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Abstract

Many multiscale methods are based on the idea of extracting macroscopic behavior of solutions by solving an array of
microscale models over small domains. A key ingredient in such multiscale methods is the boundary condition and the size
of the computational domain over which the microscale problems are solved. This problem is systematically investigated in
the present paper in the context of modeling strongly heterogeneous media. Three different boundary conditions are con-
sidered: the periodic boundary condition, Dirichlet boundary condition, and the Neumann boundary condition. Each is
applied to several benchmark problems: the random checker-board problem, periodic problem with isotropic macroscale
behavior, periodic problem with anisotropic macroscale behavior and periodic laminated media. In each case, convergence
studies are conducted as the domain size for the microscale problem is changed. Convergence rates as well as the size of
fluctuations in the computed effective coefficients are compared for the different formulations. In addition, we will discuss a
mixed Dirichlet–Neumann boundary condition that is often used in porous medium modeling. We explain why that leads
to unsatisfactory results and how it can be corrected. Also discussed are the different averaging methods used in extracting
the effective coefficients.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A central theme in many multiscale methods is to capture the macroscopic behavior of the solutions by
solving an array of the microscale models locally over small computational domains. The microscale problems
might be solved in a preprocessing step, in which case effective parameters or macroscale models are extracted
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which are then used in the computation of the macroscale solutions. Alternatively the microscale problems can
be solved ‘‘on-the-fly’’ as the macroscale computation proceeds, in a concurrent coupling framework [1]. In
any case, a key ingredient in such methods is the formulation, particularly the boundary conditions, of the
microscale model, and the size of the computational domains over which the microscale problem is solved.
Clearly from the viewpoint of efficiency, we would like these domains to be as small as possible. However,
accuracy requirement often points to the opposite direction. Crucial to both accuracy and efficiency are the
boundary conditions that we impose on the microscale problems. These boundary conditions are in some
sense artificial – they are required only because the computational domains are truncated and localized.

The present paper addresses this issue for a specific problem: transport in a strongly heterogeneous medium
described by:
Plea
of C
�r � ðkeðxÞrueðxÞÞ ¼ f ðxÞ; x 2 X � Rd : ð1:1Þ

Here, e is a small parameter that signifies explicitly the multiscale nature of the coefficient ke(x), which will be
referred to as the conductivity tensor. Our aim is to study the accuracy with which the effective macroscale
conductivity tensor is approximated by solving the local microscale problems with certain boundary condi-
tions as the domain size varies.

Studies of this type have been reported in the literature. Pecullan et al. considered a similar problem for the
elastic properties of periodic and hierarchical two-dimensional composites in [9]. Durlofsky [4] has studied the
problem of extracting effective permeability of a porous medium by solving the microscale Darcy’s law on a
representative volume and considered the effects of different boundary conditions. In particular, he demon-
strated that an often used mixed Dirichlet–Neumann boundary condition may give rather unsatisfactory
results in some cases.We will discuss four examples. The first is a random checker-board problem. This is a
nice example since its effective parameters can be computed exactly. Then we consider three examples of peri-
odic microstructure with different macroscopic properties: isotropic, anisotropic, and laminated. From our
results we conclude that while all three boundary conditions considered perform reasonably well, the periodic
boundary condition gives the best results. Our results also demonstrate the clear advantage of the systematic
procedures embodied in the heterogeneous multiscale method (HMM) [5], with which the difficulties observed
by Durlofsky are automatically avoided.

2. Formulation of the microscale problems

2.1. Review of HMM

To be concrete, we will work in the framework of the heterogeneous multiscale method (HMM) which is a
general framework for designing multiscale methods by coupling together solutions of local microscale prob-
lems [5]. The model input for HMM is the microscale model and a guess of how the macroscale model might
be like. The output is the macroscale behavior of the solutions as well as samples of the local microstructure,
e.g. typical microstructure near defects. Note that it is not the purpose of HMM to resolve the microscale
behavior everywhere – that would require solving the microscale problem over the whole computational
domain. On the other hand HMM does probe the local microstructure in a statistical sense, and if necessary,
one can improve the accuracy for the local microstructure through post-processing.

