
A Mathematical Perspective of Machine Learning

Machine learning from the viewpoint of numerical analysis in high dimensions

Weinan E

Princeton University

Joint work with:

Chao Ma, Lei Wu

www.math.princeton.edu/~weinan

February 27, 2020 1 / 64

www.math.princeton.edu/~weinan

Outline

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 2 / 64

Introduction

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 3 / 64

Introduction

Basic example: Supervised learning

Given S = {(xj, yj = f ∗(xj)), j ∈ [n]}, learn f ∗.

1 This is a problem about function approximation.
2 Based on finite pieces of “labeled” data

regression (f ∗ is continuous) vs classification (f ∗ is discrete)

will neglect measurement noise (not crucial for the talk)

assume xj ∈ X = [0, 1]d. d is typically quite large

notation: µ = the distribution of {xj}

In practice, one divides S into two subsets, a training set and a testing set.

February 27, 2020 4 / 64

Introduction

Classification example: Cifar 10

Input: x ∈ [0, 1]d with
d = 32× 32× 3 = 3072.

Output: f ∗ ∈ {0, 1, . . . , 9}.

February 27, 2020 5 / 64

Introduction

Regression example: Inter-atomic potential

http://www.deepmd.org/database/deeppot-se-data/

V = V (x1,x2, · · · ,xN)

February 27, 2020 6 / 64

Introduction

ML in computational science and scientific computing

1 PDEs and control problems
Control problems in high dimension (Han and E, 2016)

High dimensional nonlinear parabolic PDEs (Han, Jentzen and E, 2017)

Least square methods for PDEs (Sirignano and Spiliopoulos, 2018)

2 Molecular dynamics
Neural network models (Behler and Parrinello, 2007)

Kernel methods (Bartayne, Kondor, Csányi, 2010)

Deep Potential Molecular Dynamics (DPMD, Zhang, Han, Wang, Car and E, 2017):

molecular dynamics simulation with quantum accuracy for millions of atoms

3 Quantum many-body problem
Schrödinger equation for spins (Carleo and Troyer, 2016)

Schrödinger equation for electrons (Han, Zhang and E, 2018)

DeepMind group (Pfau, Spencer, Matthews and Foulkes, 2019)

4 Multi-scale modeling
Uniformly accurate moment closure models for kinetic equations (Han, Ma, Ma and E, 2019)

Hydrodynamic models for polymer fluids (Lei and E 2020)

February 27, 2020 7 / 64

Introduction

Standard procedure for supervised learning

Focus on regression problem
1 choose a hypothesis space (set of trial functions) Hm (m ∼ dim(Hm))

(piecewise) polynomials, wavelets, ...

neural network models

2 choose a loss function (to fit the data)
“empirical risk”

R̂n(f) =
1

n

∑
j

(f (xj)− yj)2 =
1

n

∑
j

(f (xj)− f ∗(xj))2

regularization

3 choose an optimization algorithm and parameters
gradient descent (GD), stochastic gradient descent (SGD), ...

hyperparameters (initialization, step size=learning rate, ...)

Objective: Minimize the “population risk” (also known as the “generalization error”)

R(f) = Ex∼µ(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

Important parameters: m,n, t, d (typically interested in the case: m,n, t→∞, d� 1).

February 27, 2020 8 / 64

Introduction

Approximation and estimation errors

Want to understand f ∗ − f̂ , where f̂ = the output of the ML model.

fm = argmin f∈HmR(f) = “best approx” to f ∗ in Hm.

Decomposition of the error:

f ∗ − f̂ = f ∗ − fm + fm − f̂

f ∗ − fm is the approximation error, due entirely to the choice of the hypothesis

fm− f̂ is the estimation error — additional error caused by the fact that we only have a
finite dataset

February 27, 2020 9 / 64

Introduction

Approximation error: Basics

How do we approximate functions?

polynomials, piecewise polynomials, splines

Fourier,wavelets

other special basis functions (e.g. atomic orbitals)

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

Appearance of 1/d in the exponent of m: Curse of dimensionality (CoD)!

If we want m−α/d = 0.1, then m = 10d/α = 10d, if α = 1.

February 27, 2020 10 / 64

Introduction

Dealing with high dimensionality: Monte Carlo integration

Monte Carlo: X = [0, 1]d, {xj, j ∈ [n]} is uniformly distributed in X .

I(g) =

∫
X

g(x)dµ, In(g) =
1

n

∑
j

g(xj)

E(I(g)− In(g))2 =
var(g)

n
, var(g) =

∫
X

g2(x)dx−
(∫

X

g(x)dx

)2

The O(1/
√
n) rate is (almost) the best we can hope for.

