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Introduction

Basic example: Supervised learning

Given S = {(x;,y; = f*(x;)), 7 € [n|}, learn f*.

© This is a problem about function approximation.
© Based on finite pieces of “labeled” data

e regression (f* is continuous) vs classification (f* is discrete)
e will neglect measurement noise (not crucial for the talk)

o assume x; € X = [0,1]% d is typically quite large

@ notation: p = the distribution of {x;}

In practice, one divides .S into two subsets, a training set and a testing set.
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o Input: = € [0, 1]¢ with
d=32x 32 x 3 =23072.
e Output: f* € {0,1,...,9}.
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Introduction

Regression example: Inter-atomic potential

http:/ /www.deepmd.org/database/deeppot-se-data/

standardized DeePMD-SE energy

A

u':-n&:»am.h

w o © N
Th

V = V(azl, o, :

(a) small molecules

4 (al) Aspirin (a2) Ethanol

2

0 /

'2l 5-0 F e

-4}

4| (@3) Malonaldehyde. '] | (a4) Naphthalene
'r '4‘

2

0 /

2 t. ‘ ﬁ

4 “",’ ‘,4’

/e

(ab) Salicylic acld

(a6) Uracil

JA

2 0 2 4

-4-2024

(e) pyridine

4| (e1) Pyridine I

(e2) Pyridine I -]

(b) MoS> + Pt

',wN>

(c) CoCrFeMnNi HEA

(b1) MoS; slab

(b2) MoS; slab

, 4] (¢ Rand. seed1 | | (c2) Rand. seed2 .-~
+ 30 Pt cluster -’ + 55 Pt cluster "," -
2 e -~ 2 5 K
e f‘. o i
o/ . oo S /s
2 4 ‘,/ § -2 ,"" s
4 ¥ ii‘i\' 4 "_1 .
4 2 0 2 4 4 2 0 2 4
4 (b3) MoS; slab ) (b4) Bulk Pt
. +106Ptcluster"’,f ,',' (d) Tic)2
0 . ” o"' 4 (d1) Anatase (d2) Brookite ,
”,. / . ) e
-2} = SEEen / 4
) & '&_",.‘:‘;;j:“;‘:r; 0 7
L A | e ,
2 g S :ﬁ‘%-
4 (b5) Pt cluster j (b6) Pt surface 4 _N‘ Jz_' *
2 ey . 4 -2 0 2 4
P 5 4| @3) Rutile
0 /, Py
rd ,r/ ______ 2 /
=2f T 0 s
] r Ay
i 2 ‘)' - .
4 2 0 2 4 4 2 0 2 4 %
=4 L R
4 2 0 2 4
(f) others
4| €D ALO; (f2) Cu (f3) Ge S o si
0 7
r"
-2 .
y . ,

4 -2 0 2 4

-4 -2 0 2 4

-4 -2 0 2 4

4 -2 0 2 4

standardized DFT energy

—>

February 27, 2020

6 / 64



Introduction

ML in computational science and scientific computing

© PDEs and control problems
e Control problems in high dimension (Han and E, 2016)
e High dimensional nonlinear parabolic PDEs (Han, Jentzen and E, 2017)
o Least square methods for PDEs (Sirignano and Spiliopoulos, 2018)
© Molecular dynamics
e Neural network models (Behler and Parrinello, 2007)
o Kernel methods (Bartayne, Kondor, Csanyi, 2010)
@ Deep Potential Molecular Dynamics (DPMD, Zhang, Han, Wang, Car and E, 2017):
molecular dynamics simulation with quantum accuracy for millions of atoms
© Quantum many-body problem

e Schrodinger equation for spins (Carleo and Troyer, 2016)
e Schrodinger equation for electrons (Han, Zhang and E, 2018)
@ DeepMind group (Pfau, Spencer, Matthews and Foulkes, 2019)

@ Multi-scale modeling

e Uniformly accurate moment closure models for kinetic equations (Han, Ma, Ma and E, 2019)
e Hydrodynamic models for polymer fluids (Lei and E 2020)
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Introduction

Standard procedure for supervised learning

Focus on regression problem
@ choose a hypothesis space (set of trial functions) H,, (m ~ dim(H.,))

o (piecewise) polynomials, wavelets, ...
@ neural network models

@ choose a loss function (to fit the data)

e ‘empirical risk”

e regularization
© choose an optimization algorithm and parameters

e gradient descent (GD), stochastic gradient descent (SGD), ...
e hyperparameters (initialization, step size=learning rate, ...)

