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Coarse molecular dynamics of a peptide fragment: Free energy, kinetics,
and long-time dynamics computations
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We present a ‘‘coarse molecular dynamics’’ approach and apply it to studying the kinetics and
thermodynamics of a peptide fragment dissolved in water. Short bursts of appropriately initialized
simulations are used to infer the deterministic and stochastic components of the peptide motion
parametrized by an appropriate set of coarse variables. Techniques from traditional numerical
analysis~Newton–Raphson, coarse projective integration! are thus enabled; these techniques help
analyze important features of the free-energy landscape~coarse transition states, eigenvalues and
eigenvectors, transition rates, etc.!. Reverse integration of coarse variables backward in time can
assist escape from free energy minima and trace low-dimensional free energy surfaces. To illustrate
the coarse molecular dynamics approach, we combine multiple short~0.5 ps! replica simulations to
map the free energy surface of the ‘‘alanine dipeptide’’ in water, and to determine the;1/(1000 ps)
rate of interconversion between the two stable configurational basins corresponding to thea-helical
and extended minima. ©2003 American Institute of Physics.@DOI: 10.1063/1.1574777#
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I. INTRODUCTION

Molecular dynamics~MD! simulations1 on classical or
quantum energy surfaces provide a unique tool for explor
the phase space of~bio!chemical systems at full atomic reso
lution. In the biological sciences, realistic MD simulations
protein folding, complex formation and aggregation, enzy
kinetics, channel transport, etc., hold the promise to form
only the basis for new understanding of these fundame
processes but also to accelerate the development of
drugs and treatments for diseases. However, these and m
other processes in~bio!materials occur on time scales we
beyond the reach of current MD simulations, even if carr
out with the most powerful computers available on an
proximate classical Born–Oppenheimer energy surface. W
femtosecond timesteps required to integrate the fas
atomic motions, classical MD of~bio!molecular systems in
condensed phase is only starting to push into the micro
ond regime,2,3 and orders of magnitude less on quantum s
faces. Remarkable progress has been made recently inover-
coming the time scale limitations of MD;4–9 circumventing
them is the goal of this work.

The fundamental difficulty in MD arises from the re
quirement to integrate the motions of ‘‘all’’ nuclear degre
of freedom, not just those of interest. This problem of tim
scale separation has been formally addressed in
projection-operator formalism of Zwanzig and Mori10–12 by
constructing a generalized Langevin equation that descr
the time evolution in a ‘‘slow subspace.’’ The coarse dyna
ics proposed by Kevrekidis and co-workers for equation-f
multiscale computations13–22 ~see Ref. 23 for a review!
builds on this general framework. In the coarse molecu
dynamics~CMD! approach developed here, the existence
10760021-9606/2003/118(23)/10762/12/$20.00

Downloaded 09 Nov 2004 to 128.122.128.25. Redistribution subject to AI
g

e
t

al
ew
ny

d
-
th
st

c-
r-

-
he

es
-
e

r
f

an attracting ‘‘slow manifold’’ for the mesoscopic evolutio
is assumed. However, explicit constructions of the sl
manifold and the corresponding evolution equation, mem
kernel, and noise function are avoided by using conventio
MD to propagate the microscopic system over intermed
times, as discussed below. Here, we implement the C
method to study arguably the ‘‘simplest biomolecule,’’ al
nine dipeptide~i.e., N-acetyl alanineN8-methyl amide!, dis-
solved in water. This system was chosen as a fundame
fragment of protein backbones with torsion degrees of fr
dom w, c, and v; and polar groups CvO and N–H that
interact strongly with each other and the solvent~see Fig. 1!.
For this reason, the alanine dipeptide has been studied ex
sively by theory and experiment~see, e.g., Refs. 24–33!, and
has been used as a model system to analyze the therm
namics and kinetics of conformational dynamics.9,34

The two major goals here are~1! to map the essentia
features of the~coarse! free energy surface of the dipeptid
in particular to find stable minima and connecting sad
points, and~2! to determine the rates of interconversion b
tween the stable minima.