However, var(g) can be very large in high dimension. Variance reduction!

What do we learn from this for our function approximation problem?

Express functions as expectations!

February 27, 2020 11 / 64

Introduction

Estimation error

Since we can only work with a finite dataset, what happens to our solution outside of the
dataset?

Figure: The Runge phenomenon

February 27, 2020 12 / 64

Introduction

The generalization gap

f̂ = argminf∈HmR̂n(f)

”Generalization gap” = |R(f̂)− R̂n(f̂)| = |I(g)− In(g)|

R(f) =

∫
Rd

(f (x)− f ∗(x))2dµ, R̂n(f) =
1

n

∑
j

(f (xj)− f ∗(xj))2

I(g) =

∫
g(x)dµ, In(g) =

1

n

∑
j

g(xj), g(x) = (f̂ (x)− f ∗(x))2

Difficulty: f̂ is highly correlated with {xj}.

Should NOT expect: generalization gap = O(1/
√
n) to hold automatically.

February 27, 2020 13 / 64

Introduction

Use the trivial bound:

|R(f̂)− R̂n(f̂)| ≤ sup
f∈Hm

|R(f)− R̂n(f)| = sup
f∈Hm

|I(g)− In(g)|

The RHS depends heavily on the nature of Hm.

For Lipschitz space

sup
‖h‖Lip≤1

|I(h)− In(h)| ∼ 1

n1/d

This gives rise to CoD for the size of the dataset.

For the Barron space, to be defined later

sup
‖h‖B≤1

|I(h)− In(h)| ∼ 1√
n

“Donsker spaces”

February 27, 2020 14 / 64

Introduction

Rademacher complexity

Let H be a set of functions, and S = (x1,x2, ...,xn) be a set of data points. Then, the
Rademacher complexity of H with respect to S is defined as

RadS(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

Given a function class H, for any δ ∈ (0, 1), with probability at least 1− δ over the random
samples S = (x1, · · · ,xn),

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ 2 RadS(H) + sup
h∈H
‖h‖∞

√
log(2/δ)

2n
.

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≥ 1

2
RadS(H)− sup

h∈H
‖h‖∞

√
log(2/δ)

2n
.

February 27, 2020 15 / 64

Introduction

Two types of machine learning models

(1). Models that suffer from CoD:

generalization error = O(m−α/d) and/orO(n−β/d)

piecewise polynomial approximation

wavelets with fixed wavelet basis

(2). Models that don’t suffer from CoD: For example

generalization error = O(γ1(f ∗)/m + γ2(f ∗)/
√
n)

These are “Monte-Carlo-like” bounds, γ1 and γ2 play the role of variance in Monte Carlo.

random feature models

neural network models

Balance of approximation error (prefers large hypothesis space) and estimation error (prefers
small hypothesis space).

February 27, 2020 16 / 64

Representation and approximation of functions

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 17 / 64

Representation and approximation of functions

An illustrative example

Traditional approach:

f (x) =

∫
Rd
a(ω)ei(ω,x)dω, fm(x) =

1

m

∑
j

a(ωj)e
i(ωj ,x)

{ωj} is a fixed grid, e.g. uniform.

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

“New” approach:

f (x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x)

where π is a probability measure on Rd. Let {ωj} be an i.i.d. sample of π.

E|f (x)− 1

m

m∑
j=1

a(ωj)e
i(ωj ,x)|2 =

var(f)

m

where
var(f) = Eω∼π|a(ω)|2 − f (x)2

February 27, 2020 18 / 64

Representation and approximation of functions

Integral transform-based representation

Let σ be a nonlinear scalar function (the activation function), e.g. σ(z) = max(z, 0)

f (x) =

∫
Rd+1

a(w)σ(wT x̃)π(dw) = Ew∼πa(w)σ(wT x̃)

f (x) =

∫
Rd+2

aσ(wT x̃)ρ(da, dw) = E(a,w)∼ρaσ(wT x̃)

x̃ = (x, 1) = x (standard abuse of notation in ML).

February 27, 2020 19 / 64

Representation and approximation of functions

What kind of functions admit such a representation?

Consider the case when σ(z) = max(z, 0), the ReLU (rectified linear units) function.

