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Abstract. Motivated by the strong maximum principle for Paneitz operator
in dimension 5 or higher found in [GM] and the calculation of the second varia-
tion of the Green�s function pole�s value on S3 in [HY2], we study Riemannian
metric on 3 manifolds with positive scalar and Q curvature. Among other
things, we show it is always possible to �nd a constant Q curvature metric in
the conformal class. Moreover the Green�s function is always negative away
from the pole and the pole�s value vanishes if and only if the Riemannian man-
ifold is conformal di¤eomorphic to the standard S3. Compactness of constant
Q curvature metrics in a conformal class and the associated Sobolev inequality
are also discussed.

1. Introduction

The study of Paneitz operator and Q curvature has improved our understanding
of four dimensional conformal geometry ([CGY]). On three dimensional Riemann-
ian manifold, much less is known. However the Paneitz operator and Q curvature
may contain valuable information besides those related to conformal Laplacian
which is associated with the scalar curvature. These additional information may
help us distinguish some conformal classes from others. The aim of this article is
to understand this fourth order operator for a class of metrics on three manifolds.
Recall on three manifolds, the Q curvature is given by

(1.1) Q = �1
4
�R� 2 jRcj2 + 23

32
R2;

and the fourth order Paneitz operator is de�ned as

(1.2) P' = �2'+ 4div [Rc (r'; ei) ei]�
5

4
div (Rr')� 1

2
Q':

Here e1; e2; e3 is a local orthonormal frame with respect to the metric (see [B, P]).
Under conformal transformation of the metric, the operator satis�es

(1.3) P��4g' = �7Pg (�') :

Note this is similar to the conformal Laplacian operator. As a consequence we know

(1.4) P��4g' �  d���4g = Pg (�') � � d�g:

Here �g is the measure associated with metric g. Moreover

kerPg = 0, kerP��4g = 0;

and under this assumption, the Green�s functions satisfy the transformation law

(1.5) G��4g (p; q) = � (p)
�1
� (q)

�1
Gg (p; q) :

1
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Assume (M; g) is a smooth compact three dimensional Riemannian manifold, for
u; v 2 C1 (M), we denote

E (u; v) =

Z
M

Pu � vd�(1.6)

=

Z
M

�
�u�v � 4Rc (ru;rv) + 5

4
Rru � rv � 1

2
Quv

�
d�

and

(1.7) E (u) = E (u; u) :

By the integration by parts formula in (1.6) we know E (u; v) also makes sense for
u; v 2 H2 (M).
By (1.3) the scaling invariant quantity

�g (M)
1
3

Z
M

Qgd�g

satis�es

���4g (M)
1
3

Z
M

Q��4gd���4g = �2Eg (�)


��1

2

L6(M;g)
:

Hence

sup
�2C1;�>0

���4g (M)
1
3

Z
M

Q��4gd���4g

= �2 inf
�2C1;�>0

E (�)


��1

2

L6

= �2 inf
u2H2(M);u>0

E (u)


u�1

2

L6
:

As in [HY1], we denote

(1.8) I (u) = E (u)


u�1

2

L6

and

(1.9) Y 34 (M; g) = inf
u2H2(M);u>0

E (u)


u�1

2

L6
:

From above discussion we see Y 34
�
�2g
�
= Y 34 (g) for every positive smooth � i.e. it

is a conformal invariant quantity like the Yamabe invariant Y (g) ([LP]).
An interesting question is whether Y 34 (g) is �nite and achieved by some particular

metrics. This inequality is analytically di¤erent from the Y (g) case due to the
negative power involved. On the other hand, the critical point for I satis�es

Pu = const � u�7;
i.e. Qu�4g = const.
In [YZ] it was shown that Y 34

�
S3; gS3

�
is achieved by the standard metric gS3

itself (see [H, HY1] for di¤erent approaches). The closely related condition NN was
introduced in [HY1, De�nition 5.1]. We recall the de�nition here for reference:

