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We present a “coarse molecular dynamics” approach and apply it to studying the kinetics and
thermodynamics of a peptide fragment dissolved in water. Short bursts of appropriately initialized
simulations are used to infer the deterministic and stochastic components of the peptide motion
parametrized by an appropriate set of coarse variables. Techniques from traditional numerical
analysis(Newton—Raphson, coarse projective integratiare thus enabled; these techniques help
analyze important features of the free-energy lands¢eparse transition states, eigenvalues and
eigenvectors, transition rates, etdReverse integration of coarse variables backward in time can
assist escape from free energy minima and trace low-dimensional free energy surfaces. To illustrate
the coarse molecular dynamics approach, we combine multiple €69 replica simulations to

map the free energy surface of the “alanine dipeptide” in water, and to determinetid000 ps)

rate of interconversion between the two stable configurational basins correspondingribdlieal

and extended minima. @003 American Institute of Physic§DOI: 10.1063/1.1574777

I. INTRODUCTION an attracting “slow manifold” for the mesoscopic evolution

is assumed. However, explicit constructions of the slow
manifold and the corresponding evolution equation, memory
. ) ) %ernel, and noise function are avoided by using conventional
the phase space dfio)chemical systems at full atomic reso- MD to propagate the microscopic system over intermediate

Iutlon_. In th_e biological sciences, realistic MD S|mulat|ons Oftimes, as discussed below. Here, we implement the CMD
protein folding, complex formation and aggregation, enzyme

kinetics, channel transport, etc., hold the promise to form nognethod o study arguably the *simplest biomolecule,” ala-

only the basis for new understanding of these fundamental dlpeptlddl.e., l\!-acetyl alanineN’-methyl amidg, dis-
solved in water. This system was chosen as a fundamental

processes but also to accelerate the development of ne : . .
drugs and treatments for diseases. However, these and ma gment of protein backbones with torsion degrees of free-
' m ¢, ¢, and w; and polar groups £-0 and N-H that

other processes ithio)materials occur on time scales well . v with h oth dth | Ei
beyond the reach of current MD simulations, even if carriedt€ract strongly with each other and the solvesee Fig. 1
For this reason, the alanine dipeptide has been studied exten-

out with the most powerful computers available on an ap- . _
proximate classical Born—Oppenheimer energy surface. Witfively by theory and experime(gee, e.g., Refs. 24—83nd

femtosecond timesteps required to integrate the faste§f2S Peen used as a model system to analyze the thermody-
atomic motions, classical MD dbio)molecular systems in 1amics and kinetics of conformational dynarmice. .
condensed phase is only starting to push into the microsec- e two major goals here ar@) to map the essential
ond regimé®® and orders of magnitude less on quantum surfeatures of thecoarse free energy surface of the dipeptide,
faces. Remarkable progress has been made recertlyein  In particular to find stable minima and connecting saddle
comingthe time scale limitations of MI7® circumventing ~ Points, and(2) to determine the rates of interconversion be-
them is the goal of this work. tween the stable minima.

The fundamental difficulty in MD arises from the re- The paper is organized as follows: In Sec. Il A, we out-
quirement to integrate the motions of “all” nuclear degreesline the concepts of CMD. In Sec. IIB, an expression is
of freedom, not just those of interest. This problem of time-introduced that relates the drift velocity of an ensemble of
scale separation has been formally addressed in th&ajectories to the underlying free energy surface. In Sec.
projection-operator formalism of Zwanzig and M&ri*?by 11 C, we discuss how stable and unstable stationary points on
constructing a generalized Langevin equation that describgbat surfacei.e., free energy minima and saddle pojrtan
the time evolution in a “slow subspace.” The coarse dynam-be found using contraction mappiteg., Newton—Raphson
ics proposed by Kevrekidis and co-workers for equation-fredype searches. The concepts of coarse projective forward and
multiscale computationd?? (see Ref. 23 for a review reverse integration are introduced in Secs. IID and Il E, re-
builds on this general framework. In the coarse moleculaspectively. In Sec. IIF, we show how the Chapman-
dynamics(CMD) approach developed here, the existence oKolmogorov identity can be used to estimate rates of slow

Molecular dynamic¥MD) simulations on classical or

0021-9606/2003/118(23)/10762/12/$20.00 10762 © 2003 American Institute of Physics

Downloaded 09 Nov 2004 to 128.122.128.25. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 118, No. 23, 15 June 2003 Coarse molecular dynamics of a peptide fragment 10763

W~—20° —60°
0 v 60O
0]
FIG. 1. Structures of the alanine dipeptide in the right-handeutlical coarse variable y

minimum (left), in the extended minimuntright), and at the barrier in
between(centej. The dihedral angle is indicated in the center structure. FIG. 2. Schematic of projective forward integration in CMD. The coarse
Carbonyl oxygen atoms are labeled. and fast variables are along the horizontal and vertical axis, respectively.
Lighter shading indicates lower free energi) Lifting creates an ensemble
of initial conditions(diamond$ with a prescribed value of the coarse vari-
. . able ¢ (thin vertical line. In short MD runs starting from these initial
processes from ensembles of short trajectories. conditions,(2) the fast degrees rapidipatureby relaxing on the free energy
Details of the MD simulations of the solvated alanine surface(circles, followed by (3) drift in the coarse variable. At the end of
dipeptide can be found in Sec. Ill. Section IV presents thehe MfD runs, we(4) éestricgo Coagse Vﬁriables byézollapdsindg ti‘rl]e (;:iilsrt)ribU-
. -ction of trajectory endpointésquaresto their averagédotted—dashed line
resmt,s, for th? es“ma,‘te of the free energy surfacg from drlfLrom the drift in the averagérom dotted to dotted—dashed lineve esti-
velocities, with minima and saddles found directly by matea time derivative ands) use it toproject forward in time (horizontal
Newton—Raphson-type searches and by projective forwardrrow. (1') Lifting creates a new ensemble of initial conditioprtical
and reverse integration. The rate of interconversion betweegplid line), followed by a second cycle of projective forward integration. In
the a-helical and extended states of the alanine dipeptide will > SChemate plo, ‘convergence” o the free energy minimum is pract-
be estimated using the Chapman—Kolmogorov identity and

compared to explicit simulation results.