Theorem (Barron and Klusowski (2016)): If
∫
Rd ‖ω‖

2
1|f̂ (ω)|dω <∞, where f̂ is the

Fourier transform of f , then f can be represented as

f̃ (x) = f (x)− (f (0) + x · ∇f (0)) =

∫
Ω

aσ(wTx)ρ(da, dw)

for x ∈ [0, 1]d. Furthermore, we have

E(a,w)∼ρ|a|‖w‖1 ≤ 2

∫
Rd
‖ω‖2

1|f̂ (ω)|dω

February 27, 2020 20 / 64

Representation and approximation of functions

Generalizations

1. General integrand

f (x) =

∫
Ω

φ(x,u)ρ(du) = Eu∼ρφ(x,u)

Example: φ(x,u) = aσ(wTx),u = (a,w).

2. High co-dimensional case

f (x) =

∫
Rd+1×Rd+1

a(w1,w2)σ1(wT
1 x)σ2(wT

2 x)π(dw1, dw2)

= Ew∼πa(w1,w2)σ1(wT
1 x)σ2(wT

2 x)

σ1 and σ2 are two nonlinear scalar functions.

3. Multi-layers

f (x) =

∫
Rd1

a1(w1)σ(wT
1 z)π1(dw1) = Eω1∼π1a1(w1)σ(wT

1 z) = E(a1,w1)∼ρ1
a1σ(wT

1 z)

z =

∫
Rd2

a2(w2)σ(wT
2 x)π2(dw2) = Ew2∼π2a2(w2)σ(wT

2 x) = E(a2,w2)∼ρ2
a2σ(wT

2 x)

February 27, 2020 21 / 64

Representation and approximation of functions

Approximation by discretization

Monte-Carlo:

f (x) =

∫
a(w)σ(wTx)π(dw)

π(dw) ∼ 1

m

∑
j

δwj, aj = a(wj)

f (x) ∼ fm(x) =
1

m

∑
j

ajσ(wT
j x)

This is a random feature model with features: {σ(wT
j x), j = 1, · · · ,m}

Model parameters: θ = {aj}

February 27, 2020 22 / 64

Representation and approximation of functions

Recovering the two-layer neural network model

f (x) =

∫
aσ(wTx)ρ(da, dw)

ρ(da, dw) ∼ 1

m

∑
j

δ(aj,wj)

f (x) ∼ fm(x) =
1

m

∑
j

ajσ(wT
j x)

This is a two-layer neural network model.

Model parameters θ = {(aj,wj)}.

February 27, 2020 23 / 64

Generalization error estimates

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 24 / 64

Generalization error estimates

Random feature model

{φ(·;w)}: collection of random features. π: prob distribution of the random variable w.

Hypothesis space: Given any realization {wj}mj=1, i.i.d. with distribution π

Hm({wj}) = {fm(x,a) =
1

m

m∑
j=1

ajφ(x;wj)}.

Consider functions of the form

Fp =
{
f : f (x) =

∫
a(w)φ(·;w)π(w)}, ‖f‖Fp := (E[|a(w)|p])1/p <∞

}
F2 is the same as the reproducing kernel Hilbert space (RKHS) with kernel:

k(x,x′) = Ew∼π[φ(x;w)φ(x′;w)]

February 27, 2020 25 / 64

Generalization error estimates

Direct and Inverse Approximation Theorem

Theorem (Direct Approximation Theorem)

Assume ‖f‖F∞ <∞. Then for any δ ∈ (0, 1), with probability at least 1− δ over the
random sampling of {wj}mj=1, there exists a ∈ Rm such that

R(a) ≤
‖f‖2

F∞
m

(1 + log(2/δ)) .

Moreover, supj∈[m] |aj| ≤ ‖f‖F∞.

Theorem (Inverse Approximation Theorem)

Assume that φ is continuous and bounded, and supp(π) is compact. Let (wj)
∞
j=1 be a

sequence of i.i.d. samples of π. Assume that there exist a sequence (aj)
∞
j=0 with

supj |aj| ≤ C, such that

lim
m→∞

1

m

m∑
j=1

ajσ(wj · x) = f ∗(x),

for all x ∈ [0, 1]d. Then ‖f ∗‖F∞ ≤ C and there exists a∗(·) : Ω 7→ R such that

f ∗(x) =

∫
Ω

a∗(w)σ(w · x)dπ(w), a.s.

February 27, 2020 26 / 64

Generalization error estimates

A priori estimates of the regularized model

Ln,λ(a) = R̂n(a) +
λ√
n

‖a‖√
m
,

Consider the regularized estimator

ân,λ = argmin Ln,λ(a)

Theorem
Assume that ‖f ∗‖∞ ≤ 1. There exist a constant C0, such that for any δ > 0, if
λ ≥ C0,m ≥ log2(n/δ), then with probability at least 1− δ over the choice of training set,
we have

R(ân) .
log(n/δ)

m
‖f ∗‖2

F2
+
‖f ∗‖F2√

n
+

√
log(n‖f ∗‖F∞/δ)

n
+

log2(n/δ)

m2
‖f ∗‖2

F∞.