There are two main components in the heterogeneous multiscale method: (1) an overall macroscopic
scheme for the macroscale variables on a macroscale grid and (2) estimating the missing macroscopic data
from the microscopic model. For (1.1), the macroscopic solver can be chosen simply as the standard C0 piece-
wise linear finite element method over a macroscopic triangulation TH of mesh size H. We will denote by XH

the macroscopic finite element space which could be the standard piecewise linear finite elements over TH. The
data that need to be estimated from the microscale model is the stiffness matrix on TH : A = (Aij), where
Aij ¼
Z

X
rUiðxÞKH ðxÞrUjðxÞdx: ð2:1Þ
Here, KH(x) is the effective conductivity at scale H and {Ui(x)} are the basis functions for XH. Had we known
KH(x), we could have evaluated Aij simply by numerical quadrature: let fij(x) = $Ui(x)KH(x)$Uj(x), then
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
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Plea
of C
Aij ¼
Z

X
fijðxÞdx ’

X
T2TH

jT j
X
xk2T

xkfijðxkÞ; ð2:2Þ
where {xk} and {xk} are the quadrature points and weights, respectively |T| is the volume of the element |T|.
In the absence of explicit knowledge of KH(x), our problem reduces to the approximation of the values of

{KH(xk)}. This will be done by solving the original microscale model locally around each quadrature point
{xk} (see Fig. 1).

Let Id(xk) 3 xk be a cube of size d. Consider
r � ðkeðxÞr/eÞ ¼ 0; x 2 IdðxkÞ: ð2:3Þ

The boundary condition for this problem is the main topic discussed below. The main objective is to probe
efficiently the microscale behavior under the constraint that the average gradient of the solution /e is fixed
to be a given constant vector. Having the solution to this local problem, we can define the effective conduc-
tivity tensor at xk by the relation
hkeðxÞr/eiId
¼ KH ðxkÞhr/eiId

; ð2:4Þ
where hviId
¼ 1
jIdj
R

Id
vdx. The basis of this procedure is the homogenization theorem which has been proved in

various contexts; the most general result is found in [8]. The homogenization theorems allow us to define the
effective (or homogenized) conductivity tensor, by considering the infinite volume limit of the solutions of the
microscale problem subject to the constraint that the average gradient remains fixed. The effective tensor is
defined by an average relation of the type (2.4) in the infinite volume limit, i.e.
L ¼ d
e
!1:
In the special case when the microstructure is periodic, the infinite volume problem reduces to a periodic prob-
lem and therefore can be considered on its period.

In practice, one solves (2.3) with the constraint hr/eiId
¼ e1; . . . ; ed , respectively, where d is the spatial

dimension of the problem. Denote these solutions by /e
j, j = 1, . . . ,d. Then
ðhkeðxÞr/e
1iId

; . . . ; hkeðxÞr/e
diId
Þ ¼ KH ðxkÞ: ð2:5Þ
In summary, the overall algorithm consists of the following steps:

� Solve for /e
1; . . . ;/d

e using the boundary conditions discussed below, at each xk.
� Obtain the approximate values of KH(xk) by averaging the microscale solutions using (2.5).
� Assemble the effective stiffness matrix using (2.2).
� Solve the macroscale finite element equation using the effective stiffness matrix. If we express the macroscale

solution in XH in the form of UH ðxÞ ¼
P

U jUjðxÞ, then the macroscale finite element equation takes the
standard form:
T

. Illustration of HMM for solving (1.1). The dots are the quadrature points in (2.2). The little squares are the microcell Id(xk).
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Plea
of C
AU ¼ F ; ð2:6Þ

where U = (U1, . . . ,UN)T, F = (F1, . . . ,FN)T, Fj = (f(x),Uj(x)).

For the particular problem discussed here, HMM is clearly very closely related to solving homogenized
equations with effective coefficients estimated numerically beforehand by solving the microscale problem.
The difference is that HMM formulates the two components, estimating effective coefficients and solving
the approximate homogenized problem, simultaneously instead of sequentially. For nonlinear problems, this
difference seems quite crucial. In addition, HMM gives us quite naturally not only the macroscale information,
but also samples of microstructural information. Of course, in the sequential approach one may also think of
ways to make use of the microstructural information. But it seems less natural and as a result, this has not
been explored much.