Finally, Sec. V contains some concluding comments. Iy e variables can be introduced, for instance, by using the

particular, we will discuss the relarg%)n of CMD to other gy ctations of products of hydrodynamic variables to pa-
methods, such as constrained dynarritaie parallel replica 3 etrize the manifold, as in mode-coupling theories. In the

7 g i ~6,36 37
method, transition pathégsgmplm@, SWARM-MD,”" and - c\p approach to atomistic simulations, the assumption is
memory-based dynamics.” We conclude by outlining fu-  ynat microscopically evolving distributions in phase space

ture directions. quickly become effectively low-dimension.
Along fast directiongsuch as those describing bond vi-

1. THEORY brations, the distributions rapidly saturate, while they keep
drifting and spreading along slow directiofsuch as those
describing large-scale conformational rearrangemeiitse

In CMD, the existence of an attracting “slow manifold” properties of motions along the fast degrees of free¢kmh
is assumed. We start with a set of “coarse” variables thatas amplitude or characteristic tilndepend on the slow de-
parametrizethis manifold: for every combination of values grees of freedom. In a peptide, for instance, the frequency
of these variables, a single point exists on the manifold. Thispectrum of fast motions associated with the amide@
means that the expected values of the remaining variablestretch vibration depends on the environment described by
can be conceptually plotted as amspecified function of  the slow variables quantifying, e.g., the type and amount of
these coarse variables. We stress that these variables are “adecondary structure and solvent present. Geometrically, the
servation variables.” Theydo not spanthe subspace on average of an ensemble of trajectories relaxes onto the at-
which the coarse dynamic occugthe “curved” manifold.  tracting “slow manifold” and remains there. This picture in-
There exists, however, a one-to-one relation between trajecokes an analogy with the so-called “inertial manifolds” for
torieson this manifold, andhe projectionf these trajecto- dissipative partial differential equatiofi%:4?
ries on the hyperplane spanned by the coarse variables. The The (expectedl dynamics of the coarse variables are ex-
number of such coars@bservatioh variables should be at plored through short multiple replica simulations as follows
least as larggand preferably, for computational economy (see Fig. 2 A coarse initial condition is prescribed, and
purposes, the sameas the dimension of the slow manifold. “lifted” to many microscopic copies consistent witcondi-
For macromolecular systems, such “coarse” variables willtioned on the coarse variables. This “lifting” step is not
include descriptors of their internal geometry, such as diheunique, since many distributions can be constructed that have
dral angles, radii of gyration, end-to-end distances, numbethe same coarse variables. Lifting can be achieved, for in-
and type of monomer contacts, etc. They may also includstance, by performing a short MD run with an added poten-
solvent coordinates, such as variables describing solvent céial biasing the coarse variables toward their new target val-
ordination numbers and structures. In a somewhat differentes, as in umbrella samplitdThis approach works also for
context (e.g., kinetic theory description of fluid flowthe  coarse variables consisting of nonlinear combinations of the
“coarse manifold” will be parametrized by the hydrody- atomic coordinates, as in the product variables of mode-
namic variablegdensity and momentum fields, i.e., low mo- coupling theories. The initialization will necessarily be at
ments of the molecular distribution over velocity space; seeleast slightly “off manifold;” that is, the fast degrees will not
for example, Ref. 1) If necessary, nonlinear couplings be- be initialized to be the “correct” functionals of the coarse

A. Coarse molecular dynamics
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variables. This discrepancy, however, will be quickly initial conditions, and from that we can obtain estimates of

“healed,” as a relatively short detailed simulation will bring the local curvature of the free energy surface. From a Lange-

the trajectory down on the manifolde., slave the statistics vin approximation to the dynamics of slow variabtésye

of the fast degrees of freedom to the coarse variabfdter  expect that the drift velocity is proportional to the slope of

this short healing or “maturing” period we monitor the de- the free-energy surface,

tailed simulations over short times, and estimate the time —

derivative of the slow dynamics in the coarse variables. This M~ -Dg 9G¥ for t>r (1)

time-derivative can be used to extrapolate coarse dynamics ot Wy mel”

over relatively long time intervals; repeating the procedureW

(lift, short run, restrict to coarse variables, estimate coarse e

variable time derivative, project coarse variables into the fuPeraturgandy* =t==[; 4(t";yo)dt’. Normally, one would

ture, lift again,.). constitutes the coarse projective integra-begin averaging after an initial maturation time % 7))

tion schemes of Gear and Kevrekids:®*and allows us to here, we averaged over the whole intervig<0). The pro-

extrapolate the long-time coarse behavior from short, reportionality constan{3D is a mobility, with D a diffusion

peated bursts of appropriately initialized MD simulation. It is coefficient that may depend ot We may also expect that

important to stress the relation between these methods arile variance in;(t; o) of different runsi initialized with

the optimal predictors of Chorin and co-workérs?’ In  the samey;(0; o) = o will exhibit diffusive behavior,

their formalism, a projection-operator approach is used to

propagate ensembles of initial conditions in time, with some  —var (t; o) ]~2D(4*), (2

phase space variablésere, the coarse variab)egt constant at

values in the starting ensemble, and the remaining onewhere the diffusion coefficierd is related to the mobility in

drawn from an equilibrium distributiofas achieved here by Eg. (1) through the Einstein relation. We expect Ef) to

“maturing”). hold for timesr,q<t<(BD|d°G/d4?|) ~* long compared to
Beyond these “accelerated” dynamics, we will see thatthe initial molecular relaxation time,,, but short with re-

the CMD approach permits the rapid search of dynamicallyspect to curvature effects of the free energy surface. One can

relevant features of the free energy surface and the calculghus use the time-evolution observed through the coarse vari-

tion of transition rates, as discussed below. Here, we use thables to estimate the deterministic and stochastic components

dihedral angle)y (N-C,—C—N) of the Ala dipeptide as a of the motion, and from those estimate the underlying free

first approximation for the coarse coordinates., the coor-  energy surfaceG (), and dynamic properties, such as ef-

dinates used to observe the slow dynamibtsthe following,  fective diffusion coefficient® ().

we will explain the method in terms of this coordinate. Gen- o ) )

eralizations to multiple dimensions are straightforward, havé>- Finding stationary points on the coarse free

been discussed in the literatdf#223and will be illustrated ~ S"er9Y surface

here by occasionally using the dihedral angle In many practical applications, one is interested in find-

(C-N-C,—-C) as a second coarse coordinate. ing the stable minima and tHenstablg¢ saddle points on the

coarse free energy surface, rather than mapping the complete

surface. Protein folding simulations constitute one such ex-

ample with goals of finding the folded structure and the
Assume that we have created an ensembld obnfigu-  structures at the “barrier” to folding. From Eql), we ex-

rationsi with identical values of;(t=0;4o) = ¢, for in-  pect that the minima and maxima are stable and unstable

stance by randomly assigning Maxwell-Boltzmann veloci-stationary points for the drift component of the dynamics in

ties to all solute and solvent atoms in a given configurationthe coarse variables. We can thus use the dynamic informa-