February 27, 2020 27 / 64

Generalization error estimates

Two-layer neural network model: Barron spaces

Consider the function f : X = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = Eρ[aσ(wTx)]}, x ∈ X

Ω = R1 × Rd+1, ρ is a probability distribution on Ω.

‖f‖B = inf
ρ∈Pf

√
Eρ[a2‖w‖2

1],

where Pf := {ρ : f (x) = Eρ[aσ(wTx)]}.

B = {f ∈ C0 : ‖f‖B <∞}

February 27, 2020 28 / 64

Generalization error estimates

Barron space and RKHS

Equivalent formulation (taking conditional expectation with respect to w):

f ∗(x) =

∫
a(w)σ(wTx)π(dw), x = (x, 1)

Define:
kπ(x,x′) = Ew∼πσ(wTx)σ(wTx′)

We can write
B =

⋃
π

Hkπ

Shallow neural network can be understood as kernel method with adaptive (learned) kernel.

The ability to learn the right kernel is VERY important.
For example, SVM would be perfect if the right kernel was known.

February 27, 2020 29 / 64

Generalization error estimates

Theorem (Direct Approximation Theorem)
There exists an absolute constant C0 such that

‖f − fm‖L2(X) ≤
C0‖f‖B√

m

Theorem (Inverse Approximation Theorem)
Let

NC
def
= { 1

m

m∑
k=1

akσ(wT
kx) :

1

m

m∑
k=1

|ak|2‖wk‖2
1 ≤ C2,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ NC such that

fm(x)→ f ∗(x)

for all x ∈ X , then there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
aσ(wTx)ρ∗(da, dw),

for all x ∈ X and ‖f ∗‖B ≤ C.

February 27, 2020 30 / 64

Generalization error estimates

Complexity estimates

Theorem
Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

RadS(FQ) ≤ 2Q

√
2 ln(2d)

n

February 27, 2020 31 / 64

Generalization error estimates

A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =

√√√√ 1

m

m∑
k=1

|ak|2‖wk‖2
1.

Theorem
Assume that the target function f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, C1, C2, such
that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of training
set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

B
m

+ ‖f ∗‖B

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.

Typical results in ML literature: a posteriori estimates

R(θ̂n)− R̂n(θ̂n) ≤ C1
‖θ̂‖√
n

February 27, 2020 32 / 64

The optimization problem and gradient descent

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 33 / 64

The optimization problem and gradient descent

The continuous formulation: Gradient flows

Recall the population risk: R(f) = Ex∼µ(f (x)− f ∗(x))2 = “free energy”

f (x) =

∫
Rd+1

a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

a = nonconserved, use “model A” dynamics (Allen-Cahn):

∂a

∂t
= −δR

δa

π = conserved (probability density), use “model B” (Cahn-Hilliard):

∂π

∂t
+∇ · J = 0

J = πv, v = −∇V, V =
δR
δπ
.

February 27, 2020 34 / 64

The optimization problem and gradient descent

Gradient flow for the feature-based model

Fix π, optimize over a.

∂ta(w, t) = −δR
δa

(w, t) = −
∫
a(w̃, t)K(w, w̃)π(dw̃) + f̃ (w)

K(w, w̃) = Ex[σ(wTx)σ(w̃Tx)], f̃ (w) = Ex[f ∗(x)σ(wTx)]

This is an integral equation with a symmetric positive definite kernel.

Decay estimates due to convexity: Let f ∗(x) = Ew∼πa∗(w)σ(wTx),

I(t) =
1

2
‖a(·, t)− a∗(·)‖2 + t(R(a(t))−R(a∗))

Then we have
dI

dt
≤ 0, R(a(t)) ≤ C0

t

February 27, 2020 35 / 64

The optimization problem and gradient descent

Conservative gradient flow

f (x) = Eu∼ρφ(x,u)

Example: u = (a,w), φ(x,u) = aσ(wTx)

V (u) =
δR
δρ

(u) = Ex[(f (x)− f ∗(x))φ(x,u)] =

∫
K(u, ũ)ρ(dũ)− f̃ (u)

∂tρ = ∇(ρ∇V)

This is the mean-field equation derived by Chizat and Bach (2018), Mei, Montanari and
Nguyen (2018), Rotskoff and Vanden-Eijnden (2018), Sirignano and Spiliopoulos
(2018), by studying the continuum limit of two-layer neural networks.