In any case, a key component for both strategies is to formulate the boundary conditions for the microscale
problem. We now turn to this issue.

2.2. The local microscale problems

The local microscale problem is constrained by the local macroscopic state through the constraint:
hr/eiId
¼ G ð2:7Þ
for some fixed constant vector G. We will discuss the three natural boundary conditions: the periodic bound-
ary condition, the Dirichlet boundary condition, and the Neumann boundary condition. With the exception of
the Neumann boundary condition, these have been used in one way or another in the literature (see [4,11,12]).
In [3], the author considered a kind of Neumann boundary condition, but it is quite different from what we
discuss here [6].

2.2.1. Dirichlet formulation

In this case, Dirichlet boundary condition is used for the local microscale problem (2.3)
/eðxÞ ¼ G � x; on oId: ð2:8Þ
2.2.2. Periodic formulation

The local microscale problem (2.3) is subject to the following boundary condition:
/eðxÞ � G � x is periodic with period Id: ð2:9Þ

It can be checked easily that the constraint (2.7) is satisfied for both the Dirichlet and periodic formulation.

2.2.3. Neumann formulation

In this case, we have
keðxÞr/eðxÞ � n ¼ k � n; on oId; ð2:10Þ

where the constant vector k 2 Rd is the Lagrange multiplier for the constraint that (see [6])
hr/ei ¼ G: ð2:11Þ

For example when d = 2, to solve problem (2.3) and (2.10) with the constraint (2.11), we first solve for u1

and u2 from
�r � ðkeðxÞruiÞ ¼ 0; in Id;

keðxÞruiðxÞ � n ¼ li � n; on oId;

�
ð2:12Þ
for i = 1, 2, where l1 = (1, 0)T, l2 = (0,1)T. Then given an arbitrary G, the Lagrange multiplier k = (k1,k2)T is
determined by the linear equations
k1hru1i þ k2hru2i ¼ G ð2:13Þ
and the solution of (2.3), (2.10), and (2.11) is given by /e = k1u1 + k2u2.
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
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From this discussion, it is clear that the difference in the computational complexity of solving the local
microscale problem using the different formulations is comparable to that of solving standard Dirichlet, peri-
odic and Neumann problems.

Having solved the microscale problem, we define the effective conductivity tensor by
Plea
of C
hkeðxÞr/ei ¼ K�hr/ei ¼ K�G: ð2:14Þ

For each of the three formulations, we obtain, respectively, K�D; K�P; and K�N.

When the microstructure is periodic, K�P will be exactly the homogenized conductivity tensor obtained in the
homogenization theory ([13]) if Id is chosen to be an integer multiple of the period.

2.3. Relation between the three different effective tensors

Theorem 2.1. For the three effective tensors, the following relation is valid:
K�N 6 K�P 6 K�D: ð2:15Þ

This explains the observation reported below that in general the Dirichlet formulation provides an over-

estimate for the effective conductivity tensor and the Neumann formulation provides an under-estimate.

It is easy to see that for the one-dimensional case, the three quantities are equal.

Proof of the theorem. We first note that the effective tensors have a variational formulation: For any G 2 Rd ,
GTK�DG ¼ min
vðxÞ2V D

hkeðxÞrv � rvi; ð2:16Þ

GTK�PG ¼ min
vðxÞ2V P

hkeðxÞrv � rvi; ð2:17Þ

GTK�NG ¼ min
vðxÞ2V N

hkeðxÞrv � rvi; ð2:18Þ
where the spaces of admissible functions are:
V D ¼ fvðxÞ 2 H 1ðIdÞ : vðxÞ ¼ G � x on oIdg; ð2:19Þ
V P ¼ fvðxÞ 2 H 1ðRdÞ : vðxÞ � G � x is periodic with period Idg; ð2:20Þ
V N ¼ fvðxÞ 2 H 1ðIdÞ : hrvi ¼ Gg: ð2:21Þ
It is easy to see that VD � VP � VN, and for one-dimensional problem, these spaces are the same up to con-
stants. Hence (2.15) follows.

