is conformally �at near p, n � 5.
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In this case we may assume the metric g is �at near p. Under the Euclidean
coordinate at p, namely x1; � � � ; xn we have

2n (2� n) (4� n)!nGP;p = r4�n +A0 + �: (4.9)

Here A0 is a constant, � = O1 (r) is a biharmonic function (with respect to Euclid-
ean metric). For convenience we denote

H = 2n (2� n) (4� n)!nGP;p: (4.10)

For 0 < � < �, let

u� =

 
�

jxj2 + �2

!n�4
2

(4.11)

and

� = �
n�4
2 r4�n � u�: (4.12)

Denote � (x) = jxj4�n �
�
jxj2 + 1

� 4�n
2

, then � = �
4�n
2 �

�
x
�

�
. De�ne

'� =

(
u� + �1

�
r
�

�
� + �

n�4
2 A0 + �

n�4
2 �; on B3� (p) ;

�
n�4
2 H; on MnB3� (p) :

(4.13)

It is clear that '� 2 C1 (M). Note that

P'� (4.14)

=

8>><>>:
n (n+ 2) (n� 2) (n� 4)�

n+4
2

�
jxj2 + �2

��n+4
2

; on B� (p) ;

O
�
�
n
2

�
; on B2� (p) nB� (p) ;

0; on MnB2� (p) :

Hence Z
M

jP'�j
2n
n+4 d� (4.15)

= (n (n+ 2) (n� 2) (n� 4))
2n
n+4

�
�
n
2

�
�
n
2

(n� 1)! +O
�
�

n2

n+4

�
:

It follows that

kP'�k
2

L
2n
n+4

(4.16)

= (n (n+ 2) (n� 2) (n� 4))2
�
�
n
2

�n+4
n �

n+4
2

((n� 1)!)
n+4
n

+O
�
�

n2

n+4

�
:

On the other hand,Z
M

P'� � '�d� (4.17)

= n (n+ 2) (n� 2) (n� 4)
�
�
n
2

�
�
n
2

(n� 1)! +
4 (n� 2) (n� 4)� n

2

�
�
n
2

� A0�
n�4 + o

�
�n�4

�
:
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Hence R
M
P'� � '�d�

kP'�k
2

L
2n
n+4

(4.18)

= �4 (S
n) +

4 ((n� 1)!)
n+4
n

n2 (n+ 2)
2
(n� 2) (n� 4) �

�
n
2

� 2n+4
n �2

A0�
n�4 + o

�
�n�4

�
:

If (M; g) is not conformal di¤eomorphic to the standard sphere, then it follows from
the arguments in [HY4, section 6] that A0 > 0. Fix � small and let � # 0, we see
�4 (g) > �4 (S

n).

Case 4.2. n = 5; 6; 7.

In this case by conformal change of the metric we can assume expp preserves the
volume near p. Under the normal coordinate at p, namely x1; � � � ; xn, we have

2n (2� n) (4� n)!nGP;p = r4�n +A0 + �: (4.19)

Here A0 is a constant and � = O(4) (r). Denote

H = 2n (2� n) (4� n)!nGP;p: (4.20)

For 0 < � < �, let � (x) = jxj4�n �
�
jxj2 + 1

� 4�n
2

,

� = �
4�n
2 �

�x
�

�
= �

n�4
2 r4�n � u�; (4.21)

u� =

 
�

jxj2 + �2

!n�4
2

(4.22)

and

'� =

(
u� + �1

�
r
�

�
� + �

n�4
2 A0 + �

n�4
2 �; on B3� (p) ;

�
n�4
2 H; on MnB3� (p) :

(4.23)

then '� 2W 4; 2n
n+4 (M). On B� (p) n fpg ;

P'� (4.24)

= Pu� � �
n�4
2 P

�
r4�n

�
= �2u� � 4 div (A (r�; ei) ei) + (n� 2) div (Jr�)�

n� 4
2

Q�

= n (n+ 2) (n� 2) (n� 4)�
n+4
2

�
jxj2 + �2

��n+4
2

+O
�
�
n
2 jxj2�n

�
:

Here we will need to use (2.35) and (2.36). On B2� (p) nB� (p),

P'� = �P
�
�2

�r
�

�
�
�
= O

�
�
n
2

�
(4.25)

and on MnB2� (p), P'� = 0. HenceZ
M

jP'�j
2n
n+4 d�

= (n (n+ 2) (n� 2) (n� 4))
2n
n+4

�
�
n
2

�
�
n
2

(n� 1)! + o
�
�n�4

�
;
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and

kP'�k
2

L
2n
n+4

= (n (n+ 2) (n� 2) (n� 4))2
�
�
n
2

�n+4
n �

n+4
2

((n� 1)!)
n+4
n

+ o
�
�n�4

�
:

On the other hand,Z
M

P'� � '�d� (4.26)