It is the gradient flow of R under the Wasserstein metric.

R is convex but NOT displacement convex.

February 27, 2020 36 / 64

The optimization problem and gradient descent

Convergence results

Chizat and Bach (2018, 2020): If {ρ(t)} does converge as t→∞, then it must converge to
a global minimum (and max margin solution for the classification problem if cross entropy is
used as the loss function).

A simple one-D example (E, Ma and Wu(2019)):

f (x) =

∫ 2π

0

σ(cos(w − x))ρ(dw), f ∗(x) =

∫ 2π

0

σ(cos(w − x))ρ∗(dw)

∂ρ

∂t
= ∇ · (ρ∇K ∗ (ρ− ρ∗)) .

K(w,w′) =
1

2π

∫ 2π

0

σ(cos(w − x))σ(cos(w′ − x))dx

Theorem
Assume that ρ∗ is the uniform distribution and ρ0 has C1 density. Then

lim
t→∞

W2(ρ(·, t), ρ∗) = 0

February 27, 2020 37 / 64

The optimization problem and gradient descent

Discretizing the gradient flows

Discretizing the population risk (into the empirical risk) using data

Discretizing the gradient flow
particle method – the dynamic version of Monte Carlo

smoothes particle method – analog of vortex blob method

spectral method – very effective in low dimensions

We will see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.

February 27, 2020 38 / 64

The optimization problem and gradient descent

Particle method for the feature-based model

∂ta(w, t) = −δR
δa

(w) = −
∫
a(w̃, t)K(w, w̃)π(dw̃) + f̃ (w)

π(dw) ∼ 1

m

∑
j

δwj, a(wj, t) ∼ aj(t)

Discretized version:

d

dt
aj(t) = − 1

m

∑
k

K(wj,wk)ak(t) + f̃ (wj)

This is exactly the GD for the random feature model.

f (x) ∼ fm(x) =
1

m

∑
j

ajσ(wT
j x)

February 27, 2020 39 / 64

The optimization problem and gradient descent

The over-parametrized regime (m� n)

Consider the case when m =∞, n finite

∂tan(w, t) = −δR̂n

δan
(w, t) = −

∫
a(w̃, t)Kn(w, w̃)π(dw̃) + f̃n(w)

Kn(w, w̃) =
1

n

∑
j

σ(wTxj)σ(w̃Txj), f̃n(w) =
1

n

∑
j

yjσ(wTxj)

Let In(t) = 1
2‖an(·, t)− a∗n(·)‖2

L2 + t(R̂n(an(t))− R̂n(a∗n)). Then we have

dIn
dt
≤ 0

‖an(·, t)‖L2 ≤ C0, R̂n(an(t)) ≤ C0

t

From these, we obtain the bounds for generalization error: with probability 1− δ

R(an(t)) ≤ C0(‖f ∗‖2
Hk + 1)

(
1 +

√
ln(1/δ)√
n

+
1

t

)

February 27, 2020 40 / 64

The optimization problem and gradient descent

The under-parametrized regime (m� n)

m finite, n =∞. Hence R̂n = R.

Assume f ∗(x) = Ew∼πa∗(w)σ(wTx).
{wj, j ∈ [m]} = i.i.d. sample of π, a∗m = (a∗(w1), a∗(w2), · · · , a∗(wm)).
Then Monte-Carlo estimates gives:

R(a∗m) ≤ C0

‖f ∗‖2
Hk

m

Convexity estimates gives:

R(a(t)) ≤ R(a∗m) + C0

‖f ∗‖2
Hk

t
≤ C0‖f ∗‖2

Hk

(
1

m
+

1

t

)

February 27, 2020 41 / 64

The optimization problem and gradient descent

The resonant regime (m ∼ n)

The “double descent” phenomenon (Belkin et al)

101 102 103 104

Number of features: m

10 2

10 1

100
Te

st
 e

rro
r

m = n

Min-norm Sol.

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Sm
al

le
st

 e
ig

en
va

lu
e

MNIST, n=500

The large test error is caused by small eigenvalues of the Gram matrices.