The paper is organized as follows: In Sec. II A, we ou
line the concepts of CMD. In Sec. II B, an expression
introduced that relates the drift velocity of an ensemble
trajectories to the underlying free energy surface. In S
II C, we discuss how stable and unstable stationary points
that surface~i.e., free energy minima and saddle points! can
be found using contraction mapping~e.g., Newton–Raphson!
type searches. The concepts of coarse projective forward
reverse integration are introduced in Secs. II D and II E,
spectively. In Sec. II F, we show how the Chapma
Kolmogorov identity can be used to estimate rates of sl
2 © 2003 American Institute of Physics
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processes from ensembles of short trajectories.
Details of the MD simulations of the solvated alani

dipeptide can be found in Sec. III. Section IV presents
results for the estimate of the free energy surface from d
velocities, with minima and saddles found directly b
Newton–Raphson-type searches and by projective forw
and reverse integration. The rate of interconversion betw
thea-helical and extended states of the alanine dipeptide
be estimated using the Chapman–Kolmogorov identity
compared to explicit simulation results.

Finally, Sec. V contains some concluding comments.
particular, we will discuss the relation of CMD to othe
methods, such as constrained dynamics,35 the parallel replica
method,7 transition path sampling,6,36 SWARM-MD,37 and
memory-based dynamics.9,38 We conclude by outlining fu-
ture directions.

II. THEORY

A. Coarse molecular dynamics

In CMD, the existence of an attracting ‘‘slow manifold
is assumed. We start with a set of ‘‘coarse’’ variables t
parametrizethis manifold: for every combination of value
of these variables, a single point exists on the manifold. T
means that the expected values of the remaining varia
can be conceptually plotted as an~unspecified! function of
these coarse variables. We stress that these variables are
servation variables.’’ Theydo not spanthe subspace on
which the coarse dynamic occurs~the ‘‘curved’’ manifold!.
There exists, however, a one-to-one relation between tra
torieson this manifold, andthe projectionsof these trajecto-
ries on the hyperplane spanned by the coarse variables.
number of such coarse~observation! variables should be a
least as large~and preferably, for computational econom
purposes, the same! as the dimension of the slow manifold
For macromolecular systems, such ‘‘coarse’’ variables w
include descriptors of their internal geometry, such as di
dral angles, radii of gyration, end-to-end distances, num
and type of monomer contacts, etc. They may also incl
solvent coordinates, such as variables describing solven
ordination numbers and structures. In a somewhat diffe
context ~e.g., kinetic theory description of fluid flow! the
‘‘coarse manifold’’ will be parametrized by the hydrody
namic variables~density and momentum fields, i.e., low m
ments of the molecular distribution over velocity space; s
for example, Ref. 17!. If necessary, nonlinear couplings b

FIG. 1. Structures of the alanine dipeptide in the right-handeda-helical
minimum ~left!, in the extended minimum~right!, and at the barrier in
between~center!. The dihedral anglec is indicated in the center structure
Carbonyl oxygen atoms are labeled.
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tween variables can be introduced, for instance, by using
expectations of products of hydrodynamic variables to
rametrize the manifold, as in mode-coupling theories. In
CMD approach to atomistic simulations, the assumption
that microscopically evolving distributions in phase spa
quickly become effectively low-dimensional.39

Along fast directions~such as those describing bond v
brations!, the distributions rapidly saturate, while they ke
drifting and spreading along slow directions~such as those
describing large-scale conformational rearrangements!. The
properties of motions along the fast degrees of freedom~such
as amplitude or characteristic time! depend on the slow de
grees of freedom. In a peptide, for instance, the freque
spectrum of fast motions associated with the amide CvO
stretch vibration depends on the environment described
the slow variables quantifying, e.g., the type and amoun
secondary structure and solvent present. Geometrically,
average of an ensemble of trajectories relaxes onto the
tracting ‘‘slow manifold’’ and remains there. This picture in
vokes an analogy with the so-called ‘‘inertial manifolds’’ fo
dissipative partial differential equations.40–42

The ~expected! dynamics of the coarse variables are e
plored through short multiple replica simulations as follow
~see Fig. 2!: A coarse initial condition is prescribed, an
‘‘lifted’’ to many microscopic copies consistent with~condi-
tioned on! the coarse variables. This ‘‘lifting’’ step is no
unique, since many distributions can be constructed that h
the same coarse variables. Lifting can be achieved, for
stance, by performing a short MD run with an added pot
tial biasing the coarse variables toward their new target v
ues, as in umbrella sampling.43 This approach works also fo
coarse variables consisting of nonlinear combinations of
atomic coordinates, as in the product variables of mo
coupling theories. The initialization will necessarily be
least slightly ‘‘off manifold;’’ that is, the fast degrees will no
be initialized to be the ‘‘correct’’ functionals of the coars