= n (n+ 2) (n� 2) (n� 4)
�
�
n
2

�
�
n
2

(n� 1)! +
4 (n� 2) (n� 4)� n

2

�
�
n
2

� A0�
n�4 + o

�
�n�4

�
:

Sum up we haveR
M
P'� � '�d�

kP'�k
2

L
2n
n+4

(4.27)

= �4 (S
n) +

4 ((n� 1)!)
n+4
n

n2 (n+ 2)
2
(n� 2) (n� 4) �

�
n
2

� 2n+4
n �2

A0�
n�4 + o

�
�n�4

�
:

By [HY4, section 6] we know when (M; g) is not conformal di¤eomorphic to the
standard sphere, A0 is strictly positive. Letting � # 0, we get �4 (g) > �4 (Sn) in
this case.

Case 4.3. (M; g) is not locally conformally �at and n = 8.

In this case we can choose p such that W (p) 6= 0. By conformal change of
the metric we can assume expp preserves the volume near p. Under the normal
coordinate at p, namely x1; � � � ; x8, we have

384!8GP;p = r�4 � jW (p)j2

1440
log r + �: (4.28)

Here � = O(4) (1). Denote
H = 384!8GP;p: (4.29)

For 0 < � < �, let � (x) = jxj�4 �
�
jxj2 + 1

��2
, � = ��2�

�
x
�

�
= �2r�4 � u�;

u� =

 
�

jxj2 + �2

!2
(4.30)

and

'� =

(
u� + �1

�
r
�

�
� � jW (p)j2

1440 �2 log r + �2�; on B3� (p) ;
�2H; on MnB3� (p) :

(4.31)

Then ' 2W 4; 43 (M). On B� (p) n fpg ;
P'� = Pu� � �2P

�
r�4
�

(4.32)

= 1920�6
�
jxj2 + �2

��6
� 4 div (A (r�; ei) ei) + 6 div (Jr�)� 2Q�

= 1920�6
�
jxj2 + �2

��6
+O (�) +O

�
�0r
�
+O

�
�00r2

�
:
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Here we have used (2.35) and (2.36). On B2� (p) nB� (p),

P'� = �P
�
�2

�r
�

�
�
�
= O

�
�4
�

(4.33)

and on MnB2� (p), P'� = 0. Note that

� = �2r�4 � �2
�
r2 + �2

��2
;

�0 = �4�2r�5 + 4�2
�
r2 + �2

��3
r;

�00 = 20�2r�6 � 24�2
�
r2 + �2

��4
r2 + 4�2

�
r2 + �2

��3
:

Hence we have Z
M

jP'�j
4
3 d� =

1920
4
3�4

840
+O

�
�4
�
; (4.34)

and Z
M

P'� � '�d� =
1920�4

840
+
�4 jW (p)j2

90
�4 log

1

�
+O

�
�4
�
:

It follows thatR
M
P'� � '�d�
kP'�k

2

L
4
3

= �4
�
S8
�
+

210
3
2

41472000�2
jW (p)j2 �4 log 1

�
+O

�
�4
�
:

Hence �4 (g) > �4
�
S8
�
.

Case 4.4. M is not conformally �at and n = 9.

In this case we can choose p such that W (p) 6= 0. By a conformal change
of metric we can assume expp preserves the volume near p. Under the normal
coordinate at p, namely x1; � � � ; x9, we have

630!9GP;p = r�5 + r�5 4 + �: (4.35)

Here � = O(4) (1) and

 4 (4.36)

=
1

280

242
9

X
kl

(Wikjl (p)xixj)
2 � 2

117
r2
X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2

+
jW (p)j2

429
r4

#
+

r2

144

24 4

117

X
jkl

(Wijkl (p)xi +Wilkj (p)xi)
2

�6Jij (p)xixj �
103

5616
jW (p)j2 r2

�
+

805

1368576
jW (p)j2 r4:

Denote
H = 630!9GP;p: (4.37)

For 0 < � < �, let � (x) = jxj�5 �
�
jxj2 + 1

�� 5
2

, � = ��
5
2�
�
x
�

�
= �

5
2 r�5 � u�;

u� =

 
�

jxj2 + �2

! 5
2

(4.38)
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and

'� =

(
u� + �1

�
r
�

�
� + �

5
2 r�5 4 + �

5
2�; on B3� (p) ;

�
5
2H; on MnB3� (p) :

(4.39)

Then ' 2W 4; 1813 (M). On B� (p) n fpg ;

P'� = Pu� � �
5
2P
�
r�5
�

(4.40)

= 3465�
13
2

�
jxj2 + �2

�� 13
2 � 4 div (A (r�; ei) ei) + 7 div (Jr�)�

5

2
Q�

= 3465�
13
2

�
jxj2 + �2

�� 13
2 � 2

�
�0

r

�0
Aijkl (p)xixjxkxl

r

+
7

2

�
�0

r

�0
rJij (p)xixj +

65

2

�0

r
Jij (p)xixj �

5

192
jW (p)j2 �

+O (�r) +O
�
�0r2

�
+O

�
�00r3

�
:

On B2� (p) nB� (p),

P'� = �P
�
�2

�r
�

�
�
�
= O

�
�
9
2

�
(4.41)

and on MnB2� (p), P'� = 0. Note that

� = �
5
2 r�5 � �

5
2
�
r2 + �2

�� 5
2 ;

�0 = �5�
5
2 r�6 + 5�

5
2
�
r2 + �2

�� 7
2 r;

�0

r
= �5�

5
2 r�7 + 5�

5
2
�
r2 + �2

�� 7
2 ;

�00 = 30�
5
2 r�7 � 35�

5
2
�
r2 + �2

�� 9
2 r2 + 5�

5
2
�
r2 + �2

�� 7
2 ;�

�0

r

�0
= 35�

5
2 r�8 � 35�

5
2
�
r2 + �2

�� 9
2 r:

Calculation showsZ
M

jP'�j
18
13 d� (4.42)

=
3465

18
13�5

6144

�
1 +

�
94208

4459455

1

�
� 41

9009

�
jW (p)j2 �4 + o

�
�4
��
;

hence

kP'�k
2

L
18
13

(4.43)

=
34652�

65
9

6144
13
9

�
1 +

�
94208

3087315

1

�
� 41

6237

�
jW (p)j2 �4 + o

�
�4
��

On the other hand,Z
M

P'� � '�d� (4.44)

=
1155

2048
�5
�
1 +

�
94208

3087315

1

�
� 41

12474

�
jW (p)j2 �4 + o

�
�4
��
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Sum up we get

R
M
P'� � '�d�
kP'�k

2

L
18
13

= �4
�
S9
��
1 +

41

12474
jW (p)j2 �4 + o

�
�4
��

: (4.45)

Hence we see �4 (g) > �4
�
S9
�
.

Case 4.5. M is not conformally �at and n � 10.

We can �nd a point p such that W (p) 6= 0. For � > 0, denote

u� (x) =

 
�

jxj2 + �2

!n�4
2

: (4.46)

Let x1; � � � ; xn be a conformal normal coordinate at p, � be a small �xed positive
number,

'� = u� (x) �2

�
jxj
�

�
: (4.47)

Then on B2� (p) nB� (p),

P'� = O
�
�
n�4
2

�
: (4.48)

On B� (p) ;

P'� (4.49)

= n (n+ 2) (n� 2) (n� 4)�
n+4
2

�
jxj2 + �2

��n+4
2

�4
9
(n� 4)�

n�4
2

�
jxj2 + �2

��n
2
X
kl

(Wikjl (p)xixj)
2

+
n� 4
2

�
n�4
2

�
jxj2 + �2

��n
2
�
4 (n� 6) jxj2 +

�
n2 � 16

�
�2
�
Jij (p)xixj

+
n� 4

24 (n� 1)�
n�4
2 jW (p)j2

�
jxj2 + �2

��n�4
2

+O

�
�
n�4
2

�
jxj2 + �2

��n�4
2 jxj

�
:

Using the basic inequality

����j1 + tj 2nn+4 � 1� 2n

n+ 4
t

���� � C jtj
2n
n+4 (4.50)
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we see on B� (p) ;

jP'�j
2n
n+4

= (n (n+ 2) (n� 2) (n� 4))
2n
n+4 �n

�
jxj2 + �2

��n
�2641� 8

9

��4
�
jxj2 + �2

�2
(n+ 2) (n+ 4) (n� 2)

X
kl

(Wikjl (p)xixj)
2

+
��4

�
jxj2 + �2

�2
(n+ 2) (n+ 4) (n� 2)

�
4 (n� 6) jxj2 +

�
n2 � 16

�
�2
�
Jij (p)xixj

+
��4 jW (p)j2

12 (n+ 2) (n+ 4) (n� 1) (n� 2)

�
jxj2 + �2

�4
+O

�
��4

�
jxj2 + �2

�4
jxj
�
+O

�
��

8n
n+4

�
jxj2 + �2

� 8n
n+4

�
+O

�
��

8n
n+4

�
jxj2 + �2

� 8n
n+4 jxj

2n
n+4

��
:

Calculation showsZ
M

jP'�j
2n
n+4 d� (4.51)

= (n (n+ 2) (n� 2) (n� 4))
2n
n+4

�
n
2 �
�
n
2

�
(n� 1)! ��

1� 1
3

n2 � 4n� 4
(n+ 2) (n+ 4) (n� 2) (n� 6) (n� 8) jW (p)j2 �4 + o

�
�4
��

:

Hence

kP'�k
2

L
2n
n+4

(4.52)