As these configurations evolve in time, the dynamics oftion to search for these stationary points on the free energy

¥i(t; o) will initially be governed by the coupling to fast surface, i.e., minima and saddles satisfying

motions such as bond vibrations and molecular collisions. As

a consequence, the,;(t; o) will “spread” rapidly over a IY(t; o) =0 ory —WZO @)

small range. After a sufficiently long time> 7,,,,;, however, at 0 7o '

Sty N-1sN . ; ; . S -
the average/(t; o) =N~ "Z_1¢i(t; o) is expected to drift gy estimating YT o= deh(t; o)/ It OF ho— (t: hg) for
down on the free energy surfager potential of mean forge o ) . -

o - s nearby initial pointsy,, we can estimatéy/dy and per-
G(¢) towards a stable minimum. “Timestepping” for .
7 - ) ] form a Newton—Raphson type step towards a stationary
Y(t; o) involves lifting, evolving for a timet> 7., and point,
restricting back to coarse variabl@se., collapsing the dis-
tribution of the endpoints of the several trajectories to their _
average This “coarse timestepper(the map resulting from 1= o~ ﬁtZ/ﬁlﬂo
the lift-run-restrict procedujelies at the heart of the coarse . _ .
numerical processefcoarse integration, coarse Newton— wherea andb are the intercept and slope, respectively, in a
Raphson, coarse optimizationve perform. Initializing at  straight-line fit of ro— ¢(t; ¥g) versus| ¥+ (t; ) 1/2 for
nearby values ofyy can be used to estimate the partial de-nearby starting values af,. Recursive application of Eg.
rivatives of the coarse timestepper with respect todtars¢  (4), can be used to converge to a stationary point. This

here 1=kgT (with kg Boltzmann’s constanfl the tem-

B. From drift in the coarse variables to free energies

or yy,=—alb, (4)
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timestepper approach to coarse steady state computatiofis follows from Eq.(1) and the relationr; 1=BD« be-

was introduced for spatially distributed systetsind was tween the characteristic time and the effective spring con-

illustrated for stochastic systefi€%?*(stable and saddle sta- stant k= d?G/dy? for a diffusive harmonic oscillator with

tionary states of kinetic Monte Carlo and Brownian dynam-diffusion constanD. By using Eq.(5), the local correlation

ics simulationg time 7. in a particular steady state can be determined directly
Unlike the thermodynamically determined free energyfrom the Newton—Raphson search upon convergence. The

profiles (gég-, from umbrella _samplir‘i@ or constrained  slope of with respect toy provides the “restoring force”
dynamics™ the dynamic sampling can provide information ¢, the coarse variable. I remained linear inj, then the
about the kinetic relevance of the chosen coarse coordinatg,qtion would correspond to a harmonic oscillator in the
Consider the classic examfieee, e.g., Fig. (b) in Ref. 48 pigh friction (overdampep limit. In many dimensions, the

of a rotated double well system in two dimensions. Projectedaracteristic frequencies are given by the eigenvalues of the

onto thex axis, the two wells overlap in the b_arrler region. If Jacobian matrix;; =az,7/i/az/xj analogous to the derivative in
the dynamics is monitored only along tkeaxis but not the . . ) N
Eqg. (5). The corresponding eigenvectors give the “normal

“solvent” coordinatey, most of the structures at the barrier ; , ; .
. . oy coordinates” for the overdamped motions around a stationary
in X appear already “committed” to one or the other well. ~". £49

This has important implications. In free energy calculations”®"
using umbrella sampling or thermodynamic integration, the o .
system will not be pulled easily over the barrier by a poten-D- COarse projective integration

tial acting onx alone; in kinetics calculations, the dynamics The dynamic information in the replica rung(t; o)
along x alone is non-Markovian, making rate calculationscan also be used to extrapolate toward longer times. Instead
difficult. In our dynamic analysis, this situation becomesof propagating each of the replicas, we extrapolateates-
manifest in a large spread of the estimated drift velocity ancage position of the slow variable, for instance linearkx-

direction, y(t; ), for nearby initial values off. ploiting regularity of the expected coarse dynamics with
A detailed discussion of practical approaches to detertime),

mining the need for additional coarse variables is contained - -t —

in Refs. 18 and 22. The idea is to quantify this need directly, ~ #(1": %)~ ¥(tiho) + ——[ (L 4ho) = tho]. (6)

“on-the-fly:” by lifting with more coarse variableg);, we | o '_tis th & initial
can determine the eigenvalues and corresponding time scalé‘song projective” stept’ —t is then effected bY r_e|n|t|a-_
. izing an ensemble at the extrapolated value; this is the sim-

of the coarse local linearizatiod; = d¢i/9y; . If the time test “projective forward Euler method® Clearly, instead

igiezrgér?gﬂﬁzdozﬁsagﬂgg q n?xvclﬁzzrdsea\éag\?i?jl:r?cgaebfag simply taking a linear interpolation between the first and
P y ! yIgst coarse values of a short run, we can record a short “tail”

gap in the eigenvalue spect'ru.m O.f th.e Iogal Ilneanzatlonbf the coarse evolution after the quick maturing period and
then the current coarse description is still satisfactory. In con- 5.19,44

- . use that to constructinear or higher ordérpredictors:
Lr:)sitr,] t?th;iszggg dofsazcaedgglOnSSItzl?hWeu:;ijﬁi%eunvri;nt the In the Ala dipeptide, we use a harmonic constraint on the
coarse desc?i tion ep b ir?c?udin the corres m‘?din ei{%)rsion potential to initializey at its new target value. With
ption, €.g., by In¢ 9 o P 9 Chew initial velocities assigned from a Maxwell-Boltzmann
genvector as a new coarse variable. If addltlc.)nallslow r.nOdegistribution the fast degrees of freedom, such as bonds or
are not accounted for, estimates of local derivatives with re<oivent positions, re-equilibrate rapidly and the newly initial-

spect to the coarse variables will become less reliable due tg . . ,
: . . . ; ized state starts drifting again on the free-energy surface. It is
the new “hidden variables.” This deterioration can be used 9ag 9y