Objective: Minimize the “population risk” (also known as the “generalization error” )

R(f) = Ean (@) = f(@)) = [ (f(a) = (@) d

Important parameters: m,n,t,d (typically interested in the case: m,n,t — oo, d > 1).
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Introduction

Approximation and estimation errors

Want to understand f* — f where f = the output of the ML model.
fm = argmin sy, R(f) = “best approx” to f* in H,,.

Decomposition of the error:

frf=f —futfu—1f

@ f*— f,, is the approximation error, due entirely to the choice of the hypothesis

A

@ f,, — f is the estimation error — additional error caused by the fact that we only have a
finite dataset
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Introduction

Approximation error: Basics

How do we approximate functions?

@ polynomials, piecewise polynomials, splines
@ Fourier wavelets

@ other special basis functions (e.g. atomic orbitals)

1f = Fullzzix) < Com™ | f]] ocx)

Appearance of 1/d in the exponent of m: Curse of dimensionality (CoD)!

If we want m~%/? = 0.1, then m = 109 = 109, if & = 1.
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Introduction

Dealing with high dimensionality: Monte Carlo integration

Monte Carlo: X = [0, 1]%, {x;,j € [n]} is uniformly distributed in X.

1) = [ s@dn Ll =33 gl

n

E(1(9) ~ o) =2, arlg) = [ gP(a)de - ( / g(w)dw)2

The O(1/+/n) rate is (almost) the best we can hope for.

However, var(g) can be very large in high dimension. Variance reduction!

What do we learn from this for our function approximation problem?

Express functions as expectations!
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Introduction

Estimation error

Since we can only work with a finite dataset, what happens to our solution outside of the
dataset?

2.0 - _
—— Target function
—— Interpolant

1.5 - I

1.0 -

0.5 -

0.0 -

-1.0 —0.5 0.0 0.5 1.0

Figure: The Runge phenomenon
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The generalization gap

f = argminfe?—tmkn(f)

o) = [ g@)dn. Lio) =1 Y gle)). gla)=(fle) - 1'(@))

Difficulty: f is highly correlated with {z,}.

Should NOT expect: generalization gap = O(1/+/n) to hold automatically.

February 27, 2020 13 / 64



Introduction

Use the trivial bound:

R(f) = Ralf)] < sup [R(f) = Ralf)] = sup [1(g) = Lu(g)]
fetm Je€Hm

The RHS depends heavily on the nature of H,,.

@ For Lipschitz space

1
sup I (h) = Ln(h)| ~ =7
17l pip<1 n
This gives rise to CoD for the size of the dataset.
@ For the Barron space, to be defined later
1

sup |I(h) — I,(h)| ~ —
HhHBI;l() (h) NG

“Donsker spaces”
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Introduction
Rademacher complexity

Let H be a set of functions, and S = (x1, @9, ..., ;) be a set of data points. Then, the
Rademacher complexity of H with respect to .S is defined as

SUPZ& w@] :

heH

1
Radg(’H) = —E§

where {&;}"; are i.i.d. random variables taking values 1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

Given a function class H, for any 6 € (0, 1), with probability at least 1 — § over the random
samples S = (x1,- -+ ,x,),

e (b)) - -3 hle)

log(2/5
< 2Radg(H) + sup ||| 8(2/0)
heH 2n

Sup
heH

1 log(2/0
> —Radg(H) — sup ||h|| 082/ )

su
P 2 heH 2n

heH

——Zh x;)
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Introduction

Two types of machine learning models

(1). Models that suffer from CoD:

generalization error = O(m~*/%) and/or O(n~"/4)