De�nition 1.1. Given a smooth compact 3 dimensional Riemannian manifold
(M; g), if for any u 2 H2 (M), u (p) = 0 for some p implies E (u) � 0, then
we say (M; g) satis�es condition NN. If for any nonzero u 2 H2 (M), u (p) = 0 for
some p implies E (u) > 0, then we say (M; g) satis�es condition P.
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For detailed discussion of condition NN, we refer to [HY1, section 5]. Here we
simply note that both condition NN and P are conformally invariant properties.
The main use of condition NN is (see [HY1, Lemma 5.3]): if g satis�es condition
NN, u 2 H2 (M), u (p) = 0 and E (u) = 0, then Pu = const � �p. In particular,
when kerP = 0, u is simply a constant multiple of the Green function Gp. If
(M; g) satis�es condition P, then Y 34 (g) is achieved and modulus scaling the set of
minimizers are compact in C1 topology.�

S3; gS3
�
satis�es condition NN but not condition P. Indeed, let x be the coordi-

nate given by the stereographic projection with respect to north pole N , then the
Green�s function of P at N is given by

GN = �
1

4�

1q
jxj2 + 1

:

In particular, E (GN ) = GN (N) = 0. In general condition NN is hard to check. In
[HY1] by explicit calculation of the eigenvalues and Green�s function pole�s value
for Paneitz operator on Berger�s spheres, condition NN was veri�ed for all these
special metrics. The main aim of this note is to prove the following

Theorem 1.1. Let M be a smooth compact 3 manifold, consider

M =

�
g :

g is a smooth metric such that there exists a positive
smooth function � with R�2g > 0; Q�2g > 0

�
:

EndowM with C1 topology. Then we have
� For every g 2 M, kerP = 0, the Greens function Gp < 0 on Mn fpg.
Moreover if there exists a p with Gp (p) = 0, then (M; g) is conformal
di¤eomorphic to the standard S3.

� For every g 2 M, there exists � 2 C1 (M), � > 0 such that Q�2g = 1 and
R�2g > 0. Moreover as long as (M; g) is not conformal di¤eomorphic to
the standard S3, the set�

� 2 C1 (M) : � > 0; Q�2g = 1
	

is compact in C1 topology, and any such � must satisfy R�2g > 0.
� Let N be a path connected component of M. If there is a metric in N
satisfying condition NN, then every metric in N satis�es condition NN.
Hence as long as the metric is not conformal to the standard S3, it satis�es
condition P . As a consequence, for any metric in N ,

inf
n
E (u)



u�1

2
L6(M)

: u 2 H2 (M) ; u > 0
o
> �1

and is always achieved.

Note that positive Q curvature Berger�s sphere are contained in the path con-
nected component of the standard sphere and condition NN follows. Theorem 1.1
is motivated by recent study of Paneitz operator in dimension 5 or higher in [GM],
where they found strong maximum principle and constant Q curvature metrics in
conformal class of metrics with positive scalar and Q curvature, and the calculation
of second variation of Green�s function pole�s value near the standard sphere in
[HY2].
To prove Theorem 1.1, the �rst step is to show Green�s function must be non-

positive. In another word, for any u 2 C1 (M), Pu � 0 implies u � 0. To achieve
this we use the method of continuity with the path used in [GM] for dimension 5
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or higher. In dimension 3, the argument in [GM] will not run through since certain
function which is supharmonic in higher dimension becomes subharmonic and one
can not apply strong maximum principle. Interestingly we found that use of weak
Harnack principle for another function would resolve the obstruction. As a con-
sequence we know kerP = 0 and the Green�s function exists. Next note that the
argument in [HR] can be adapted to dimension three to show the Greens function
pole value is negative when the metric is not conformally equivalent to the stan-
dard sphere. In particular, in this case we know the Green�s function are strictly
negative everywhere. Based on this fact and apriori estimate for solutions of some
integral equations we can show the existence of constant Q curvature metrics in
the conformal class. It is not clear in general the minimizer for functional I (see
(1.8)) exists. But when the metric can be connected to another metric satisfying
condition NN through a good path, we know that metric satis�es condition NN and
Y 34 (g) is achieved hence �nite.
We would like to thank M. Gursky for sending us their preprint [GM].

2. Green function�s sign and pole�s value

In this section we will show that for metrics with positive scalar curvature and
positive Q curvature, the Green�s function are in fact negative everywhere except
at the pole. Moreover, if the value at pole vanishes, then the metric is conformally
equivalent to the standard sphere. The �rst step is the following

Proposition 2.1. Let (M; g) be a smooth compact Riemannian 3 manifold with
R > 0, Q � 0. If u 2 C1 (M), u 6= const and Pu � 0, then u > 0 and Ru�4g > 0.