= (n (n+ 2) (n� 2) (n� 4))2
�
n+4
2 �

�
n
2

�n+4
n

((n� 1)!)
n+4
n

��
1� 1

3

n2 � 4n� 4
n (n+ 2) (n� 2) (n� 6) (n� 8) jW (p)j2 �4 + o

�
�4
��

:

On the other hand,Z
M

P'� � '�d� (4.53)

= n (n+ 2) (n� 2) (n� 4)
�
n
2 �
�
n
2

�
(n� 1)! ��

1� n2 � 4n� 4
6n (n+ 2) (n� 2) (n� 6) (n� 8) jW (p)j2 �4 + o

�
�4
��

:
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Sum up we getR
M
P'� � '�d�

kP'�k
2

L
2n
n+4

(4.54)

= �4 (S
n)

�
1 +

n2 � 4n� 4
6n (n+ 2) (n� 2) (n� 6) (n� 8) jW (p)j2 �4 + o

�
�4
��

:

It follows that �4 (g) > �4 (Sn).
Next we turn to the regularity issue for maximizers of �4 (g) in (1.16). Assume

f 2 L
2n
n+4 (M), f � 0 and not identically zero, and it is a maximizer for �4 (g),

then after scaling we have

GP f =
2

n� 4f
n�4
n+4 : (4.55)

Note this equation is critical in the sense that if we start with f 2 L
2n
n+4 and

use the equation, the usual bootstrap method simply ends with f 2 L
2n
n+4 again.

Approaches in deriving further regularity for such kind of equations has been well
understood (see for example [DHL, ER, R, V] and so on). Here we state a result
particularly tailored for our purpose. To facilitate our discussion of compactness of
solutions later, we also sketch a proof.

Proposition 4.2. Assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5, 2n

n+4 < q < n
4 , u 2 W 4; 2n

n+4 (M), b 2 L
n
4 (M), f 2 Lq (M)

such that

�2u = bu+ f; (4.56)

then u 2W 4;q (M).

Proof. First we assume u is supported in BR (p) for some R > 0 small. Let
x1; � � � ; xn be a normal coordinate at p, then using the integral expression of u
we have for jxj < 2R,

ju (x)j � C

Z
B2R

jb (y)j ju (y)j
jx� yjn�4

dy + C

Z
B2R

jf (y)j
jx� yjn�4

dy:

Let r be chosen as 1r =
1
q�

4
n , then

R
B2R

jf(y)j
jx�yjn�4 dy 2 L

r (B2R). IfR is small enough,

then kbk
L
n
4 (B2R)

is small and it follows from [L, Theorem 1.3] that u 2 Lr (BR). It
follows that �2u 2 Lq (M) and hence u 2W 4;q (M).
In general assume � 2 C1 (M) is a smooth cut-o¤ function supported in a small

ball, then

�2 (�u) = b�u+ �f + f1:

Here f1 2 L
2n
n+2 . If q � 2n

n+2 , then by previous discussion we know �u 2 W 4;q (M).
Since this is true for any cut-o¤ function with small support, we get u 2W 4;q (M).
If q > 2n

n+2 , then we can apply the usual bootstrap method. In fact we have

�u 2 W 4; 2n
n+2 (M), hence u 2 W 4; 2n

n+2 (M). By Sobolev embedding theorem we
have f1 2 L2. If q � 2, then �u 2 W 4;q (M) and u 2 W 4;q (M). If q > 2, then we
have u 2 W 4;2 (M) and go back to the bootstrap process. Eventually we arrive at
u 2W 4;q (M). �
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Corollary 4.1. Assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5, Y (g) > 0, Q � 0 and not identically zero, f 2 L

2n
n+4 (M),

f � 0 and not identically zero, moreover

GP f =
2

n� 4f
n�4
n+4 : (4.57)

Then f 2 C1 (M), f > 0.

Proof. It follows from [HY4, Proposition 1.1] that GP > 0. Let u = GP f , then
u � c > 0, u 2W 4; 2n

n+4 (M) � L
2n
n�4 (M), u = 2

n�4f
n�4
n+4 and

Pu =

�
n� 4
2

� n+4
n�4

u
n+4
n�4 : (4.58)

In another way, it is

�2u =

�
n� 4
2

� n+4
n�4

u
8

n�4u+ f1;

where

f1 = �4 div (A (ru; ei) ei) + (n� 2) div (Jru)�
n� 4
2

Qu:

Since u
8

n�4 2 Ln
4 (M) and f1 2W 2; 2n

n+4 (M) � L2 (M), it follows from Proposition
4.2 that u 2 W 4; 2n

n+4+" � L
2n
n�4+"1 (M) for some "; "1 > 0. Now the standard

bootstrap method and elliptic theory together with the fact u � c > 0 tell us
u 2 C1 (M) and u > 0. Hence f 2 C1 (M), f > 0. �

On the other hand, assume u 2 H2 (M) is a minimizer for Y4 (g) in (1.13), after
scaling we can assume kuk

L
2n
n�4 (M)

= 1, then u satis�es

Pu = Y4 (g) juj
8

n�4 u: (4.59)

Corollary 4.2. Assume (M; g) is a smooth compact n dimensional Riemannian
manifold with n � 5, u 2 H2 (M) satis�es (4.59), then u 2 C4;� (M) for all
� 2 (0; 1).