We next check the equivalence of the two definitions for the effective tensors. We only discuss the Neumann
formulation. The argument for the other formulations are the same. Let u(x) be the solution of the Neumann
problem (2.3) and (2.10) with the constraint (2.11). Then u(x) satisfies [6]
Z

Id

keðxÞru � rudx ¼ min
vðxÞ2V N

Z
Id

keðxÞrv � rvdx:
Assume that K�N is defined by (2.14). Then we have
Z
Id

GTK�NGdx ¼
Z

Id

keðxÞru � Gdx ¼
Z

Id

keðxÞru � rudxþ
Z

Id

keðxÞru � rðG � x� uÞdx
and for the second term on the right-hand side, by Green’s formula
Z
Id

keðxÞru � rðG � x� uÞdx ¼ �
Z

Id

r � ðkeðxÞruÞðG � x� uÞdxþ
Z

oId

keðxÞru � nðG � x� uÞdS

¼
Z

oId

k � nðG � x� uÞdS ¼
Z

Id

r � ðkðG � x� uÞÞdS ¼ k �
Z

Id

ðG�ruÞdx ¼ 0:
This argument also works in the reversed direction. Therefore (2.18) follows. The proof is completed. h
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2.4. Alternative averaging methods

The effective conductivity tensor is obtained from the solutions of the microscale problem through averag-
ing. In (2.14), direct averaging is used. To reduce the effect of the boundary conditions, other averaging meth-
ods can be introduced. For example, ‘weighted averaging’ methods were suggested in [6] with the idea that the
weight function is smooth but vanishes at the boundary. One may also use the simple ‘truncated averaging’
methods, by averaging the microscale solution over an interior subset of the domain, and the region near
the boundary is truncated (see [7]).

Weighted averaging: hviw ¼ 1
jIdj
R

Id
wdðxÞvðxÞdx, where the weight function wd(x) satisfying
Plea
of C
1

jIdj

Z
Id

wdðxÞdx ¼ 1; ð2:22Þ
where wdðxÞ ¼ 1
dd w x

d

� �
. In our numerical work presented below, we choose the weight function as

w(x) = (1 � cos(x1))(1 � cos(x2)).
Truncated average: hvit ¼ 1

jI 0
d
j
R

I 0
d

vðxÞdx, where I 0d � Id. In general we choose d 0 = d/2.

3. Effects of boundary condition and cell size

In the following we only consider problems in R2, i.e. d = 2. We will study the effects of boundary condi-
tions and cell size by performing systematic numerical experiments. We will consider two types of problems:
the case when the microstructure is given by a random checker-board and the case when the microstructure is
periodic.
3.1. Random checker-board

Random checker-board is a two-phase composite material constructed by partitioning space into uniform
square cells, each of which is randomly designated as being in phase 1 or phase 2 with probability p1 and
p2 = 1 � p1, respectively. We will set p1 = p2 = 0.5. We will work with the microscale, i.e. we will set e = 1.
We choose this as a test problem since it has the following special feature: suppose phase 1 and phase 2
are isotropic materials with scalar conductivity k1 and k2. Then the effective properties of the composite mate-
rial are also isotropic at the macro-scale, and the effective conductivity is K� ¼ k�I ¼

ffiffiffiffiffiffiffiffiffi
k1k2

p
I. This result is a

consequence of the duality relations proved by Keller [10].
In the computations reported below, we set k1 = 2, k2 = 8. Hence the effective conductivity tensor is K* = 4I.