@ piecewise polynomial approximation
@ wavelets with fixed wavelet basis

(2). Models that don’t suffer from CoD: For example

generalization error = O(y1(f*)/m + Y (f*)/v/n)

These are “Monte-Carlo-like” bounds, v, and 5 play the role of variance in Monte Carlo.
@ random feature models
@ neural network models

Balance of approximation error (prefers large hypothesis space) and estimation error (prefers
small hypothesis space).
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Representation and approximation of functions
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© Representation and approximation of functions
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Representation and approximation of functions

An illustrative example

Traditional approach:

{w;} is a fixed grid, e.g. uniform.

1f = Fullzzix) < Com™ | f]] o)

“New" approach:
flx) = / a(w)e' P r(dw) = By ra(w)e' @)
Rd

where 7 is a probability measure on R?. Let {w;} be an i.i.d. sample of .

Bl %i  var(f)

m

where

var(f) = Eurla(w)]” — f(z)’
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Representation and approximation of functions

Integral transform-based representation

Let o be a nonlinear scalar function (the activation function), e.g. o(z) = max(z,0)

flx) = /Rcm a(w)o(w' &)r(dw) = Eyra(w)o(w’ &)

fla) = / a0 (w®)p(da, dw) = By a0 (w” %)
Rd+2

& = (x,1) = x (standard abuse of notation in ML).

February 27, 2020 19 / 64



Representation and approximation of functions

What kind of functions admit such a representation?

Consider the case when o(z) = max(z,0), the ReLU (rectified linear units) function.

Theorem (Barron and Klusowski (2016)): If [, ||| | f(w)|dw < 00, where f is the
Fourier transform of f, then f can be represented as

fl@) = f(@) = (10} + @ V1) = [ astwTe)p(da. dw
for © € [0,1]¢. Furthermore, we have

Etwurmslallwl <2 [ Jolflfw)jdo
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Representation and approximation of functions

Generalizations

1. General integrand

f(
Example: ¢(x,u) = ac(w! ),

x) = / o, w)p(du) = Ey.,d(x, u)
)= (a,w)

2. High co-dimensional case

flx) = / a(wy, ws) o (wi x)os(wa x)m(dw,, dw,)
RAd+1Rd+1

= Ewpra(wr, ws)o(wi z)os(wa x)

o1 and oy are two nonlinear scalar functions.

3. Multi-layers

flx) = /Rd1 a;(wy)o (wy z)m (dw) = By a1 (wi)o(w) 2) = By, ) p @10 (w7 2)

z = /d as(ws)o(wy )T (dws) = Eypyor,@o(wo)o (w3 ) = By 10y)~p, @20 (W) )
R42
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Representation and approximation of functions

Approximation by discretization

Monte-Carlo:
fla) = [ atwolw'e)r(dw
1
m(dw) ~ — Y bw;  a; = alw;)
J
1
(@) ~ ful) = -3 a0(wla)
J

This is a random feature model with features: {o(w x),j =1,--- ,m}

Model parameters: 6 = {a;}

February 27, 2020 22 / 64



Representation and approximation of functions

Recovering the two-layer neural network model

fl@) = [ aotw@)p(da, dw
! 0
p<da7 dw) ~ E Z (aj,wj)

J

1

f(@) ~ fnlw) = — S ajowl)
J
This is a two-layer neural network model.

Model parameters 6 = {(a;, w,)}.
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Generalization error estimates
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Generalization error estimates

Random feature model

{&(-;w)}: collection of random features. 7: prob distribution of the random variable w.