Proof. Since u 2 W 4; 2n
n+4 (M) � L

2n
n�4 (M), we see juj

8
n�4 u 2 L

2n
n+4 (M). Hence

u 2W 4; 2n
n+4 (M). (4.59) becomes

�2u = Y4 (g) juj
8

n�4 u+ f1

with

f1 = �4 div (A (ru; ei) ei) + (n� 2) div (Jru)�
n� 4
2

Qu:

Since juj
8

n�4 2 Ln
4 (M) and f1 2W 2; 2n

n+4 (M) � L2 (M), it follows from Proposition
4.2 that u 2 W 4; 2n

n+4+" � L
2n
n�4+"1 (M) for some "; "1 > 0. Standard bootstrap

method and elliptic theory implies u 2 C4;� (M) for any � 2 (0; 1). �

Now we have all the ingredients to prove Theorem 1.3. Theorem 1.1 clearly
follows from Theorem 1.3.
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Proof of Theorem 1.3. If (M; g) is conformal equivalent to the standard sphere,
then everything follows from discussions in section 2.2. From now on we assume
(M; g) is not conformal equivalent to the standard sphere. By Proposition 4.1 we
know �4 (g) > �4 (Sn). [HY4, Proposition 1.1] tells us kerP = 0 and GP > 0. By
Proposition 3.1 we know the set

M =

�
f 2 L 2n

n+4 (M) : kfk
L

2n
n+4 (M)

= 1;

Z
M

GP f � fd� = �4 (g)
�

is nonempty and compact in L
2n
n+4 (M). If f 2M, we can assume f+ 6= 0, then f�

must be equal to zero. Indeed

�4 (g)

=

Z
M

GP f � fd�

=

Z
M

�
GP f

+ � f+ � 2GP f+ � f� +GP f� � f�
�
d�

�
Z
M

GP jf j � jf j d�

� �4 (g) :

Hence
R
M
GP f

+ � f�d� = 0. Using the fact GP > 0 and f+ 6= 0, we see f� =
0. In another word, f does not change sign. It follows from Corollary 4.1 that
f 2 C1 (M) and f > 0. Moreover the compactness ofM under C1 (M) topology
follows from its compactness in L

2n
n+4 (M) and the proofs of Proposition 4.2 and

Corollary 4.1. �

5. Some discussions

5.1. Y4 (g) revisited. Recall

Y4 (g) = inf
u2H2(M)nf0g

E (u)

kuk2
L

2n
n�4

; (5.1)

here E (u) is given in (1.10) and (1.11).

Proposition 5.1. Let (M; g) be a smooth compact n dimensional Riemannian
manifold with n � 5, Y (g) > 0, Q � 0 and not identically zero, then

(1) Y4 (g) � Y4 (S
n), here Sn has the standard metric. Y4 (g) = Y4 (S

n) if and
only if (M; g) is conformal di¤eomorphic to the standard sphere.

(2) Y4 (g) is always achieved. Let

MP =

�
u 2 H2 (M) : kuk

L
2n
n�4 (M)

= 1 and E (u) = Y4 (g)

�
; (5.2)

then MP is not empty. For any � 2 (0; 1), MP � C4;� (M) and when
(M; g) is not conformal di¤eomorphic to the standard sphere,MP is com-
pact under C4;� topology.

We start with some basic well known facts on compact Riemannian manifolds
(see for example [DHL]).

Lemma 5.1. For any u 2 H2 (M),

kukH2 � C (k�ukL2 + kukL2) : (5.3)
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This follows from standard elliptic estimate.

Lemma 5.2. Assume u 2 H2 (M), then for any " > 0, we have

kukH1 � "


D2u




L2
+ C (") kukL2 (5.4)

and
kukH1 � " k�ukL2 + C (") kukL2 : (5.5)

Proof. Using compact embedding H2 (M) � H1 (M), standard compactness argu-
ment shows

kukH1 � " kukH2 + C (") kukL2 :
Hence

kukH1 � "


D2u




L2
+ " kukH1 + C (") kukL2 :

(5.4) follows. On the other hand, by (5.3) we know

kukH1 � C" (k�ukL2 + kukL2) + C (") kukL2 :
(5.5) follows. �

By (2.12) for any u 2 C1c (Rn),

kuk2
L

2n
n�4 (Rn)

� 1

Y4 (Sn)
k�uk2L2(Rn) : (5.6)

Here is a well known almost sharp Sobolev inequality on compact manifolds. We
present a proof for reader�s convenience and completeness.