We solve the microscale problem with different formulations on domains of size d = L * e = L = 4, 6, . . .
We will monitor the following quantities:

� Effective conductivity computed from a particular realization x of the checker-board:
K�DðLÞ ¼ K�Dðx; LÞ; K�PðLÞ ¼ K�Pðx; LÞ and K�NðLÞ ¼ K�Nðx; LÞ:

� Ensemble averaged effective conductivity:
�K�DðLÞ ¼ EK�Dðx; LÞ; �K�PðLÞ ¼ EK�Pðx;LÞ and
�K�NðLÞ ¼ EK�Nðx; LÞ:
Here, and in the following E denotes ensemble average.
� Mean square deviation:
r2
DðLÞ ¼ EðK�D � �K�DÞ

2
; r2

PðLÞ ¼ EðK�P � �K�PÞ
2 and

r2
NðLÞ ¼ EðK�N � �K�NÞ

2
:

In Table 1, we present the results of the ensemble averaged effective conductivity obtained using different
boundary conditions for different cell size L. These results are also plotted in Figs. 2–4. Two conclusions can
be drawn from this. The first is that the error of the ensemble averaged effective conductivity behaves as
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
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Table 1
Random checker-board – ensemble averaged effective conductivities computed using different boundary conditions

Cell size 4 6 8 10 16
Number of realizations 1000 800 800 400 100

�K�D 4.354 4.253 4.182 4.164 4.109
�K�P 4.105 4.061 4.044 4.021 4.016
�K�N 3.790 3.838 3.848 3.883 3.925

r2
D 0.619 0.295 0.153 0.090 0.035

r2
P 0.645 0.267 0.153 0.093 0.038

r2
N 0.502 0.204 0.134 0.080 0.030

4 6 8 10 12 14 16
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5
Exact
Dirichlet
Neumann
Periodic

10
1

10
2

10

10

100

Dirichlet
Neumann
Periodic

-1

-2

Fig. 2. Random checker-board – ensemble averaged effective conductivities computed using different boundary conditions vs. the cell size
(left); log–log plot of the absolute error vs. cell size (right): the slopes of the dotted lines for Dirichlet, Neumann, and periodic formulations
are �0.85, �0.80, �1.50, respectively.
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Plea
of C
K� � �K�ðLÞ � L�a
with a close to 1 for Dirichlet and Neumann formulations, and a close 1.5 for the periodic formulation. The
second is that the periodic formulation performs better than the other formulations. This second conclusion is
consistently observed in all of our numerical experiments.

Fig. 3 shows the behavior of the mean square deviation as a function of L. Again we have
r2 � L�a
with a close to 2 for all three formulations. This is consistent with the predictions of a naive application of the
central limit theorem, which suggests
r � N�1=2
where N � Ld, d is the dimension. This statement can be proved easily for d = 1, and our numerical result sug-
gests that this is also true for d = 2.

In Fig. 4, we present the histograms of 6000 realizations for K*(x,L) with L = 4, 8, and 16. From this result,
we might expect that the rescaled distribution of K*(x,L) converges to a limit as L!1.
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
omputational Physics (2006), doi:10.1016/j.jcp.2006.07.034
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Fig. 3. Random checker-board – mean square deviation of the effective conductivities computed using different boundary conditions vs.
the cell size. The slope of the dotted line is �2.03.
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To see the behavior for some particular realizations, we first randomly construct a 32 · 32 checker-board,
from which we select a subset of size 4 · 4, . . . , 32 · 32, respectively, such that the smaller ones are subsets of
the bigger ones. Fig. 5 shows the results of two particular realizations. The results of the first realization are
quite consistent with the behavior of the ensemble averages observed earlier. The results of the second reali-
zation, on the other hand, are quite different. This confirms that single realizations in random problems may
not say much about typical behavior.

Next we turn to the case when the microstructure is periodic. We will discuss three cases. The first is when
the macroscopic behavior is isotropic. The second is when the macroscopic behavior is anisotropic. The third
is an example of laminated structure.

3.2. Periodic microstructure: isotropic in the macroscale

Consider the problem (1.1) with an isotropic conductivity tensor:
Plea
of C
keðxÞ ¼ 1

2þ 1:5 sinð2px1=eÞ
� 1

2þ 1:5 sinð2px2=eÞ
I: ð3:1Þ
In this case the macroscopic effective conductivity tensor is isotropic: K* = k*I . 0.3782I. As before, we de-
note by K*(L) the computed effective conductivity tensor by solving the microscale problem on a domain
of size d = Le. In Fig. 6, we show K*(L) as L changes. Also shown in Fig. 6 is the dependence of the error
|K* � K*(L)| on L for different formulations. Note that for the periodic formulation, the error is zero if L is
an integer.