Hypothesis space: Given any realization {w;}",, i.i.d. with distribution 7
1 m

Ho({w;}) = {fulz.a) = — > ajé(ziw))},

J=1

Consider functions of the form

Fy={f @) = [ atw)otzwintw)}. 1], = Elatw)P) 7 < oc}

J> is the same as the reproducing kernel Hilbert space (RKHS) with kernel:

k(x, ') = Eyrlo(z; w)d(x'; w)]

February 27, 2020 25 / 64



Generalization error estimates

Direct and Inverse Approximation Theorem

Theorem (Direct Approximation Theorem)
Assume || f|| 7. < co. Then for any § € (0, 1), with probability at least 1 —  over the
random sampling of {w,}"" ,, there exists a € R"™ such that

j=17
2

Rl < W3
m

(14 log(2/6)) .

Moreover, $pjciu la;] < [1£]1 7.

Theorem (Inverse Approximation Theorem)

Assume that ¢ is continuous and bounded, and supp(r) is compact. Let (w;)32, be a
sequence of i.i.d. samples of w. Assume that there exist a sequence (a]) °0 W/th
sup; |a;| < C, such that
1 m
lim — ) " ajo(w;-z) = f*(),

m—oo M,
J=1

for all € [0,1]%. Then || f*||z. < C and there exists a*(-) : Q +— R such that

/(@) Z/Qa*(w)cf(wm)dw(w), a.s.
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Generalization error estimates

A priori estimates of the regularized model

Lrala) = Raa) + %‘%

Consider the regularized estimator

a, = argmin L, \(a)

T heorem
Assume that || f*||oc < 1. There exist a constant Cy, such that for any 6 > 0, if

A > Cy,m > log*(n/d), then with probability at least 1 — & over the choice of training set,
we have

R(a,) 5 B sy

117

Ifll7 ,  [los(rllf*llr./0) log® (n/5)
Vn +\/ n
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Generalization error estimates

Two-layer neural network model: Barron spaces

Consider the function f : X = [0, 1] = R of the following form
fla) = / ao(w'@)p(da, dw) = E Jac(w'z)}, =€ X
Q

) = R! x R+ p is a probability distribution on ().

Il = inf \/Ela?ll ]

where P = {p: f(x) = E,Jac(w"z)]}.
B={feC":|fllz< oo}

February 27, 2020 28 / 64



Generalization error estimates
Barron space and RKHS

Equivalent formulation (taking conditional expectation with respect to w):

ffx) = /a(w)a(wTa:)ﬁ(dw), x=(x,1)

Define:
kr(x, x') = Eporo(w' z)o(w’ 2

We can write

B =M,

Shallow neural network can be understood as kernel method with adaptive (learned) kernel.

The ability to learn the right kernel is VERY important.
For example, SVM would be perfect if the right kernel was known.
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Generalization error estimates

Theorem (Direct Approximation Theorem)
There exists an absolute constant C|y such that

Collfll5

1f = fullr2ix) < NG

Theorem (Inverse Approximation Theorem)
Let

m m
def 1 T\, 1L 2 2 2 +
Ne = {EZaka(wkm) . EZ lag)?|wi|?> < C%,m e Nt 1.
k=1 k=1
Let f* be a continuous function. Assume there exists a constant C' and a sequence of
functions f,, € N¢ such that

fm(®) = ()
for all x € X, then there exists a probability distribution p* on (), such that

F@) = [ artwa)p(da, dw)

for all x € X and || f*||g < C.

February 27, 2020 30 / 64



Generalization error estimates

Complexity estimates

Theorem

Let Fo ={f € B,||flls < Q}. Then we have

21n(2d)
n

Radg(Fq) < 20
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Generalization error estimates

A priori estimates for regularized model

1og( d)

L,(0) = R,(0) + A 0], 0, = argmin £,(0)

where the path norm is defined by:

1m
10]]p = EZI%PIIWII%
\m &5

Theorem
Assume that the target function f* : X — |0, 1] € B. There exist constants C, Cy, C5, such
that for any 0 > 0, if \ > Cy, then with probability at least 1 — 0 over the choice of training
set, we have

n

Typical results in ML literature: a posteriori estimates

6]
NG

R(0,) — Rn(6,) < C1 121
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The optimization problem and gradient descent
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@ The optimization problem and gradient descent
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The optimization problem and gradient descent

The continuous formulation: Gradient flows

Recall the population risk: R(f) = E,,.(f(x) — f*(x))* = "free energy”
flx) = / a(w)o(w' z)r(dw) = Eyra(w)o(w’ x)
Rd+1

@ a = nonconserved, use “model A" dynamics (Allen-Cahn):

00 _ iR
ot da

@ 7 = conserved (probability density), use “model B" (Cahn-Hilliard):

o
E—'_V.J_O
J:m),v:—VV,V:(S—R.
O
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The optimization problem and gradient descent

Gradient flow for the feature-based model

Fix 7, optimize over a.