Lemma 5.3. For any " > 0, we have

kuk2
L

2n
n�4 (M)

� 1 + "

Y4 (Sn)
k�uk2L2(M) + C (") kuk

2
L2(M) (5.7)

for all u 2 H2 (M).

Proof. The derivation follows the same line as arguments in [DHL] or the proof of
Lemma 2.3. First we claim that for any " > 0, we can �nd a � > 0 such that if u
is supported in B� (p), then

kuk2
L

2n
n+4 (M)

� 1 + "

Y4 (Sn)
k�uk2L2(M) + C (") kuk

2
L2(M) : (5.8)

Indeed let x1; � � � ; xn be a normal coordinate at p, then we have g = gijdxidxj with
gij (p) = �ij and the Euclidean metric g0 = �ijdxidxj . If � is small enough, then

j�u��0uj � "1
��D2u

��+ C jDuj :
Here "1 is a small positive number. Then using (5.6) we have

kuk
L

2n
n�4

� 1 + "1p
Y4 (Sn)

k�0ukL2

� 1 + "1p
Y4 (Sn)

k�ukL2 + C"1


D2u




L2
+ C kDukL2

� 1 + C"1p
Y4 (Sn)

k�ukL2 + C ("1) kukL2 :

Hence

kuk
L

2n
n�4

� 1 + C"1
Y4 (Sn)

k�uk2L2 + C ("1) kuk
2
L2
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(5.8) follows.
To continue, following [DHL] we choose �1; � � � ; �m 2 C1 (M) such that 0 �

�i � 1,
p
�i 2 C1 (M), �i is supported in B� (pi) for some pi and

Pm
i=1 �i = 1.

Then

kuk2
L

2n
n�4

=


u2



L
n

n�4

�
mX
i=1



�iu2

L n
n�4

=
mX
i=1



p�iu

2L 2n
n�4

� 1 + "1
Y4 (Sn)

mX
i=1



� �p�iu�

2L2 + C ("1) kuk2L2
� (1 + "1)

2

Y4 (Sn)
k�uk2L2 + C ("1) kuk

2
H1

� (1 + "1)
3

Y4 (Sn)
k�uk2L2 + C ("1) kuk

2
L2 :

(5.7) follows. �

Lemma 5.4. Let

MP =

�
u 2 H2 (M) : kuk

L
2n
n�4 (M)

= 1 and E (u) = Y4 (g)

�
:

If Y4 (g) < Y4 (S
n), then MP is nonempty. Moreover for any � 2 (0; 1), MP �

C4;� (M) and it is compact in C4;� topology.

Proof. If ui 2 H2 (M) such that kuik
L

2n
n�4

= 1 and E (ui)! Y4 (g). Since

E (ui) �
1

C
kuik2H2 � C kuk2L2 ;

it follows from Holder inequality that supi kuikH2 < 1. Hence after passing to a
subsequence, we may �nd a u 2 H2 such that ui * u weakly in H2, ui ! u in H1

and ui ! u a.e.. We have

k�ui ��uk2L2
= k�uik2L2 � k�uk

2
L2 + o (1)

= E (ui)� E (u) + o (1)
� Y4 (g)� Y4 (g) kuk2

L
2n
n�4

+ o (1) :
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On the other hand

1� kuk2
L

2n
n�4

= kuik2
L

2n
n�4

� kuk2
L

2n
n�4

�
����kuik 2n

n�4

L
2n
n�4

� kuk
2n
n�4

L
2n
n�4

����n�4n
=

�
kui � uk

2n
n�4

L
2n
n�4

+ o (1)

�n�4
n

= kui � uk2
L

2n
n�4

+ o (1) ;

hence

k�ui ��uk2L2
� Y4 (g) kui � uk2

L
2n
n�4

+ o (1)

� (1 + ")
Y4 (g)

+

Y4 (Sn)
k�ui ��uk2L2(M) + o (1) :

Here Y4 (g)
+
= max fY4 (g) ; 0g. Choosing " small enough such that

(1 + ")Y4 (g)
+
< Y4 (S

n) ;

then we have k�ui ��uk2L2 ! 0, this implies ui ! u in H2 (M). It follows that
kuk

L
2n
n�4

= 1 and E (u) = Y4 (g). Hence u 2 MP . The above discussion implies

MP is nonempty and compact in H2 (M) � L
2n
n�4 (M). On the other hand for any

u 2 MP , Pu = Y4 (g) juj
8

n�4 u. It follows from this and the proof of Proposition
4.2 and Corollary 4.2 thatMP � C4;� (M) and it is compact in C4;� (M) for any
� 2 (0; 1). �

Now we are ready to deduce Proposition 5.1.