FIG. 2. Schematic of projective forward integration in CMD. The coa
and fast variables are along the horizontal and vertical axis, respecti
Lighter shading indicates lower free energy.~1! Lifting creates an ensemble
of initial conditions~diamonds! with a prescribed value of the coarse var
able c ~thin vertical line!. In short MD runs starting from these initial
conditions,~2! the fast degrees rapidlymatureby relaxing on the free energy
surface~circles!, followed by ~3! drift in the coarse variable. At the end o
the MD runs, we~4! restrict to coarse variables by collapsing the distrib
tion of trajectory endpoints~squares! to their average~dotted–dashed line!.
From the drift in the average~from dotted to dotted–dashed line!, we esti-
matea time derivative and~5! use it toproject forward in time~horizontal
arrow!. (18) Lifting creates a new ensemble of initial conditions~vertical
solid line!, followed by a second cycle of projective forward integration.
this schematic plot, ‘‘convergence’’ to the free energy minimum is pra
cally achieved in two cycles.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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variables. This discrepancy, however, will be quick
‘‘healed,’’ as a relatively short detailed simulation will brin
the trajectory down on the manifold~i.e., slave the statistics
of the fast degrees of freedom to the coarse variables!. After
this short healing or ‘‘maturing’’ period we monitor the de
tailed simulations over short times, and estimate the t
derivative of the slow dynamics in the coarse variables. T
time-derivative can be used to extrapolate coarse dynam
over relatively long time intervals; repeating the proced
~lift, short run, restrict to coarse variables, estimate coa
variable time derivative, project coarse variables into the
ture, lift again,...! constitutes the coarse projective integr
tion schemes of Gear and Kevrekidis,15,19,44and allows us to
extrapolate the long-time coarse behavior from short,
peated bursts of appropriately initialized MD simulation. It
important to stress the relation between these methods
the optimal predictors of Chorin and co-workers.45–47 In
their formalism, a projection-operator approach is used
propagate ensembles of initial conditions in time, with so
phase space variables~here, the coarse variables! at constant
values in the starting ensemble, and the remaining o
drawn from an equilibrium distribution~as achieved here b
‘‘maturing’’ !.

Beyond these ‘‘accelerated’’ dynamics, we will see th
the CMD approach permits the rapid search of dynamica
relevant features of the free energy surface and the calc
tion of transition rates, as discussed below. Here, we use
dihedral anglec (N–Ca – C–N) of the Ala dipeptide as a
first approximation for the coarse coordinates~i.e., the coor-
dinates used to observe the slow dynamics!. In the following,
we will explain the method in terms of this coordinate. Ge
eralizations to multiple dimensions are straightforward, ha
been discussed in the literature,18,22,23and will be illustrated
here by occasionally using the dihedral anglew
(C–N–Ca – C) as a second coarse coordinate.

B. From drift in the coarse variables to free energies

Assume that we have created an ensemble ofN configu-
rations i with identical values ofc i(t50;c0)5c0 , for in-
stance by randomly assigning Maxwell–Boltzmann velo
ties to all solute and solvent atoms in a given configurati
As these configurations evolve in time, the dynamics
c i(t;c0) will initially be governed by the coupling to fas
motions such as bond vibrations and molecular collisions
a consequence, thec i(t;c0) will ‘‘spread’’ rapidly over a
small range. After a sufficiently long timet.tmol , however,

the averagec(t;c0)5N21( i 51
N c i(t;c0) is expected to drift

down on the free energy surface~or potential of mean force!
G(c) towards a stable minimum. ‘‘Timestepping’’ fo

c(t;c0) involves lifting, evolving for a timet.tmol , and
restricting back to coarse variables~i.e., collapsing the dis-
tribution of the endpoints of the several trajectories to th
average!. This ‘‘coarse timestepper’’~the map resulting from
the lift-run-restrict procedure!, lies at the heart of the coars
numerical processes~coarse integration, coarse Newton
Raphson, coarse optimization! we perform. Initializing at
nearby values ofc0 can be used to estimate the partial d
rivatives of the coarse timestepper with respect to its~coarse!
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initial conditions, and from that we can obtain estimates
the local curvature of the free energy surface. From a Lan
vin approximation to the dynamics of slow variables,12 we
expect that the drift velocity is proportional to the slope
the free-energy surface,

]c~ t;c0!