Ora(w, t) = —i—f(w,t) = —/a(zb,t)K(w,zb)w(du?) + f(w)

K(w,w) = E,[o(w'z)o(w'z)], f(w)=E[f (z)o(w'z)]

This is an integral equation with a symmetric positive definite kernel.
Decay estimates due to convexity: Let f*(x) = Eypra*(w)o(w! x),

I(t) = %II@(n t) = a’()|I* + t(R(a(t)) — R(a"))

Then we have
dl
<

S 0, Rla(t)) <

t
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The optimization problem and gradient descent

Conservative gradient flow

f(x) = Eyo,0(x, u)

Example: u = (a, w), ¢(x,u) = ac(w' x

R
o

~

Viw) = Pw) = Ea[(fle) — £ ()o@, u)] = / K (u, @)p(da) — f(u)

Op = V(pVV)

@ This is the mean-field equation derived by Chizat and Bach (2018), Mei, Montanari and

Nguyen (2018), Rotskoff and Vanden-Eijnden (2018), Sirignano and Spiliopoulos
(2018), by studying the continuum limit of two-layer neural networks.

@ It is the gradient flow of 'R under the Wasserstein metric.
@ R is convex but NOT displacement convex.
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The optimization problem and gradient descent

Convergence results

Chizat and Bach (2018, 2020): If {p(t)} does converge as t — oo, then it must converge to
a global minimum (and max margin solution for the classification problem if cross entropy is
used as the loss function).

A simple one-D example (E, Ma and Wu(2019)):

Fla) = / " olcos(w — 2))pldw), f(x) = / " o(cos(w — 2))p* (dw)

%V (VK (o))
K(w,w') = %/0 ' o(cos(w — x))o(cos(w' — x))dx

Theorem
Assume that p* is the uniform distribution and py has C"* density. Then

Jim Wa(p(-, ), p) =0
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The optimization problem and gradient descent

Discretizing the gradient flows

@ Discretizing the population risk (into the empirical risk) using data

@ Discretizing the gradient flow

@ particle method — the dynamic version of Monte Carlo
@ smoothes particle method — analog of vortex blob method
@ spectral method — very effective in low dimensions

We will see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.
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The optimization problem and gradient descent

Particle method for the feature-based model

Discretized version:

%aj@) _ _% > K(wj, wy)ar(t) + fw;)
k

~

This is exactly the GD for the random feature model.

F() ~ fulz) =~ ajo(wla)

m =
J
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The optimization problem and gradient descent

The over-parametrized regime (

Consider the case when m = oo, n finite
SR

da,

(%an(fw, t) = —

(w,t) = —/a(ﬁ),t)Kn(w,zb)ﬂ(d’lb) + fn(w)

Kow,w) = = Y olw'e))o(@"e), fiw) =~ yolw’s)

J
Let 1,(t) = 3l|an(-, ) — ai(-)]|%, + t(Ru(an(t)) — Ra(as)). Then we have

arl,
— <0
dt —
- Co
Jan( )2 < Co Rufan(t) < =

From these, we obtain the bounds for generalization error: with probability 1 — ¢

R(an(t) < Collf*lI3, + 1) (1 - \/\/1@ " 1)
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The optimization problem and gradient descent

The under-parametrized regime (

m finite, n = oco. Hence 7%” = R.

Assume f*(x) = Eyra*(w)o(w!x).