It is clear from Fig. 6 that the overall behavior in this case is very similar to that of Fig. 2. The Dirichlet and
Neumann formulations give very similar results, and the periodic formulation gives better results.

Analogous to Fig. 3, we also show the behavior of the mean square deviation (or variance) r2 = r2(L) in
Fig. 7. This is done by uniformly distributing the domains over which the microscale problems are solved, and
taking statistics with respect to the center of the domains. We see that r2 � L�2. Unlike the random problem,
this is expected to hold in all dimensions.

Figs. 3 and 7 suggest an interesting possibility, namely that for d = 3(three-dimensional problem), the var-
iance decays faster for the random case than for the periodic case. It would be interesting to see if this is really
true.
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
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Fig. 4. Random checker-board – histograms of K�D for cell size of 4 · 4 (upper-left), 8 · 8 (upper-right), and 16 · 16 (lower-left) with 6000
realizations. The histograms are rescaled and depicted together in the lower-right figure. The behavior of K�P and K�N is similar.
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Next we turn to an example for which the macroscopic effective tensor is anisotropic.

3.3. Periodic microstructure: anisotropic in the macroscale

We choose the coefficient in (1.1) as ke(x)I where
Plea
of C
keðxÞ ¼ 2þ 1:5 sinð2px1=eÞ
2þ 1:5 sinð2px2=eÞ

þ 2þ 1:5 sinð2px2=eÞ
2þ 1:5 cosð2px1=eÞ

: ð3:2Þ
The effective coefficient tenser is given to high order accuracy by
K� ’
2:3458 0

0 2:8746

� �
:
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Fig. 5. Random checker-board – effective coefficient by different boundary conditions vs. local cell size for two special realizations.
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The results for this example are completely consistent with the results for the previous example. We only note
one curious trend shown in Fig. 8, where we plot |K* � K*(L)| for the two different components of the tensor.
In this case k�11 < k�22, and we see that the Neumann formulation does a better job approximating k�11 and the
Dirichlet formulation does a better job approximating k�22. This is consistent with our theoretical results in
Theorem 2.1. Fig. 8 simply confirms what we would have expected based on previous results, namely that
the periodic formulation does a better in general, with a slope bigger than 1; and the slopes for the other
two formulations are close to 1.
Please cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
of Computational Physics (2006), doi:10.1016/j.jcp.2006.07.034
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3.4. Periodic laminated microstructure

Consider a layered medium (Durlofsky [4]) made up of two different materials, depicted in Fig. 9 (left),
extended periodically over space. The thickness of material 1 is taken to be seven times that of material 2.
The conductivity tensor of the two materials, denoted by k1 and k2, are as follows:
Please cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
of Computational Physics (2006), doi:10.1016/j.jcp.2006.07.034
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Plea
of C
k1 ¼
2 0

0 2

� �
; k2 ¼

1 0

0 0:01

� �
:

The effective coefficient for the composite media can be obtained through weighted arithmetic (for k�11) and
harmonic (for k�22) means as
K� ¼
1:8750 0

0 0:0772947

� �
: ð3:3Þ
Next we rotate the layered medium relative to the coordinate axes by an angle of � p
4
, as shown in Fig. 9

(right). The effective coefficient for the new system can be obtained by rotating the tensor in (3.3) by an angle
of � p

4
([2,4]):
K� ¼
0:976147 �0:898853

�0:898853 0:976147

� �
: ð3:4Þ
This example was studied in [4]. We will focus on the rotated laminated system. Results are shown in
Fig. 10. We see that they are completely consistent with the previous results.