]t
'2Db

]G~c!

]c
U

c5c*
for t.tmol , ~1!

whereb215kBT ~with kB Boltzmann’s constant,T the tem-

perature! andc* 5t21* t0
t c(t8;c0)dt8. Normally, one would

begin averaging after an initial maturation time (t0.tmol);
here, we averaged over the whole interval (t050). The pro-
portionality constantbD is a mobility, with D a diffusion
coefficient that may depend onc. We may also expect tha
the variance inc i(t;c0) of different runsi initialized with
the samec i(0;c0)5c0 will exhibit diffusive behavior,

]

]t
var@c~ t;c0!#'2D~c* !, ~2!

where the diffusion coefficientD is related to the mobility in
Eq. ~1! through the Einstein relation. We expect Eq.~2! to
hold for timestmol,t!(bDu]2G/]c2u)21 long compared to
the initial molecular relaxation timetmol but short with re-
spect to curvature effects of the free energy surface. One
thus use the time-evolution observed through the coarse v
ables to estimate the deterministic and stochastic compon
of the motion, and from those estimate the underlying f
energy surface,G(c), and dynamic properties, such as e
fective diffusion coefficientsD(c).

C. Finding stationary points on the coarse free
energy surface

In many practical applications, one is interested in fin
ing the stable minima and the~unstable! saddle points on the
coarse free energy surface, rather than mapping the com
surface. Protein folding simulations constitute one such
ample with goals of finding the folded structure and t
structures at the ‘‘barrier’’ to folding. From Eq.~1!, we ex-
pect that the minima and maxima are stable and unst
stationary points for the drift component of the dynamics
the coarse variables. We can thus use the dynamic infor
tion to search for these stationary points on the free ene
surface, i.e., minima and saddles satisfying

]c~ t;c0!

]t
50 or c02c~ t;c0!50. ~3!

By estimating c(t ;̇c05]c(t;c0)/]t or c02c(t;c0) for
nearby initial pointsc0 , we can estimate]cG /]c and per-
form a Newton–Raphson type step towards a station
point,

c15c02
cG

]cG /]c0

or c152a/b, ~4!

wherea andb are the intercept and slope, respectively, in

straight-line fit ofc02c(t;c0) versus@c01c(t;c0)#/2 for
nearby starting values ofc0 . Recursive application of Eq
~4!, can be used to converge to a stationary point. T
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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timestepper approach to coarse steady state computa
was introduced for spatially distributed systems,13 and was
illustrated for stochastic systems18,20,22~stable and saddle sta
tionary states of kinetic Monte Carlo and Brownian dyna
ics simulations!.

Unlike the thermodynamically determined free ener
profiles ~e.g., from umbrella sampling43 or constrained
dynamics!35 the dynamic sampling can provide informatio
about the kinetic relevance of the chosen coarse coordin
Consider the classic example@see, e.g., Fig. 1~b! in Ref. 48#
of a rotated double well system in two dimensions. Projec
onto thex axis, the two wells overlap in the barrier region.
the dynamics is monitored only along thex axis but not the
‘‘solvent’’ coordinatey, most of the structures at the barri
in x appear already ‘‘committed’’ to one or the other we
This has important implications. In free energy calculatio
using umbrella sampling or thermodynamic integration,
system will not be pulled easily over the barrier by a pote
tial acting onx alone; in kinetics calculations, the dynami
along x alone is non-Markovian, making rate calculatio
difficult. In our dynamic analysis, this situation becom
manifest in a large spread of the estimated drift velocity a

direction,c(t ;̇c0), for nearby initial values ofc0 .
A detailed discussion of practical approaches to de