as a computational “flaa.” starting uo the direct s sternaticinteresting that in addition to coarse projective integration
au menta?ion rocedur% Thesega proaches very much ral:ld to coarse Newton—Raphson, additional algorithms, like
9 . P ' PP Y ﬁme—stepper based coarse corfttol and coarse
semble, in spirit, tests for the adaptive mesh refinement or .. = """ "5 .
. ! T - i . _—optimization;~ become enabled, and they may be useful in
adaptive step size selection in partial-differential-equation . . - .
. o : analyzing these surfaces without ever explicitly closing
simulations: there one compares the results using snialler : . o -
. . . Langevin equations on theifiby specifying force, friction,
largen timesteps and finefor coarser meshes and decides .
X . and noise terms
whether to refinglor coarseh the mesh. Here, in a com-
pletely analogous way, we are pursuing the “adaptive coarse ) . o
variable augmentationfand, in some cases, reductipfior Eﬁgeverfiﬁir%%arse integration and escaping free
CMD (and other multiscalecodes. 9y
From the CMD analysis, we can also extract immedi- It is well known that whether one uses MD forward or
ately properties of the dynamics in the free energy wells. Irbackward in time(i.e., whether one flips the velocities of the
one dimension, we can estimate the correlation tijdor  initial configuration or notone obtaindorward evolution of
slow (diffusive) motion at the bottom of a well from the the coarse variables. As discussed in Ref. 51, however, it is
slope of the drift velocity with respect to the coarse variable possible to integratéhe coarse variablebackward in time
on the slow manifoldi.e., on the coarse free energy surface
exploiting projective integration as follows: After initializing
(5 at the molecular level, and runnirfghether with flipped or

I ;Z=0. unflipped velocities long enough for the lifting errors to

!

&z
7'51:—
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heal, we use the estimated coafsevard time derivativesy ~ the long-time dynamics. FronN replica simulations of
or yo— (t; 1) to perform relatively largeeverseprojec-  lengtht, we can estimate a propagator as a sund @inc-
tions in time. Under appropriate conditions this is a stableions at the end points of each trajectory,

algorithm®?

N
For reverse integration fromt, equal to the length of the p(t| %10)%,\,712 =it o) - @)
forward healing/estimation step, we can use a simple Euler i=1
integrator,

Alternatively, propagators could be built by filtering the data
(= At ) = 2¢(0; ) — W(AL; o). (7) or by using cumulants of the distribution at tineUnder the

We thens) e fom the proeciec( k) () 255500 O Mtk dynancs e dstbuton at mes
run again MD (whether forward or backward in timeo L X y PP

. . ..  the Chapman—Kolmogorov identity,
obtain a new estimate of the local, coarse forward-in-tifne
or o— (t;); and (3) reverse project again the coarse , , ,
variable backward in fime. P(4.2t 0.0 =h() | P(&.tle' 0P t]o,0dy".

What was discussed here is the simplest “projective for- 9)

ward Euler method_used backwardlln t.lme'; it is cI.ear thatWithout absorbing pointsh(y) =1 for all ¥, we expect to
more elaborate multistep coarse projective integration meth- A R . . L
recover the equilibrium distribution by iterating to infinite

ods can be used to accelerate both the forward and reverse . :
coarse integration in our context. Notice that this “reverseﬁme"BG('/’)— In p(¢,t—|¢4,0). Equation(9) provides an

. e : . . ._alternative route to the free energy surface, in addition to Eq.
integration” is useful not only in a microscopic/stochastic

! . o - (1). We note that under the Markovian assumption, the action
context, but also in the case of stiff deterministic problems in . s . S .

. o L . ._functional describing the relative probabilities of a dynamic
general, and even discretizations of dissipative partial differ-

ential equations? Such generalizations of coarse projective ngzs(?sre{vﬁ%’ 'él’ theri)ocli:ctp gf ?E:C:or?festhinij?r?rsergag_a-
integrations(including coarse projective Runge—Kutta, Ad- 9 y P P g propag

ams, and even implicit implementations of such algorithmstors’

in the “coarse” casgare outlined in Refs. 15 and 44 and are N-1

the subject of ongoing research in collaboration with C. W. e~ S(Vo-d1 N =g AW [T p(yi,1,t44,0. (10
Gear. This “short step forward in the full space, large step 1=0

backward approximately on the manifold” can be used ©Owe can use Eq(9) to estimate “reaction rates.” To find
systematically integrate the unavailable equations backwargs.nassage time distributions from a “reactant” state to a
in time on the free energy surface. For this qne—d|men3|onalproductn state, absorbing points can be inserted by multi-
problem, the “saddle” is actually a “source,” i.e., an attrac- y\ving the integral in the Chapman—Kolmogorov relation,
tor backward in time. Suitably initialized, reverse mtegratlonEq_ (9), with h()=0 inside the “product’ region and
of (t; ) will then converge to the saddle wheygt; /1) h(y)=1 outside. This assumes that the timis short rela-

=0 and dy(t; o)/ d>0. Reverse integration can become tive to the average time for escape from the reactant and
an efficient way of both exploring the surface and escapingroduct well. Integration op(y,nt|4,,0) overy then gives

free energy minima. It appears that, if all but one or two of@ survival time distribution at timet starting from¢= ¢,

the coarse backward directions are very dii#., a separa-

tion of time scales prevails for the coarse variable grifteir S(nt)= J p(,Nnt| p,0)dep. (11

effect is quickly damped by the short forward integrations.

With the appropriate step choices, the reverse integration wilhpplication of Eq.(9) requires propagators at intermediate
probably only “see” the slow backward directions, and usevalues. This is where regularity in coarse phase space is as-
them to “climb back up” the slow backward pd#). Meth-  sumed: propagators at intermediate values can be estimated
ods for the construction of stable manifolds for low- py interpolation from replica runs initialized with different

dimensional dynamical systenfsee, e.g., Refs. 53 and )54 values of . For an intermediate valug,, we can use a
can, under favorable time scale separation conditions, be usgimple linear interpolation,

ful in exploring the free energy surface through reverse

coarse integration. P(,t 2,00~ (1— @) p( 4,1 60,00 + ap(i,t]41,0) (12)
or
F. Calculation of rates P(,t] 142,00~ (1— @) p(h+ thy— tho . t| 1h0,0)
We can also use CMD to estimate rates of interconver- +ap(+ dp— ¢1,t|l//1,0), (13)

sion between states. Instead of performing one long run, we

determine the short-time dynamics in the space spanned where a= (»,— )/ (11— 1) with propagators for, and

the coarse variables from many short, appropriately initial</; given by Eq.(8). For diffusion on a linear potential with
ized replica runs. The replica runs are used to construdd constant, the linear interpolation E@.3) is exact. If the
propagators. Assuming some degree of regulastyooth-  diffusion coefficient is position dependent and possibly an-
nes$ these propagators are then applied recursively to infeisotropic, appropriate generalizations can be constructed.