In [4], the author considered a boundary condition which we will call Dirichlet–Neumann (D–N) boundary
condition, i.e. Dirichlet boundary condition is used in one direction and no-flow boundary condition is used in
the other direction. In D–N formulation, one needs to solve the following two local cell problems
�r � ðkeðxÞru1Þ ¼ 0; in Id;

u1ðxÞ ¼ x1; on left and right sides;

keðxÞru1 � n ¼ 0; on top and bottom sides;

8><
>: ð3:5Þ
and
�r � ðkeðxÞru2Þ ¼ 0; in Id;

u2ðxÞ ¼ x2; on top and bottom sides;

keðxÞru2 � n ¼ 0; on left and right sides:

8><
>: ð3:6Þ
The effective tensor K�dn is then determined by the following 4 · 4 system:
hkeðxÞru1i ¼ K�dnð1; 0Þ
T
; ð3:7Þ

hkeðxÞru2i ¼ K�dnð0; 1Þ
T
: ð3:8Þ
This procedure is often used in porous medium modeling. However, using this procedure, one obtained
very unsatisfactory results: the effective tensor K�dn was diagonal with both diagonal elements equal to
0.193757.

The origin of this problem is quite simple. The D–N formulation does not impose the intended constraint in
(2.7). For example, even though the x1-gradient of u1 is 1, the x2-gradient is not 0, as we show in Table 2. If we
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
omputational Physics (2006), doi:10.1016/j.jcp.2006.07.034
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take that into account, we should modify (3.7) and (3.8) to (this has been noted in the literature, see for exam-
ple [12,11])
Plea
of C
hkeðxÞru1i ¼ K�dnhru1i; ð3:9Þ
hkeðxÞru2i ¼ K�dnhru2i: ð3:10Þ
The results using this modified definition is depicted in Fig. 11. It can be seen that using the D–N formulation
effective tensor is strictly between the results of the Dirichlet and Neumann formulations. This is easily proved
along the lines in the proof of Theorem 2.1.

This example clearly shows the advantage of using systematic procedures and formulations, as is advocated
in HMM. Indeed using the HMM framework, mistakes such as the ones in (3.7) and (3.8) are automatically
avoided.
se cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
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Table 2
Periodic laminated media – average gradient of u1 in (3.5): hru1i ¼ ðhox1

u1i; hox2
u1iÞT vs. cell size L

L 1 2 3 4 5 6

hox1
u1i 1.0 1.0 1.0 1.0 1.0 1.0

hox2
u1i 0.6435 0.6389 0.6453 0.6492 0.6517 0.6532
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4. Effects of different averaging methods

Finally, we study the effects of using alternative averaging procedures. We will discuss only the case with
periodic microstructure since the conclusions for the random problems are quite similar.
Please cite this article as: Xingye Yue, Weinan E, The local microscale problem in the multiscale modeling ..., Journal
of Computational Physics (2006), doi:10.1016/j.jcp.2006.07.034
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We compare three different averaging procedures: direct averaging over the whole domain, weighted aver-
aging and truncated averaging. Figs. 12–14 show the results for the periodic problem with coefficient (3.1). We
see clearly that the weighted and truncated averages produce better results for the Dirichlet formulation. The
results for the Neumann formulation is mixed. There are improvements but in some cases the improvement is
quite small. This is also consistent with our intuition: in general we expected the Dirichlet boundary condition
to be the hardest boundary condition, and therefore introduces most boundary effects. These boundary effects
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are corrected using weighted or truncated averages. We also expect periodic and Neumann boundary condi-
tions to be much softer and introduce less boundary effects.

5. Conclusions

Following conclusions can be drawn from this work:

1. Periodic boundary condition performs better for both the random and periodic problems.
2. The variance of the estimated effective tensor behaves as r2 � L�d for random check-board problem in Rd ,

and r2 � L�2 for the periodic problem.
3. In general Neumann formulation underestimates the effective tensor and Dirichlet formulation overesti-

mates the effective tensor. In both cases, the effective conductivity tensors converge to the infinite volume
limit with first order accuracy O(1/L), where L is the cell size.

4. Weighted or truncated averaging improve the accuracy for the Dirichlet formulation. It has little effect for
the periodic formulation. For the Neumann formulation, it improves the accuracy in some cases. In gen-
eral, the results of the weighted averaging are more robust.
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