This proposition is in the same spirit as [GM, Theorem 2.2] and we will adapt
their proof for dimension 5 or higher to dimension 3. The main new ingredient is
when the strong maximum principle does not apply, we can replace it by the weak
Harnack principle.

Proof of Proposition 2.1. For � � 0, let u� = u+�, then Pu� = Pu� �
2Q � 0. Let

(2.1) �0 = inf f� � 0 : u� > 0g :
For u� > 0, let g� = u�4� g, then

Q� = �2Pu�4� g1 = �2u
7
�Pu� � 0:

This implies

�1
4
��R� � 2 jRc�j2 +

23

32
R2� � 0

and hence ���R� + 23
8 R

2
� � 0. In particular by strong maximum principle (or

use the weak Harnack inequality [GT, Theorem 8.18, p194]) if R� � 0, then either
R� > 0 or R� � 0. The latter case is impossible since the Yamabe invariant
Y (g) > 0 ([LP]). Hence R� > 0. Now for �� 1, we have

R� = �4R(1+��1u)
�4
g
> 0:

Let
�1 = inf f� > �0 : for all � � �, R� > 0g :

Then �1 = �0. If not, then R�1 � 0 and hence R�1 > 0. This contradicts with the
de�nition of �1. Hence for any � > �0, R� > 0. Because

R� = u5�
�
�8�

�
u�1�

�
+Ru�1�

�
;
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we know

��
�
u�1�

�
+
R

8
u�1� > 0:

It follows from weak Harnack principle [GT, Theorem 8.18, p194] that for any
0 < p < 3,

inf
M
u�1� � C (M; g; p)



u�1� 


Lp(M)

:

Because u 6= const, we know infM u�1� � C, independent of � > �0, and hence

u�1� 


Lp(M)

� C:

Let � # �0, we see
(2.2)



u�1�0 

Lp(M)
� C <1:

Hence u�0 can not touch 0 i.e. u�0 > 0. Indeed if u�0 (p) = 0, then under the
normal coordinate at p, by smoothness of u we have u�0 = O

�
r2
�
, here r is the

distance to p. In particular


u�1�0 

Lp(M)

= 1 for 3
2 � p < 3, this contradicts with

(2.2). Hence �0 = 0, u > 0. It follows that Ru�4g � 0 and hence Ru�4g > 0. �
Corollary 2.1. Assume R > 0, Q � 0, then kerP � fconstant functionsg. If in
addition Q is not identically 0, then kerP = 0 i.e. 0 is not in the spectrum of P .

Proof. Assume Pu = 0, then u � const. If not, by applying the previous proposi-
tion to u and �u, we see u > 0 and �u > 0, a contradiction. �
Next we will show the Green�s function is always negative away from the pole.

Proposition 2.2. Assume R > 0, Q � 0 and not identically zero.
� For any p 2 M , let Gp be the Green�s function of P at p i.e. PGp = �p,
then

GpjMnfpg < 0

and
�8�

�
G�1p

�
+RG�1p � 0:

� If u 2 H2 (M) such that Pu � 0 in distribution sense and u is not identi-
cally zero, then either u > 0 or u = �cGp for some c > 0; p 2M , moreover

�8�
�
u�1

�
+Ru�1 � 0

in distribution sense.

Proof. First we will show that if u 2 H2 (M) such that Pu � 0 in distribution sense
and u is not identically zero, then u � 0 and for any 0 < p < 3,



u�1


Lp(M)

<1,
moreover

�8�
�
u�1

�
+Ru�1 � 0

in distribution sense.
Indeed we can �nd a sequence of smooth nonzero functions fi such that fi ! Pu

in H�2 (M) = H2 (M)
0 and fi � 0. Because 0 is not in spectrum of P , we can �nd

ui 2 C1 (M) such that Pui = fi. This implies ui ! u in H2 (M). It follows from
the Proposition 2.1 that ui > 0 and Ru�4i g > 0 i.e.

�8�
�
u�1i

�
+Ru�1i > 0.