Downloaded 09 Nov 2004 to 128.122.128.25. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 118, No. 23, 15 June 2003 Coarse molecular dynamics of a peptide fragment 10767

(Notice that our CMD approacHoesprovide estimates of boundary conditions capable of effecting this may signifi-
the position dependence and the anisotropy of the diffusiocantly enhance the performance of Brownian dynamics type

coefficient) solvers?3:56:57
In a certain limit, the concept of an optimal path can be
helpful in rate computations. Optimizati@ver coarse vari- 1. MOLECULAR DYNAMICS SIMULATIONS

ablelpatrl}scan be _per{or;netﬂ tuhsmg tCMD tllmesiﬁpp‘%r?. we MD simulations of the hydrated Ala dipeptide are per-
faf? o::a ytap]PI;ﬁXIma(T t'o the ehe:rrrlm et " " formed with the sander module in th&BER 6.0 Simulation
usive® part ot the evolution throug € propagators €s I'Eackage(University of California at San Franciscand the

Ln‘?ed fro:n replica runs. If we guess a cFiarze trar;iltlon PatBarmaa force field® The dipeptide is simulated in a periodi-
elween two coarse minima we can write down Ihe coarseq, replicated box with 607 TIP3P water molecutés.

action functional for this path. The coarse action functionalp, tjeje.mesh Ewald summation is used for the long-range
can thus be deterministically minimized, using, for example,

. ) : electrostatic interactiorfS. The system is simulated at con-
Qy_namu: programming method_s. On_e can est|mate_ the S€NLtant volume corresponding te1 bar pressure, as deter-
tivity of the functlon_al to (c_ilscr.enzed path_ vanaPon_s mined during an initial equilibration run. The temperature is
through nearby short integrations; or, alternatively, der'va'maintained at 300 K by weak couplif@0 ps time constant

tive free” optimigation methods can be, used for this goal,to a Berendsen thermosfdtBond lengths involving hydro-
and the conversion rate computepproximatefiupon con-  gon atoms are constrained using the SHAKE algorthm.

vergence of the optlml'za'tlo'ﬁ.We have, in the past, solved afer 500 ps of equilibration, we collect data for 7 ns, with

discretized coarse optimization problems for optimal paraMeonfigurations saved every 0.5 ps for analysis. All simula-

eter variation policies® we are currently pursuing the appli- tions use a time step of 0.001 ps.

cation of the same optimization methods for the computation  pepjica runs are initialized by drawing particle velocities

of rglstes in problems with coarse dimension higher thatom 5 Maxwell-Boltzmann distribution. For rigid TIP3P

one. _ _water molecules, rigid body translational and rotational ve-
In-many cases, the concept of the optimal path loses itjcities are generated in their principal-axes system. Initial

significance in the computation of rates. Instead, one evolvegg|gcities along(possibly linked constrained bonds of the
a state density over the coarse free energy surface, solving, fﬂpeptide are removed recursively.

effect, a Fokker—Planck equation for the evolution of this “Lifting” to a new target value of the coarse coordinate

density and its stationary state. For a relatively low coarsey, in CMD is accomplished by a short run with a tight har-
dimensional probleni.e., if the coarse free energy surface is ygnic potential k(¢— ) %/2, acting on the dihedral angle
two- or three-dimensionglt should be possible to solve this #, with k=100 kcal mof L rad™L. With “lifting” here occur-
Fokker—Planck equation by convolving the propagatorsing not instantaneously but over a finite time interval, the
above. fast variables are given time to adapt to the changes in the
In summary, we force the system to sample the dynamicgoarse variable. This effectively shortens the time needed to
in weakly populated regions of the “coarse variable space’mature the system at the new state, as prescribed by the
through multiple systematic initializations of the coarse Vari'updated coarse variable.
ables. This allows us to circumvent the problem that the At every iteration of the Newton—Raphson search for the
short-time dynamics “fully” samples the fast degrees of mo-|ocation of stationary points, ten initial configurations are
tion (as conditioned on the slow “coarse variablgsbut  created as structures along a 5-ps run with a harmonic con-
covers only a small range in the slow variables. We are therestraint holdingy near the target value. For each of the ten
fore trading multiple initializations for long time dynamics. configurations, ten sets of random initial velocities are drawn

This allows us to sample even the slow dynamics in therom a Maxwell-Boltzmann distribution, followed by 0.5 ps
coarse variables. This can be a computationally efficient apof MD.

proach, as can be understood for 1D diffusive barrier cross-

ing. By constructing and interpolating the propagators alongy. RESULTS AND DISCUSSION

the coordinate leading across the barrier, the rate of crossing o _

can be estimated for arbitrarily high barriers. It is important~ EQuilibrium molecular dynamics

to state, however, that this procedure assumes the dynamics From 7- and 24-ns equilibrium runs with 607 and 265

to be “smooth,” such that propagators can be interpolatedyater molecules, respectively, we estimate the free energy

and that the dynamics in the coarse variables is Markovian aurface 3G(y)= —In p(¢) shown in Fig. 3, where(¥) is

the time scale of the short replica simulations. given by the histogram of the dihedral angleWe find two
Interpolating the propagators to solve a Fokker—Planckninima, one corresponding to a right-handedelix [with

equation brings up an analogy with the so-called “gap-G(¢¥=~ —0.3 rad}~0] and the other to an extended structure

tooth” methods in Refs. 14 and 23. In this approach, regufwith G(y=m)~1kcalmol!]. In the two-dimensional

larity of the solution of a Fokker—Planck equation in spaceo—i Ramachandran plot of Fig. 3, we observe a small popu-

and time can, in principle, be used to accelerate a particldation in the left-handed-helical minimum during the 24-ns

based solver by evolving particles in “patches” of space—run, but not the 7-ns run. In the following, we will focus on

time, separated by empty gaps. Communication across the equilibrium between the extended and right-handed