Proof of Proposition 5.1. If (M; g) is conformal to the standard sphere, then the
conclusion follows from discussions in section 2.2. Assume (M; g) is not confor-
mal di¤eomorphic to the standard sphere, then it follows from Lemma 2.2 and
Proposition 4.1 that

Y4 (g) �
1

�4 (g)
<

1

�4 (Sn)
= Y4 (S

n) :

Here we want to point out that the fact Y4 (g) < Y4 (S
n) can be veri�ed, with the

help of positive mass theorem for Paneitz operator ([HuR, GM, HY4]), by choosing
a particular test function in (1.13) (see [ER, R, GM]). In fact the corresponding
calculation is easier than what we have in the proof of Proposition 4.1, but the
statement in Proposition 4.1 is stronger. By Lemma 5.4, we knowMP is nonempty
andMP � C4;� (M) and it is compact in C4;� (M) for any � 2 (0; 1). �

Assume kerP = 0, then we have

�4 (g) = sup

f2L
2n
n+4 (M)nf0g

R
M
GP f � fd�
kfk2

L
2n
n+4

= sup

u2W 4; 2n
n+4 (M)nf0g

R
M
Pu � ud�

kPuk2
L

2n
n+4

: (5.9)
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Proposition 5.2. Let (M; g) be a smooth compact n dimensional Riemannian
manifold with n � 5, Y (g) > 0, Y4 (g) > 0, Q � 0 and not identically zero. Denote

MP =

�
u 2 H2 (M) : kuk

L
2n
n�4 (M)

= 1 and E (u) = Y4 (g)

�
and

M� =

8<:u 2W 4; 2n
n+4 (M) : kuk

L
2n
n�4 (M)

= 1 and
E (u)

kPuk2
L

2n
n+4

= �4 (g)

9=; :

then

(1) MP � C1 (M) and for any u 2MP , either u > 0 or �u > 0.
(2) Y4 (g)�4 (g) = 1.
(3) MP =M�.

Proof. By Proposition 5.1 we knowMP is nonempty and for any � 2 (0; 1),MP �
C4;� (M). By [HY4, Proposition 1.1] we know kerP = 0 and GP > 0. Assume
u 2 MP , without losing of generality we can assume u+ 6= 0. Now we will use an
observation in [R] to show u > 0. In fact u satis�es kuk

L
2n
n�4

= 1 and

Pu = Y4 (g) juj
8

n�4 u:

Let v = GP (jPuj), then v 2 C4;� (M), v > 0 and juj � v. We have

Y4 (g) �
E (v)

kvk2
L

2n
n�4

= Y4 (g)

R
M
juj

n+4
n�4 vd�

kvk2
L

2n
n�4

� Y4 (g) kvk�1
L

2n
n�4

� Y4 (g) :

Hence all the inequalities become equalities. In particular kvk
L

2n
n�4

= 1 = kuk
L

2n
n�4

.

Since v � juj, we see v = juj. This together with u+ 6= 0 implies u = v > 0.
Standard bootstrap method shows u 2 C1 (M). HenceMP � C1 (M), moreover
when (M; g) is not conformal di¤eomorphic to the standard sphere,MP is compact
in C1 (M).
For u 2MP , we can assume u > 0, then kuk

L
2n
n�4

= 1 and

Pu = Y4 (g)u
n+4
n�4 :

It follows that from this equation and Lemma 2.2 that

�4 (g) �
E (u)

kPuk2
L

2n
n+4

=
1

Y4 (g)
� �4 (g) :

Hence Y4 (g)�4 (g) = 1 and u 2M�.
On the other hand, if u 2M�, let f = Pu, then

�4 (g) =

R
M
Pu � ud�

kPuk2
L

2n
n+4

=

R
M
GP f � fd�
kfk2

L
2n
n+4

:

Hence it follows from Theorem 1.3 that f 2 C1 (M) and either f > 0 or �f > 0.
Without losing of generality we assume f > 0, then u = GP f 2 C1 (M), u > 0
and

Pu = �u
n+4
n�4
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for some positive constant �. Using kuk
L

2n
n�4

= 1 we see

�4 (g) =
E (u)

kPuk2
L

2n
n+4

=
1

�
;

and hence � = Y4 (g). It follows that E (u) = Y4 (g) and hence u 2 MP . Sum up
we seeMP =M�. �
Now we are ready to derive Theorem 1.2.