{w;,j € [m]} =iid. sample of 7, «a = (a*(wy),a*(ws), - ,a*(wy)).
Then Monte-Carlo estimates gives:

Convexity estimates gives:
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The optimization problem and gradient descent

The resonant regime ( )

The “double descent” phenomenon (Belkin et al)

MNIST, n=500

: - 10°
10° 5 in-norm Sol.

=
o
o

.
o
AR

,_.
o
N\

1071

Test error
=
o
&

,_.
o
A

Smallest eigenvalue

-
o
b

1072 |

-
o
&

T T m = n M T T
10! 102 103 104
Number of features: m

The large test error is caused by small eigenvalues of the Gram matrices.
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The optimization problem and gradient descent

The slow deterioration

The test accuracy deteriorates slowly along the GD trajectory:

MNIST, n=500, m=500

1.75
100 -

1.50 4

1.25 A

=
o
S

1071

Test Error
Test error

1072 A

161 163 165 167 169 1611 161 162 163 164
Number of iterations Number of features

Figure: Left: Test error along the GD path for m = n = 500. The black dashed line corresponds to test error
0.05. Right: The test error of GD solutions obtained by running different number of iterations.

Because the large test error is caused by very small eigenvalues of the Gram matrix, which
also lead to slow convergence.
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The optimization problem and gradient descent

Analysis

©Q Let K be the kernel operator defined as

/wa Vr(dz'),

and (u;,1;(x)) be the eigenvalues and eigenfunctions of .

@ To be simple, let f*(x) = Y1 ().

Q@ Let ® = o(X!B), with X = [z, xo, ..., x,] and B = [by, bs, ..., b,,]. Let the SVD
decomposition of ® be ® = UXV!. Assume m = n and O = 0. Let
U=|uy,..,u,), V=[v,. ,v,and \; =3;,i=1,2,...n

@ The prediction function at time ¢ is

)\2t

filw) = Y ity oo (5
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The optimization problem and gradient descent

Analysis

The following theorem estimates the test error ||f; — f*||.

Theorem

For any > 0, there exists a constant C'(0), such that with probability no less than 1 — ¢
over the choice of X and B, we have

2
ATt 1

| = £ < ™ +C(E)n™t + C(8)Mnid(t),
where M = [ |lo(B"x)||*w(dx), and

. t )\L\/mt 1
d(t)—mm{\/nw 2 ,)\n}.
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The optimization problem and gradient descent

Runge phenomenon

Under the gradient flow, Runge phenomenon only shows up after very long time

— train error 10 —— Target function —— Target function
0.81 — test error —— Interpolant 10 —— Interpolant
0.8
8
0.6
0.6
s._ 6
g
T 0.4 0.4 .
0.2 0.2 5
0.0\ 0.0 0 !—_//¥\
100 163 l(l:lE 169 1612 lollﬁ lClI]B 1621 —i.O —6.5 OIO OI.'.'_) l.IO —i.O —6.5 DIO DI.'.'_) l.lo
t
Figure: The function ﬁ is approximated by high-order polynomials on 101 equi-spaced points on [—1, 1].

Gradient flow is used to minimize the empirical ? loss. Left: Interpolant by GD at ¢t = 2 x 10'”; Middle:
Interpolant by GD at t = 2 x 10?Y; Right: Training and testing error along the GD trajectory.
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The optimization problem and gradient descent

Discretization of the conservative flow

Oip = V(pVV) (1)

1
p<da’7 d’UJ) ~ E Z 5(aj,'wj)
J

Hug, - up) = R(fm), u;=(a;,w;),] =€ [m]

where f,(x) = + D ajo(w; x).

Lemma: Given a set of initial data {u] = (a], w}), j € [m]}. The solution of (??) with
initial data p(0) = -- """ 0,0 is given by
J

1 m
plt) = m Z Ou; 1)
j=1
where {u;(-), j =€ |m|} solves the following systems of ODEs:
du;(t) .
C;t - _vujl(ulv e 7um>a uj<0> — u?, J € [m] (2)

Note that (??) is exactly the GD dynamics for two-layer neural networks.
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Flow-based representation and deep neural network models

Outline

© Flow-based representation and deep neural network models
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Flow-based representation and deep neural network models

Flow-based representation

Dynamical system viewpoint (E (2017), Haber and Ruthotto (2017) ...)

dz
dr
The flow-map at time 1: * — z(1).