Because u is not identically constant and ui � u we see infM u�1i � C independent
of i. Hence by weak Harnack inequality we have



u�1i 


Lp(M)

� C for any �xed
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p 2 (1; 3). By Fatou�s lemma we have


u�1



Lp(M)
� C and u�1i * u�1 in Lp,

hence �8�
�
u�1

�
+Ru�1 � 0 in distribution sense.

It follows that Gp � 0 and


G�1p 



Lq(M)
< 1 for any 1 < q < 3. Because Gp is

smooth away from p, we see Gp < 0 away from p. Now if Pu � 0, then Pu = ��
for some nonnegative measure �. It follows that

u (p) = �
Z
M

Gp (q) d� (q) :

It � is not a constant multiple of Dirac mass, then clearly u (p) > 0 for every p.
If � is a constant multiple of Dirac mass, then u is simply a constant multiple of
Green�s function. �

For the Green�s function pole�s value, we adapt the argument in [HR] to prove
the following

Proposition 2.3. Assume the Yamabe invariant Y (g) > 0, kerP = 0. If p 2 M
such that Gp < 0 on Mn fpg, then Gp (p) < 0 except when (M; g) is conformal
equivalent to the standard S3.

Proof. Under the conformal normal coordinate with respect to p, we have after
multiplying 32�, the Green�s function of conformal Laplacian L = �8�+R can be
written as (see [LP, section 6], indeed since we are in odd dimension, the remain
term belongs to O(1) (1))

� =
1

r
+O(4) (1) :

Here we write f = O(4) (1) to mean f is C4 away from origin with @i1���ikf = O
�
r�k

�
for 0 � k � 4. We write G = Gp, then (see [HY1, section 4])

G = A+O(4) (r) :

Let eg = �4g on Mn fpg, then
eR = 0; eQ = �2 ���fRc���2 :

On Mn fpg,
0 = PgG = P��4egG = �7 eP (�G) :

Denote u = �G < 0, then

0 = e�2u+ 4fdiv hfRc�eru; ei� eii+ ���fRc���2 u:
Here e1; e2; e3 is a local orthonormal base with respect to eg.
For � > 0 small, let B� = B� (p) with respect to the conformal normal coordinate,

then integrate the above equation on MnB� we see

0 = �
Z
@B�

@ e�u
@e� deS � 4Z

@B�

fRc�eru; e�� deS + Z
MnB�

���fRc���2 ude�:
We will let � ! 0+ and calculate all the limits.

Claim 2.1.

lim
�!0+

Z
@B�

@ e�u
@e� deS = 8�A:
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Indeed since eg = �4g, we seee� = ��2� = ��2@r;

deS = �4dS:

On the other hand, e�u = ��4�u+ 2��4r log � � ru
= 2Ar +O(2)

�
r2
�
:

Hence

@ e�u
@e� deS = �2@r e�u � dS

=

�
2A

r2
+O(1)

�
1

r

��
dS:

This implies Z
@B�

@ e�u
@e� deS = 8�A+O (�) :

Claim 2.2.

lim
�!0+

Z
@B�

fRc�eru; e�� deS = 0:
Indeed we havefRc = Rc� 2D2 log � + 4d log �
 d log ��

�
2� log � + 4 jr log �j2

�
g;

log � = � log r +O(4) (r) ;eru = �Ar2@r +O
�
r3
�
;e� = ��2@r;

hence fRc = O
�
1
r

�
and fRc�eru; e�� deS = O

�
1

r

�
dS:

The claim follows.
By letting � ! 0+ we get Z

Mnfpg

���fRc���2 ude� = 8�A:
Note A = Gp (p). If A = 0, then fRc = 0. Since (Mn fpg ; eg) is asymptotically �at,
it follows from relative volume comparison theorem that (Mn fpg ; eg) is isometric to
the standard R3. In particular, (M; g) must be locally conformally �at and simply
connected compact manifold, hence it is conformal to the standard S3 by [K]. �

3. Proof of Theorem 1.1

Based on preparations in section 2, we will complete the proof for Theorem 1.1.
Assume (M; g) is not conformal to the standard S3, then the Green�s function
G (p; q) < 0 for all p; q 2M . For u 2 C1 (M), u > 0,