February 27, 2020 42 / 64

The optimization problem and gradient descent

The slow deterioration

The test accuracy deteriorates slowly along the GD trajectory:

101 103 105 107 109 1011

Number of iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
st

 E
rro

r

MNIST, n=500, m=500

101 102 103 104

Number of features

10 2

10 1

100

Te
st

 e
rro

r

T=1e+04
T=1e+05
T=1e+06
T=1e+08
T=1e+12

Figure: Left: Test error along the GD path for m = n = 500. The black dashed line corresponds to test error

0.05. Right: The test error of GD solutions obtained by running different number of iterations.

Because the large test error is caused by very small eigenvalues of the Gram matrix, which
also lead to slow convergence.

February 27, 2020 43 / 64

The optimization problem and gradient descent

Analysis

1 Let K be the kernel operator defined as

Kf (x) =

∫
K(x,x′)f (x′)π(dx′),

and (µi, ψi(x)) be the eigenvalues and eigenfunctions of K.
2 To be simple, let f ∗(x) = ψ1(x).
3 Let Φ = σ(XTB), with X = [x1,x2, ...,xn] and B = [b1, b2, ..., bm]. Let the SVD

decomposition of Φ be Φ = UΣV T . Assume m = n and ΦΦT � 0. Let
U = [u1, ...,un], V = [v1, ...,vm], and λi = Σii, i = 1, 2, ..., n.

4 The prediction function at time t is

f̂t(x) =

n∑
i=1

1− e−
λ2
i t

n2

λi
(uTi y)(vTi σ(BTx)).

February 27, 2020 44 / 64

The optimization problem and gradient descent

Analysis

The following theorem estimates the test error ‖f̂t − f ∗‖.

Theorem
For any δ > 0, there exists a constant C(δ), such that with probability no less than 1− δ
over the choice of X and B, we have

‖f̂t − f ∗‖ ≤ e
−λ

2
1t

n2 + C(δ)n−
1
4 + C(δ)Mn

3
4d(t),

where M =
∫
‖σ(BTx)‖2π(dx), and

d(t) = min

{√
t

n2
,
λb
√
nct

n2
,

1

λn

}
.

February 27, 2020 45 / 64

The optimization problem and gradient descent

Runge phenomenon

Under the gradient flow, Runge phenomenon only shows up after very long time

Figure: The function 1
1+25x2

is approximated by high-order polynomials on 101 equi-spaced points on [−1, 1].

Gradient flow is used to minimize the empirical l2 loss. Left: Interpolant by GD at t = 2× 1010; Middle:
Interpolant by GD at t = 2× 1020; Right: Training and testing error along the GD trajectory.

February 27, 2020 46 / 64

The optimization problem and gradient descent

Discretization of the conservative flow

∂tρ = ∇(ρ∇V) (1)

ρ(da, dw) ∼ 1

m

∑
j

δ(aj,wj)

I(u1, · · · ,um) = R(fm), uj = (aj,wj), j =∈ [m]

where fm(x) = 1
m

∑
j ajσ(wT

j x).

Lemma: Given a set of initial data {u0
j = (a0

j ,w
0
j), j ∈ [m]}. The solution of (??) with

initial data ρ(0) = 1
m

∑m
j=1 δu0

j
is given by

ρ(t) =
1

m

m∑
j=1

δuj(t)

where {uj(·), j =∈ [m]} solves the following systems of ODEs:

duj(t)

dt
= −∇ujI(u1, · · · ,um), uj(0) = u0

j , j ∈ [m] (2)

Note that (??) is exactly the GD dynamics for two-layer neural networks.
February 27, 2020 47 / 64

Flow-based representation and deep neural network models

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 48 / 64

Flow-based representation and deep neural network models

Flow-based representation

Dynamical system viewpoint (E (2017), Haber and Ruthotto (2017) ...)

dz

dτ
= g(τ, z), z(0) = x̃

The flow-map at time 1: x→ z(1).

Trial functions:
f = αTz(1)

February 27, 2020 49 / 64

Flow-based representation and deep neural network models

The correct form of g (E, Ma and Wu, 2019):

g(τ, z) = Ew∼πτa(w, τ)σ(wTz)

where {πτ} is a family of probability distributions.

dz

dτ
= Ew∼πτa(w, τ)σ(wTz)

As before, we can also use the model:

dz

dτ
= E(a,w)∼ρτaσ(wTz)

f (x) = 1Tzx1

Discretize: We obtain the residual neural network model:

zl+1 = zl +
1

LM

M∑
j=1

aj,lσ(zTl wj,l), z0 = V x̃

fL(x) = 1TzL

February 27, 2020 50 / 64

Flow-based representation and deep neural network models

Compositional law of large numbers

Consider the following compositional scheme:

z0,L(x) = x,

zl+1,L(x) = zl,L(x) +
1

LM

M∑
k=1

al,kσ(wT
l,kzl,L(x)),

(al,k,wl,k) are pairs of vectors i.i.d. sampled from a distribution ρ.