“gaps” of the “teeth” in which the particle density evolves helical structures. The lower of the two barriers separating

is, of course, the key to the approach. The construction ofhe two minima, with a height of about 3 kcal mdl near
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FIG. 3. Free energy surfaces of the alanine dipeptiBeght) Free energy 0 01 02030405 -90 0
surface in thep—y plane from the 24-ns run with 265 water molecules t[ps] o [deg]
(1kgT contour lines. (Left) Free energy in units dézT (horizontal axig as P g
a function of they dihedral angldvertical axig. The solid and dashed lines o ) —
are the results from the 7- and 24-ns runs with 607 and 265 water molecule§!C- 4- Drift in theydihedral angle. The panel on the left Shop(3; ;) as
a function of time averaged over 50 runs with different initial velocities. The

respectively. e A - ; . ; .
thick line shows the equilibrium probabilihorizontal axis; arbitrary uniis
of ¢ (vertical axig to demonstrate thaf(t; ;) converges toward the most
. . opulated regions af. The panel on the right shows the “drift” a(t;
y=1rad, shows a considerable amount of structure, with &P - 9 o P ° Mg o X Qﬁ( ¢o)
. and ¢(t; ) in a Ramachandran pldthick lines. Initial configurations of
S.ma” d|pf7_'n5 run or shoulder(24-ns run near the polypro-  ine replica runs were chosen from structures along the 7-ns equilibrium run.
line By minimum (g~27/3). Thick arrows point from the initial values ap and ¢ to the final values.
For the second barrier nedt= —27/3 rad, we estimate Thin lines are free energy contours separated Iy TL
a height of about 5 kcal mol from umbrella sampling in

the barrier region, in agreement with the value obtained by _ ) _
Bolhuis et al3* Overall, our equilibrium runs give a very 'elatively rapid relaxation ofy compared tory, . For sim-
plicity, we will in the following use a constantD

similar G(¢) to the one obtained by Bolhuist al3* with vt _
umbrella sampling. =0.15 rad ps ! instead of correctindd () for the curva-
From the variance vaty) of « in the a-helical mini-  ture effects by using thé,-dependence of thé(t; ) data.
mum, and the decay time, of the corresponding autocorre- As expected from Eq1), theD*1¢Z/ data scatter around
lation function, we estimate a diffusion coefficient Bf  the free energy derivative- 39G/d¢ which is accurately
~var,(¢)/7~0.15 rad ps~*. reproduced by a spline approximation to tBe 1y data.
Integration with respect tgy of the J/ data(sorted with re-
B. Free energy surface spect toy and linearly interpolatedthus provides an esti-

To map the free energy surfaces with CMD, we assuménate of the free energ§ (), as shown in Fig. 6. This is a
that the distributions of fast variablésond lengths, etgare ~ fundamental result: multiple shof®.5 p9 replica runs pro-
quickly slaved to the slow variables, and that the averagetfcted onto coarse variables can be used to probe the under-
dynamics of coarse variables are governed by the underlyinfying free energy surface.

free energy surface. We thus expect that the averaged projec- We also note that the scatter of the derivative data gives
tions onto the coarse variables drift over a Sl'(hﬂre: sub- direct indication for the presence of additional slow vari-

p9 time scale towards free energy minima. Figure 4 show@bles. We find the largest scatter ngar 1 rad where Bol-
(T o) as a function of timet for runs starting from 13 huiset al3* have shown that a slow “solvent” coordinate is

different initial configurations. relevant for barrier crossing.

Also shown is the probability distributiop(#) of
from the 24-ns equilibrium ruwith ¢ on the vertical axis 2u . . . s
We find that(t; ) indeed drifts toward the maxima of D _oy/ot
p(y) and away from minima. Similar behavior is found for . ~B oGloy
the corresponding dynamics projected onto #e) Ram- 10 1 2
achandran plane. To get a more quantitative estimate of the
free energy surface, we estimafethroughout the interval
—7<y<ar. From 67 different initial configurations, we run
50 short ¢=0.5ps) replica simulations. The);(t; )
curves of the replicas are averaged and fitted to straight lines.
Figure 5 shows the corresponding slop?e scaled b)@ D = 0.15 rad2/ps
=0.15radps !, as a function of the average angle) ' ' 0 ' '
=7 [ Ju(t; ¥o)dt. As mentioned before, we average here - n
over the whole interval, including the initial maturation time. v (rad)
We also calculated the local diffusion CoefﬁCi@(’p) from FIG. 5. Drift velocity sz as a function of they dihedral angle. Shown are
Eq. (2). Near the minima oG(¢), we recover the value for D1y (filled circles and the mean force- BIG(1)/ a4 (solid line) for D
the equilibrium run. Near barriers, however, curvature effects. g 15 rag ps2. The dashed line is a spline approximation to Bie'
are relevant even at the 0.5 ps time scale because of thiata.

~B 2G/v, D~ Jyrot
o

|
N
o
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FIG. 6. Free energy surface as a functionyofResults are shown for the F|G. 8. Coarse projective integration in the-y plane. Thin solid lines

two equilibrium runs with 26524 ns; long-dashed lineand 607 water show the average trajectorieg, /). Arrows indicate the projective integra-

moleculeg7 ns; solid ling, and for integration oD’llZ (dotted ling. Also tion steps(labeled 1, 2, and )3 Dotted lines are contour lines akgT
shown is the free energy corresponding to the limiting distribution of jhtervals.

Chapman—Kolmogorov iteratior(short-dashed line with symbg|sevalu-
ated at 56 discrete values ¢f

C. Free energy minima and saddles an unstable r(J//(w> 0) stationary point afy=—2 rad. The

as stationary points rapid convergence of the Newton—Raphson-type search
shows how locations of the dominant features of free energy
surfacedi.e., minima and saddlgsan be identified dynami-
(d‘ally by searchinggiven good initial guessestor stationary
points of the coarse dynamics through contraction mappings.

From Fig. 5, we expect that Newton—Raphson type, con
traction mapping algorithms for finding stationary points
should indeed converge to the free energy maxima an
minima. We test this for the most unstable saddle ngay;
=—2.15 rad(as determined from umbrella sampljngVe
save ten configurations along a 5-ps MD trajectory with a S )
tight harmonic constraint holding near yo= — w/2. From D- Coarse projective integration

each of the ten configurations, we start ten0.5-ps replica We illustrate coarse projective integration in the two-
simulations with different velocities. Figure 7 shows the dif- dimensional Ramachandran plane of dihedral anglesd
ference ¢(7;¢0)— o as a function of the average ¢. In each integration step we start from identical structures
[ o) + o]/2. Despite the scatter in the difference dataPut random initial velocities assigned according to a
of round 1, a linear fit already predicts zero drift @&  Maxwell-Boltzmann distribution. The forward differences
~—1.92 rad close to the free energy maximuymy,,. Aftera  Of the dihedral anglese(t; o, ¢o) — ¢o and ¥(t; ¢, o)
second round initialized nealr;, a quadratic fitas shown in ~ — o, are calculated from 0.5-ps MD simulations of 50 rep-
Fig. 7) yields #,= — 1.98 rad. Inclusion of data from a third licas. Linear extrapolation is then used to project forward in

round initiated neary, does not change the fit and predicts time for 0.5 ps. “Lifting” is accomplished through a 0.5-ps
MD run with harmonic constraints holding boghand s near

their new target values.