Qu�4g = 1



8 FENGBO HANG AND PAUL C. YANG

if and only if

Pu = �1
2
u�7

and this is equivalent to

(3.1) u (p) = �1
2

Z
M

G (p; q)u (q)
�7
d� (q) :

For convenience we write K (p; q) = �G (p; q). We will derive the existence of
solution by degree theory. Indeed for 0 � t � 1 let
(3.2) Kt (p; q) = 1� t+ tK (p; q) :
Then for some �0; �1 > 0, we have �

�1
0 � Kt (p; q) � �1. Consider the equation

(3.3) u (p) =
1

2

Z
M

Kt (p; q)u (q)
�7
d� (q)

for u 2 C (M) and u > 0.

Claim 3.1.
c0 � u (p) � c1:

here

c0 =

�
� (M)

2

� 1
8

��10 �
� 7
8

1 ; c1 =

�
� (M)

2

� 1
8

�
7
8
0 �1:

Indeed by the equation we see

1

2�0

Z
M

u�7d� � u (p) � �1
2

Z
M

u�7d�:

Hence for p1; p2 2M ,
u (p1) � �0�1u (p2) :

It follows that

u (p) � �1
2

Z
M

u�7d� � � (M)

2
�70�

8
1u (p)

�7
;

hence the upper bound follows. Lower bound can be proven similarly.
Let


 =
n
u 2 C (M) : c0

2
� u � c1

2

o
� C (M)

with uniform convergence topology. Let

(Ttu) (p) =
1

2

Z
M

Kt (p; q)u (q)
�7
d� (q) :

Claim 3.1 tells us

deg (I � T1;
; 0) = deg (I � T0;
; 0) = 1:
The existence of solution follows.
Let

M0 = fg 2M : (M; g) satis�es condition NNg .
It is clear thatM0 is closed. We only need to showM0 is open. Indeed assume g 2
M0, if (M; g) is not conformal di¤eomorphic to the standard S3, then Gp (p) < 0
for all p 2M . It follows that (M; g) satis�es condition P, and hence nearby metric
also satis�es condition P (see [HY1, Lemma 5.1]). Assume (M; g) is conformal
di¤eomorphic to the standard S3, we may assume M = S3 and g = gS3 , the



Q CURVATURE ON A CLASS OF 3 MANIFOLDS 9

standard metric. Recall we have the so called Berger�s metric gt for t > 0, with
g1 = gS3 (see [HY1, section 8]).

Claim 3.2. If eg is close to gS3 in the C1 topology and
�
S3; eg� is not conformally

equivalent to
�
S3; gS3

�
, then there exists a t 6= 1, jt� 1j small, and a continuous

path (with respect to C1 topology) of metrics h = h (s), with h (0) = eg, h (1) = gt,�
S3; h (s)

�
is not conformally equivalent to

�
S3; gS3

�
and h (s) is close to gS3 in

C1 topology.

Assume the claim has been proven, then we will show eg satis�es condition P.
Indeed the set fs 2 [0; 1] : h (s) satis�es condition Pg is clearly open, but it is also
closed since for any limit point s, h (s) satis�es condition NN, and the Green�s
function pole value does not vanish (by Proposition 2.3) imply it satis�es condition
P.
To prove Claim 3.2, we recall in three dimension, the metric is locally conformally

�at if and only if the Cotton tensor equals to zero. Note jCgt j
2
= 192t2

�
t2 � 1

�2 6= 0
for t 6= 1 (see [HY1, section 8]). Since

�
S3; eg� is not conformally equivalent to�

S3; gS3
�
, by [K] we know it is not locally conformally �at, hence it�s Cotton tensoreC 6= 0 somewhere. By rotation we can assume eC (N) 6= 0, here N is the north pole.

To continue we �x a � 2 C1
�
S3
�
with 0 � � � 1, � = 1 near north pole N and 0

near the south pole S. Then the path

h (s) =

�
(1� 2s) eg + 2s [�eg + (1� �) gt] ; 0 � s � 1

2
(2� 2s) [�eg + (1� �) gt] + (2s� 1) gt; 1

2 � s � 1 :

satis�es all the requirement. This �nishes proof of the claim.
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