Theorem
Assume that

Eρ‖|a||wT |‖2
F <∞

where for a matrix or vector A, |A| means taking element-wise absolute value for A. Define
z by

z(x, 0) = V x,
d

dτ
z(x, t) = E(a,w)∼ρaσ(wTz(x, τ)).

Then we have
zL,L(x)→ z(x, 1)

almost surely as L→ +∞.
February 27, 2020 51 / 64

Flow-based representation and deep neural network models

Compositional function spaces

Extension: Let {ρτ} be a family of prob distributions (for (a,w)) such that Eρτg(a,w) is
integrable as a function of τ for any continuous function g. Define:

z(x, 0) = V x,
d

dτ
z(x, τ) = E(a,w)∼ρτaσ(wTz(x, τ))

Let fα,{ρτ},V (x) = αTz(x, 1). Define “compositional norm”:

d

dτ
N(t) = Eρτ |a||w|TN(τ),

N(0) = I

‖f‖D1 = inf
f=fα,{ρτ },V

‖α‖1 ‖N(1)‖1,1 ‖V ‖1,1,

‖ · ‖D2 is defined similarly.

February 27, 2020 52 / 64

Flow-based representation and deep neural network models

Barron space and the compositional function space

Theorem
B ⊂ D2. There exists constant C > 0, such that

‖f‖D2 ≤
√
d + 1‖f‖B

holds for any f ∈ B,

February 27, 2020 53 / 64

Flow-based representation and deep neural network models

Theorem (Direct approximation theorem)

Let f ∈ L2(X) ∩ D2. There exists a residue-type neural network fL(·; θ̃) of input dimension
d + 1 and depth L such that ‖fL‖P . ‖f‖3

c1
and∫

X

|f (x)− fL((x); θ̃)|2dx→ 0 .
‖f‖2

c2

L

Furthermore, if f = fα,{ρτ},V and ρτ is Lipschitz continuous in τ , then∫
X

|f (x)− fL((x); θ̃)|2dx .
‖f‖2

D2

L

Theorem (Inverse approximation theorem)

Let f ∈ L2(X). Assume that there is a sequence of residual networks {fL(x)}∞L=1 with
increasing depth such that ‖f (x)− fL(x)‖ → 0 as L→∞. Assume further that the
parameters are (entry-wise) bounded, then there exists α, {ρτ} and V such that

f (x) = fα,{ρτ},V (x).

February 27, 2020 54 / 64

Flow-based representation and deep neural network models

Complexity control

Rademacher complexity bound for path norm

Let FL,Q = {fL : ‖fL‖D1 ≤ Q}. Assume xi ∈ [0, 1]d. Then, for any data set
S = (x1, ...,xn), we have

RadS(FL,Q) ≤ 3Q

√
2 log(2d)

n
.

February 27, 2020 55 / 64

Flow-based representation and deep neural network models

Regularized model and a priori estimates

Regularized loss function:

Ln,λ(θ) = R̂n(θ) + λ(‖θ‖D1 + 1)

√
2 log(2d)

n
.

Theorem (a-priori estimates)

Assume that f ? : [0, 1]d → [−1, 1] such that f ∗ ∈ D2. Let

θ̂ = argmin θLn,λ(θ)

then if λ is larger than some constant, and the depth L is sufficiently large, for any δ > 0,
with probability at least 1− δ,

R(θ̂) .
‖f ∗‖2

D2

L
+ λ(‖f ∗‖3

D1
+ 1)

√
log(2d)

n
+

√
log(1/δ)

n
.

February 27, 2020 56 / 64

Flow-based representation and deep neural network models

Gradient flow for flow-based models

Consider a generalized flow-based model

zx0 = V x
dzxτ
dτ

= Ew∼ρτ [φ(zxτ ,w)]

f (x; ρ) = 1Tzx1 .

Denote by W := {ρ : [0, 1] 7→ P2(Ω)} the space of all feasible parameters. For any
ρ1, ρ2 ∈ W , define the following metric:

d(ρ1, ρ2) :=

√∫ 1

0

W 2
2 (ρ1

τ , ρ
2
τ)dτ .

Consider minimizing the following risk

R(f) = Ex(f (x)− f ∗(x))2].

February 27, 2020 57 / 64

Flow-based representation and deep neural network models

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Ew∼µ[pTφ(x,w)].