=g(71,2), 2(0) =2

Trial functions:
f=alz(1)
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The correct form of g (E, Ma and Wu, 2019):

g(7,2) = Eyr.a(w, 7)o(w' 2)

where {7} is a family of probability distributions.
dz

= Fra(w, 7)o (w’ 2)
As before, we can also use the model:
dz
= E (a.10)~p.a0 (W' 2)

Discretize: We obtain the residual neural network model:
| M
— - . T . — -
2|41 — <] + M Zl a,j’gO(zl wj’l), 20) — Va
]:
T
fL(33> = 1 <],
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Flow-based representation and deep neural network models

Compositional law of large numbers

Consider the following compositional scheme:

zo(x) = x,

M
1
zim () = 2z () + M ; al,k(f(wl:/jkzl,L(w))a

(@i, wy ) are pairs of vectors i.i.d. sampled from a distribution p.

Theorem
Assume that

E,lllallw|[[F < oo

A| means taking element-wise absolute value for A. Define

where for a matrix or vector A,
z by

z(x,0) = Ve,
d
pm z(x,t) = Egquw)pac(w’ z(x,7)).
-

Then we have
zro(x) = z(x, 1)

almost surely as L. — +oc.
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Compositional function spaces

Extension: Let {p,} be a family of prob distributions (for (a,w)) such that E, g(a,w) is
integrable as a function of 7 for any continuous function g. Define:

z(x,0) = Va,
d
—z(x,T) = E(a,w)NpTaa(sz(w, 7))

dr

Let fo o1 v(x) =a’z(x,1). Define “compositional norm”:

d
N(t) = E,Jaljw|"N(7),
N(0) = I
fllo, = _inf ol INO)I [V ]

f:f()é?{pT}vV

| - ||p, is defined similarly.
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Barron space and the compositional function space

Theorem
B C Dsy. There exists constant C' > 0, such that

I fllp, < vVd+ 1] f]s

holds for any f € B,
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Theorem (Direct approximation theorem)

~

Let f € L?*(X) N D,. There exists a residue-type neural network f1(-;0) of input dimension
d + 1 and depth L such that | fr||p < || f||2 and

1712
[ 15(@) = ful(@r Pz »0 5 5

Furthermore, if f = [, (,,yv and p; is Lipschitz continuous in T, then

o IR,
[ 15(@) = ful(@rPas s 7

Theorem (Inverse approximation theorem)

Let f € L*(X). Assume that there is a sequence of residual networks { f,(x)}5°, with
increasing depth such that || f(x) — fr(x)|| — 0 as L — oo. Assume further that the
parameters are (entry-wise) bounded, then there exists o, {p,;} and V such that

f(@) = faiprviz).
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Complexity control

Rademacher complexity bound for path norm

Let Fro = {fr: |Ifrllp, < Q}. Assume x; € [0,1]%. Then, for any data set
S = (x1, ..., ), we have

Rads(Fr0) < 3Q \/ - bi(w).
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Regularized model and a priori estimates

Regularized loss function:

Lo7(8) = R(6) + M([6]1p, + W 2loglad)

n

Theorem (a-priori estimates)
Assume that f*:[0,1]% — [~1,1] such that f* € D,. Let

) = argmin oL, 1(6)

then if \ is larger than some constant, and the depth L is sufficiently large, for any 0 > 0,
with probability at least 1 — 0,

- 1%
< 2
R(O) <~

log(2d) N 10g(1/(5).

+ A1 llp, +1) -
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Gradient flow for flow-based models

@ Consider a generalized flow-based model

zy =V
Az .
dr - EUJNPT [¢<ZT ) ’UJ)]

fla:p) =1"27.