Before showing the results, we should point out that this
is not a particularly “good” problem for coarse integration;
indeed, for these conditions the average solution very
quickly (within 2 pg finds its way to the bottom of the well.
Coarse projective integration will probably be beneficial in
situations in which the “healing period” is short compared to
the slow dynamicsi.e., if there exists a gap in the eigenval-

round 1

y(twg)-yg [rad] with t=0.5 ps

round 2 . \ ues of the linearization of the drift part of the problenf
round3 e that gap is largdi.e., if there exists a long slow transient of
_umbrella A | the coarse behavior towards the stable minimuimen pro-
- /2 0 jective integration has the potential to accelerate the conver-
[witwo)+wol/2 [rad] gence. Here, both processes—healing and drift of the expec-

tation down into the well bottom—are relatively fast, and

FIG. 7. Newton—Raphson-type search for the highest barrier wear (for the number of copies we useuite noisy. Figure 8
*—2-/125 fﬁ(‘jd I@*—123°O)|-15tam”9 fro'g a’;d'?'t'a' ds"ucéu“:_ V‘f"tth”t shows the resulting dynamics. We confirm that within three
= _ /2 rad, linear(round 1, squares and solid Iinand quadratic fits o ¢\ integration steps, the system reaches the free energy
W(t; o) — ¥y data (round 2, filled triangles; round 3, circles and dashed . . . .. . .

) . : minimum in the ¢—y plane. Coarse projective integration
parabola are used to locate the unstable stationary point witl; i) . )
— . The open triangle indicates the maximum in the free energy surfaceCan thus be exploited to potentially accelerate CMD towards

as determined by umbrella sampling. stable stationary points forward in time. The reason for in-

Downloaded 09 Nov 2004 to 128.122.128.25. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



10770  J. Chem. Phys., Vol. 118, No. 23, 15 June 2003 G. Hummer and I. G. Kevrekidis

ively expect that if we reverse each of the replica trajectories

51 A%I_Y}G( _ 7 by changing the sign of the initial velocities, otgverse
4 ] \T‘t(—t%gy X r 6 integration scheme would turn into farward integration.
L 5 This is not the case. For each of the initial structures along
S 3 L4 @ the reverse-integration path found before, we run each of the
g % 50 replicas forward in time with initial velocities of opposite
2 r 3 sign. The resulting reversgvalues are also shown in Fig. 9,
L 2 and are found to agree well with those obtained for the origi-
1 1 L nal initial velocities, illustrating the “irreversible” time evo-
0 0 lution of the averaged coarse variables. To qualify this result,

' we point out that the integrator used in the MD simulations is
0 w4 n/2 not fully time reversible because of thermostatting and the
v [rad] bond constraint algorithm.
FIG. 9. Reverse integration. The thin line with open circles shows While reverge |.ntegrat|on will take us ‘up” th? free-
m (horizontal axi$ as a function of time (vertical axis, right-hand energy surface, it will eventually search for “mountain tops”
scale. The thick curve shows the free energy surféceksT units; left-  rather than saddles. Even so, it can still be used as a tool to
hand scalp The tilted and vertical arrows indicate the initial approach to the help explore the free energy surface. For a coarsely two-
Lfnsltab:':hStatiO”aW point, and thle S“mﬂ“i_maﬁc’zi about it, respegimensional surface, techniques for approximating the stable
B e el o Jeverse  manifolds of fixed points in dynamical systems can be used
opposite sign. to efficiently draw the surface by reverse integration. In ef-
fect, a circle of points surrounding a well-bottom gives a
one-parameter family of initial conditions for reverse coarse
cluding the forward in time coarse projective integration inprojective integration that can be used to “triangulate” the
this particular case, however, is more for completeness, ansurface. Computational approaches to these problems for ex-

to motivate the next section. plicit ordinary differential equations are well developtf
and we expect that they can find good use in the case of
E. Reverse coarse integration “coarse stable manifolds.” It is also worth mentioning that,

T f f - lso t if close to a saddle a large separation of time scales exists
0 €scape from a Iree energy minimum we can also o yaen a slow unstable mode and many fast stable ones,

to use reverse integration. Whereas forward integration o rojective backward integration may indeed approach the
the expected coarse variablg®ere, ¢/(t; ;)] converges to- saddle.

wardsstablestationary pointgi.e., free energy minimare-

verse integration goes “up the mountains” towastsurce-

type, unstablestationary points. For a one-dimensional ¢ kinetics of interconversion

coarse problem the “saddle” is indeed such a “source.” We ) ) o

start from a configuration withy~0 near the bottom of the To estimate the rate of escape from thdelical mini-

a-helical well and perform 13 reverse integration steps ofum into the extended minimum, we apply the Chapman—

length At=0.5 ps. At each step, we initialize 50 replicas Kolmogorov relation, Eq.(9). The propagators are con-

with identical structures and random Maxwell-BoltzmannsStructed from 56 of the runs of 50 replicas used before to

velocities, and run regular MOorward in time for At ~ €stimate the free energy derivative. We use a simple linear

—0.5 ps. We then use Eq7) to estimatem and interpolation _of the propggators, EqL2), that ignores a

“ift" the t=0 structure by running a 0.5-ps MD with a _smaII t_ranslatlon_al correction for the narrowly spaced start-
. . [ ing points ¢,. Figure 6 compares the free energy surface

harmonic constraint onjs with ¢(—At;¢o) as the target predicted from Chapman—Kolmogorov iteratioBG( )

value. The final conf|gur§lt|on is then used as a startlng struc= _ | p(¢it—|1,0), to the free energy from the equilib-

t_ure for the forward replica runs in the next reverse integrasiym run. The agreement is excellent, with the possible ex-

tion step. _ . ception of the poorly sampled barrier negr —2.15 rad.