Theorem
The gradient flow in the metric space (W,d) is given by

∂tρτ(w, t) = ∇ · (ρτ(w, t)∇V (w; ρ)) , ∀τ ∈ [0, 1],

where

V (w; ρ) = Ex[
δH

δµ

(
zt,xτ ,pt,xτ , ρτ(·; t)

)
],

and for each x, (zt,xτ ,pt,xτ) are defined by the forward and backward equations, respectively:

dzt,xτ
dτ

= ∇pH = Ew∼ρτ (·;t)[φ(zt,xτ ,w)]

dpt,xτ
dτ

= −∇zH = Ew∼ρτ (·;t)[∇T
zφ(zt,xτ ,w)pt,xτ].

with the boundary conditions:

zt,x0 = V x̃

pt,x1 = 12(f (x; ρ(·; t))− f ∗(x)).

February 27, 2020 58 / 64

Flow-based representation and deep neural network models

Discretization

forward Euler for the flow in τ variable, step size 1/L.

particle method for the GD dynamics, M samples in each layer

zt,xl+1 = zt,xl +
1

LM

M∑
j=1

φ(zt,xl ,wj
l (t)), l = 0, . . . , L− 1

pt,xl = pt,xl+1 +
1

LM

M∑
j=1

∇zφ(zt,xl+1,w
j
l+1(t))pt,xl+1, l = 0, . . . , L− 1

dwj
l (t)

dt
= −Ex[∇T

wφ(zt,xl ,wj
l (t))p

t,x
l].

This recovers the gradient descent algorithm (with back-propagation) for the ResNet:

zl+1 = zl +
1

LM

M∑
j=1

φ(zl,wl).

February 27, 2020 59 / 64

Summary

Outline

1 Introduction

2 Representation and approximation of functions

3 Generalization error estimates

4 The optimization problem and gradient descent

5 Flow-based representation and deep neural network models

6 Summary

February 27, 2020 60 / 64

Summary

Numerical analysis viewpoint of ML

Basic strategy for formulating models/algorithms:
1 Start with continuous formulation (representation of functions, loss function, gradient

flows for optimization)
2 Discretization: Most important existing ML models can be recovered as discretizations

of the continuous formulation

Instead of specific neural networks, think about representations of functions.
Besides integral transforms and flows, are there other ways of representing functions?

Basic strategy for the analysis of models/algorithms:
1 At the level of the hypothesis space:

Function norms, direct and inverse approximation theorems

Complexity estimates (Rademacher)

A priori and a posteriori error estimates

Goal: get Monte-Carlo like error estimates
2 At the level of the optimization algorithm:

The three regimes (over- and under-parametrized, resonant)

Resonance might be bad news (large generalization gap)

Slow deterioration phenomenon comes to the rescue

Stability of the back-propagation algorithm

February 27, 2020 61 / 64

Summary

Overall picture that has emerged: Why thing work?

1 The target functions can be represented as expectations in various forms, and this is the
fundamental reason why things can work in such high dimension.

2 The risk functionals are nice functionals. Even if not convex, they share many features
of convex functionals (not always true).

3 The different gradient flows are nice flows, and dynamics helps to allievate overfitting,
basically because they are integral equations.

4 Known category-2 ML models are simply particle method discretizations of the
corresponding continuous problems.

5 They are naturally numerically stable.

These should be our “design principles” for ML models/algorithms.

February 27, 2020 62 / 64

Summary

Overall picture that has emerged: Why thing don’t work?

1 Fully connected neural networks are “unstable”: gradient grows exponentially as the
number of layers increases (Lyapunov exponent, see the work of Hanin)

2 Resonance: When m ∼ n, the minimum-norm solution of the random feature model
does not generalize due to the presence of small eigenvalues in the Gram matrix.
In other regimes, this phenomenon may also manifest at some level.

3 GAN really get stuck at local min
4 RNNs can also be unstable

Violations of the design principles.

February 27, 2020 63 / 64

Summary

Open questions

1 Asymptotic (large time) convergence of the gradient flows (PDE-like problem)
2 Resonance for neural network models
3 Classification problem (need to define the relevant space of probability measures in high

dimensions)
4 Density estimation in high dimension, similar issue + regularization

New function norms and spaces

From a numerical analysis viewpoint, function spaces (such as Besov) are classes of functions
that have a particular approximation property (specific order of convergence for a specific
approximation scheme).

RKHS, Barron space and compositional function spaces are the high dimensional analog,
each is associated with a particular approximation scheme.

Solutions of PDEs belong to these spaces? Size of their norms?

February 27, 2020 64 / 64

	Introduction