Proof of Theorem 1.2. It is clear Theorem 1.2 follows from Proposition 5.1 and 5.2.
The compactness of MP in C1 topology was shown in the proof of Proposition
5.2. �
5.2. Yamabe problem revisited. In this subsection we will show the above ap-
proach to the Q curvature equation gives another way to �nd constant scalar cur-
vature metric in a conformal class with positive Yamabe invariant. Here we always
assume (M; g) is a smooth compact n dimensional Riemannian manifold with n � 3
and Y (g) > 0.
The conformal Laplacian is given by

L' = �4 (n� 1)
n� 2 �'+R': (5.10)

Under the conformal change of metrics, we have

L
�

4
n�2 g

' = ��
n+2
n�2Lg (�') : (5.11)

In particular,
R
�

4
n�2 g

= ��
n+2
n�2Lg�: (5.12)

Hence to �nd a conformal metric with scalar curvature 1 is the same as solving

Lg� = �
n+2
n�2 ; � 2 C1 (M) ; � > 0: (5.13)

For any u 2 C1 (M) we write

E2 (u) =

Z
M

Lu � ud� (5.14)

=

Z
M

�
4 (n� 1)
n� 2 jruj2 +Ru2

�
d�:

Note this formula also makes sense for u 2 H1 (M). To solve (5.13), people consider
the variational problem (see [LP])

Y (g) = inf
u2H1(M)nf0g

E2 (u)

kuk2
L

2n
n�2

: (5.15)

Note that

Y (g) = inf
u2H1(M)nf0g

u�0

E2 (u)

kuk2
L

2n
n�2

= inf
u2C1(M)

u>0

R
M
Lu � ud�

kuk2
L

2n
n�2

= infeg2[g]
R
M
eRde�

(e� (M))n�2n :

Denote
ML =

n
u 2 H1 (M) : kuk

L
2n
n�2

= 1 and E2 (u) = Y (g)
o
; (5.16)

then it is well known that ML is always nonempty, ML � C1 (M) and for any
u 2 ML, either u > 0 or �u > 0. If u > 0, then after scaling u solves (5.13).
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Moreover when (M; g) is not conformal di¤eomorphic to the standard sphere, we
have Y (g) < Y (Sn) andML is compact in C1 topology.
Now we turn to another approach to solve (5.13). Since Y (g) > 0, we know the

Green�s function of L exists and it is always positive. We can de�ne an operator

(GLf) (p) =

Z
M

GL (p; q) f (q) d� (q) : (5.17)

This is the inverse operator of L. Let f = �
n+2
n�2 , then (5.13) becomes

GLf = f
n+2
n�2 ; f 2 C1 (M) ; f > 0: (5.18)

Let

�2 (g) = sup

f2L
2n
n+2 (M)nf0g

R
M
GLf � fd�
kfk2

L
2n
n+2

= sup

u2W 2; 2n
n+2 (M)nf0g

R
M
Lu � ud�

kLuk2
L

2n
n+2

: (5.19)

Note that this functional is considered in [DZ].

Lemma 5.5. Let (M; g) be a smooth compact n dimensional Riemannian manifold
with n � 3, Y (g) > 0, then

�2 (g) = supeg2[g]
R
M
eRde�


 eR


2

L
2n
n+2 (M;de�)

: (5.20)

Proof. Using the fact GL > 0, we have

�2 (g) = sup

f2L
2n
n+2 (M)nf0g
f�0

R
M
GLf � fd�
kfk2

L
2n
n+2

� sup

u2W 2; 2n
n+2 (M)nf0g
u�0

R
M
Lu � ud�

kLuk2
L

2n
n+2

� �2 (g) .

Hence

�2 (g) = sup

u2W 2; 2n
n+2 (M)nf0g
u�0

R
M
Lu � ud�

kLuk2
L

2n
n+2

= sup
u2C1(M)

u>0

R
M
Lu � ud�

kLuk2
L

2n
n+2

= supeg2[g]
R
M
eRde�


 eR


2

L
2n
n+2 (M;de�)

:

�

With the solution to Yamabe problem ([LP]) we can easily deduce

Lemma 5.6. Let (M; g) be a smooth compact n dimensional Riemannian manifold
with n � 3, Y (g) > 0. Denote

M�2
=

8<:u 2W 2; 2n
n+2 (M) : kuk

L
2n
n�2 (M)

= 1 and
E2 (u)

kLuk2
L

2n
n+2

= �2 (g)

9=; :

Then

(1) Y (g)�2 (g) = 1.
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(2) ML =M�2
.

Since the proof is essentially the same as the one for Proposition 5.2, we omit it
here. Roughly speaking Lemma 5.6 tells us the maximization problem for�2 (g) will
not produce new constant scalar curvature metrics other than those by minimizing
problem for Y (g). However, without using the solution to Yamabe problem, we
can use the same argument as for Theorem 1.3 to show �2 (g) � �2 (S

n), with
equality holds if and only if (M; g) is conformal di¤eomorphic to the standard
sphere (here one needs to use the positive mass theorem);M�2 is always nonempty,
M�2

� C1 (M) and any u 2 M�2
must be either positive or negative; M�2

is
compact in C1 (M) when (M; g) is not conformal di¤eomorphic to the standard
sphere. In particular, this gives another way to solve (5.13). The details are left to
interested readers.
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