~ Figure 9 shows the) values(horizontal axig as a func-  Thjs shows that Chapman—Kolmogorov iterations are indeed

tion of time (vertical axis; right-hand scaldor the 13 re-  gppjicaple to estimate the equilibrium distribution.

verse integration steps. Also shown is the free-energy surface ' 14 test the applicability to kinetics calculations, we de-

(left-hand scale We find that the system rapidly escapesiermine the rate of escape from the lowest-free energy well at
from the free-energy minimum and 'reaches the barrier neaj, — —0.3 rad into the extended well with 2 rady<2
#=1rad after three reverse integration stepsl(5 ps). The  _5 5 rad which defines the absorbing regidr(:)=0] in
subsequent fluctuations @f( —t; o) about the free-energy the iteration, Eq(9). By integration overny, we find that the
maximum are caused by statistical uncertainties in evaluatingurvival time distribution rapidly becomes exponential with a
¥(t; ) — o, and by the possible role of an additional slow time constant of 920 p&ee Fig. 10 As a reference, we also
variable, as inferred from the study of Bolhsal3* determine the corresponding survival time distribution from
The time reversibility of classical mechanics is the basighe two equilibrium runs. From the 7- and 24-ns runs, we
for one of the main objections to Boltzmann'’s kinetic theory, estimate mean-first-passage times of about 400 and 800 ps,
the so-called “irreversibility paradox.” Here, one might na- respectively. The rate constant for escaping from the alpha-
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1 ®24ns MD — ] ' ‘ nect between neighboring wells. Starting from different ini-
‘\’"‘._7‘ns MD --- g I ' T tial structures in a given well, the search will lead to multiple
0.8 14\, CK o 0 13 1T exit routes from that well. The Chapman—Kolmogorov itera-
. = 0.6 1™
‘\\ D04t AN ] tion for this set of local propagators can then be used to
= 0.6 N e, 02 e TII— | project forward in time and carry the system over barriers.
%3 \ o 0 .
0.4 \\ .0 100 200
e HPS] V. CONCLUSIONS
0.2 1 N e s, |
S~el o ey The CMD approach uses methods closely related to
0 . TTen - those of other approaches aiming at the long time dynamics.
0 500 1000 1500 2000 In constrained dynamic®, a single “coarse” coordinate is
t [ps] held fixed in time and the corresponding mean force is evalu-

ated. In CMD, we evaluate instead the drift in the space of
FIG. 10. Survival time distribution to reach the extended state (2tad  ¢oarse variables resulting from the interactions with the rest
<2m—2.5 rad) from thea-helical well, starting fromi,=—0.3. Results , . .
are shown for the two equilibrium runs with 2634 ns; solid ling and 607 of the system. In Voter's parallel replica methbd)ultlple
water molecule€7 ns; long-dashed lingand for Chapman—Kolmogorov ~ replicas search for exit routes from a metastable state. Here,
iterations (dotted ling. The inset shows the survival time distributions to we use multiple replicas to determine the short-time dynam-
reach thea-helical minimum from an extended configuratiopi= ). ics in the coarse variables. This allows usctmstructpaths
out of free-energy wells by recursive application of the
Chapman—Kolmogorov identity, by Newton—Raphson
helical well to the extended well calculated by Chapman-search for saddle points, or, sometimes, by reverse integra-
Kolmogorov iterations is thus within about a factor of 2 of tion. In the former approach, information about rare events is
the value from simulation. contained in the tails of the propagators constructed from
For the backward rate coefficient to go from the ex-MD, similar to the advancing replica in Voter’s parallel rep-
tended minimum ¢~m) to the a-helical minimum lica method’
(—0.6 radky<0), the Chapman—Kolmogorov iteration In the transition path sampling approach developed by
gives a rate coefficient of about(38 p9, consistent with the Chandler, Dellago and co-worket$® dynamic paths con-
free energy difference of about 3I&T (Fig. 3 and the necting reactant and product regibhsare efficiently
forward rate coefficient of 1920 p3 in a two-state model. sampled. In CMD, we can use local short-time propagators
Both MD simulations give backward rate coefficients of to build transition paths in the space of tbearsevariables.
about 1(100 pg, consistent with the free energy difference With the Chapman—Kolmogorov approach, we can estimate
of about 2kgT and a forward rate coefficient of (800 ps  the kinetics of barrier crossing. In addition, we can some-
for the 24-ns run, but too slow for the forward rate of4D0  times exploit reverse integration tmnstructmultiple coarse
ps estimated for the 7-ns run. We have confirmed these ratgransition paths. In the case of a single dominant “coarse
coefficients and the underlying two-state model by determinpath,” deterministic optimization methods(preferably
ing the decay time of the number correlation function,derivative-free algorithms may be wrapped around the
(6L () 160 (0)]) [with 6(#)=1 inside one well and 0 out- coarse timestepper to locate the path.
side] and relative populations in the two wells. In the 24-ns  To explore conformation space, Huber and van
simulation, the number correlation decays exponentially ove6Gunstere?f have developed a method that couples the dy-
a broad time range. The decay time is insensitive to the pamamics of multiple replicas to their average structure. These
ticular choice of dividing lines in the barrier regions, and aauthors point out that “the average structure of a swarm of
two-state model is consistent with the above rates and thmolecules converges faster to the structure with lowest en-
observed equilibrium coefficient. ergy than individual molecules do.” In adapted form, this is
For comparison, we also calculate the rates of interconan essential element of the CMD approach to mapping the
version by numerical solutiéf of the Smoluchowski diffu- coarse free energy surface. In the Newton—Raphson search
sion equation alongy. With a diffusion coefficientD and projective forward integration of the coarse variables, we
=0.15radps ! and a free energy surfad®(y) from the use the time evolution of the averaged coarse variables to
equilibrium simulations, we obtain forward and backwardconverge rapidly to free energy minima. In an earlier paper,
rate coefficients of 1600 ps and 1(120 p3, respectively. Huberet al®® have explored the idea of adding memory to
These values are in good agreement with the rate coefficientaolecular dynamics to enhance conformational sampling. In
from the MD simulations and from the Chapman-—a recent paper, Laio and Parrinello expanded on this ap-
Kolmogorov iterations. proach and ingeniously combined coarse timestepping with
Our analysis demonstrates how CMD can use subpico*building in” a memory that allows the simulation to explore
second dynamics to extrapolate by three orders of magnitudiae free energy surface by, in effect, filling up the wélls.
to nanosecond dynamics. One concern may be that in a sy#ieir approach, repulsive markers are left behind along a tra-
tem with many wells, it will be impossibla priori to sample  jectory projected into the coarse space. Eventually, these
all relevant space in the coarse variables. With reverse intenarkers drive the system over a barrier leading out of the
gration and Newton—Raphson searches, however, we camell (and, in the process, effectively mapping the well)out
create propagators for ensembles of configurations that coi®ur “stable manifold through reverse integration” maps out
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