@ Denote by W := {p: [0, 1] — P1(£2)} the space of all feasible parameters. For any
pt, p> € W, define the following metric:

1
d(p', p*) = \/ /0 W3 (pt, p2)dr.

@ Consider minimizing the following risk
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Define the Hamiltonian H : R? x RY x Py(2) i~ R as
H(Z,p, :u) — Ewwu[pT¢(w7 w)]

Theorem
The gradient flow in the metric space (W, d) is given by

Ohpr(w,t) =V - (pr(w, ) VV(w; p)), V7 € [0, 1],

where

V(aw; o) =Ew[§—f( 2 pt® (1)),

and for each x, (z®, p'*) are defined by the forward and backward equations, respectively:

o G yH = Eue o624, 0)
I
with the boundary conditions:
2" =V
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Discretization

e forward Euler for the flow in 7 variable, step size 1/L.

@ particle method for the GD dynamics, M samples in each layer

£ £ 1 , L
z;—’f—l zlt’ +WZ¢(’Z; 7wlj(t))7 [ =0, , L —1
j=1
M
£ Zr 1 Zr
p" =pl+ T > Vedlzfwl,0)pT, 1=0,... L—1
j=1
dw’ (t v .
0 g (VLo wi(0)p)]

This recovers the gradient descent algorithm (with back-propagation) for the ResNet:

1
Zilv1 =2t 777 Z é(z1, wy).
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Summary

Outline

© Summary
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Summary
Numerical analysis viewpoint of ML

Basic strategy for formulating models/algorithms:

@ Start with continuous formulation (representation of functions, loss function, gradient
flows for optimization)

@ Discretization: Most important existing ML models can be recovered as discretizations
of the continuous formulation

Instead of specific neural networks, think about representations of functions.
Besides integral transforms and flows, are there other ways of representing functions?

Basic strategy for the analysis of models/algorithms:
@ At the level of the hypothesis space:

e Function norms, direct and inverse approximation theorems
o Complexity estimates (Rademacher)
@ A priori and a posteriori error estimates

Goal: get Monte-Carlo like error estimates
@ At the level of the optimization algorithm:

@ The three regimes (over- and under-parametrized, resonant)
@ Resonance might be bad news (large generalization gap)

@ Slow deterioration phenomenon comes to the rescue

e Stability of the back-propagation algorithm
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Summary

Overall picture that has emerged: Why thing work?

@ The target functions can be represented as expectations in various forms, and this is the
fundamental reason why things can work in such high dimension.

@ The risk functionals are nice functionals. Even if not convex, they share many features
of convex functionals (not always true).

© The different gradient flows are nice flows, and dynamics helps to allievate overfitting,
basically because they are integral equations.

@ Known category-2 ML models are simply particle method discretizations of the
corresponding continuous problems.

© They are naturally numerically stable.

These should be our “design principles” for ML models/algorithms.
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Summary

Overall picture that has emerged: Why thing don't work?

@ Fully connected neural networks are “unstable”: gradient grows exponentially as the
number of layers increases (Lyapunov exponent, see the work of Hanin)

@ Resonance: When m ~ n, the minimum-norm solution of the random feature model
does not generalize due to the presence of small eigenvalues in the Gram matrix.
In other regimes, this phenomenon may also manifest at some level.

© GAN really get stuck at local min
@ RNNSs can also be unstable

Violations of the design principles.
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Summary
Open questions

@ Asymptotic (large time) convergence of the gradient flows (PDE-like problem)
© Resonance for neural network models

© Classification problem (need to define the relevant space of probability measures in high
dimensions)

@ Density estimation in high dimension, similar issue 4 regularization
New function norms and spaces

From a numerical analysis viewpoint, function spaces (such as Besov) are classes of functions
that have a particular approximation property (specific order of convergence for a specific
approximation scheme).

RKHS, Barron space and compositional function spaces are the high dimensional analog,
each is associated with a particular approximation scheme.

Solutions of PDEs belong to these spaces? Size of their norms?
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