mining the need for additional coarse variables is contai
in Refs. 18 and 22. The idea is to quantify this need direc
‘‘on-the-fly:’’ by lifting with more coarse variablesc i , we
can determine the eigenvalues and corresponding time s
of the coarse local linearization,Ji j 5]cG i /]c j . If the time
scales introduced by adding new coarse variables are
compared to the ones already included, as evidenced
gap in the eigenvalue spectrum of the local linearizati
then the current coarse description is still satisfactory. In c
trast, the presence of an additional slow time scale~eigenval-
ue! in the expanded space suggests the need to augmen
coarse description, e.g., by including the corresponding
genvector as a new coarse variable. If additional slow mo
are not accounted for, estimates of local derivatives with
spect to the coarse variables will become less reliable du
the new ‘‘hidden variables.’’ This deterioration can be us
as a computational ‘‘flag,’’ starting up the direct systema
augmentation procedure. These approaches very much
semble, in spirit, tests for the adaptive mesh refinemen
adaptive step size selection in partial-differential-equat
simulations: there one compares the results using smalle~or
larger! timesteps and finer~or coarser! meshes and decide
whether to refine~or coarsen! the mesh. Here, in a com
pletely analogous way, we are pursuing the ‘‘adaptive coa
variable augmentation’’~and, in some cases, reduction!! for
CMD ~and other multiscale! codes.

From the CMD analysis, we can also extract imme
ately properties of the dynamics in the free energy wells
one dimension, we can estimate the correlation timetc for
slow ~diffusive! motion at the bottom of a well from the
slope of the drift velocity with respect to the coarse variab

tc
2152

]cG

]c
U

cG 50

. ~5!
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This follows from Eq.~1! and the relationtc
215bDk be-

tween the characteristic timetc and the effective spring con
stant k5]2G/]c2 for a diffusive harmonic oscillator with
diffusion constantD. By using Eq.~5!, the local correlation
time tc in a particular steady state can be determined dire
from the Newton–Raphson search upon convergence.
slope ofcG with respect toc provides the ‘‘restoring force’’
for the coarse variable. IfcG remained linear inc, then the
motion would correspond to a harmonic oscillator in t
high-friction ~overdamped! limit. In many dimensions, the
characteristic frequencies are given by the eigenvalues o
Jacobian matrixJi j 5]cG i /]c j analogous to the derivative in
Eq. ~5!. The corresponding eigenvectors give the ‘‘norm
coordinates’’ for the overdamped motions around a station
point.49

D. Coarse projective integration

The dynamic information in the replica runsc i(t;c0)
can also be used to extrapolate toward longer times. Ins
of propagating each of the replicas, we extrapolate theaver-
age position of the slow variable, for instance linearly~ex-
ploiting regularity of the expected coarse dynamics w
time!,

c~ t8;c0!'c~ t;c0!1
t82t

t
@c~ t;c0!2c0#. ~6!

A long ‘‘projective’’ step t82t is then effected by reinitial-
izing an ensemble at the extrapolated value; this is the s
plest ‘‘projective forward Euler method.’’15 Clearly, instead
of simply taking a linear interpolation between the first a
last coarse values of a short run, we can record a short ‘‘t
of the coarse evolution after the quick maturing period a
use that to construct~linear or higher order! predictors.15,19,44

In the Ala dipeptide, we use a harmonic constraint on
torsion potential to initializec at its new target value. With
new initial velocities assigned from a Maxwell–Boltzman
distribution, the fast degrees of freedom, such as bond
solvent positions, re-equilibrate rapidly and the newly initia
ized state starts drifting again on the free-energy surface.
interesting that in addition to coarse projective integrat
and to coarse Newton–Raphson, additional algorithms,
time-stepper based coarse control21 and coarse
optimization,50 become enabled, and they may be useful
analyzing these surfaces without ever explicitly closi
Langevin equations on them~by specifying force, friction,
and noise terms!.

E. Reverse coarse integration and escaping free
energy minima

It is well known that whether one uses MD forward
backward in time~i.e., whether one flips the velocities of th
initial configuration or not! one obtainsforward evolution of
the coarse variables. As discussed in Ref. 51, however,
possible to integratethe coarse variablesbackward in time
on the slow manifold~i.e., on the coarse free energy surfac!
exploiting projective integration as follows: After initializing
at the molecular level, and running~whether with flipped or
unflipped velocities! long enough for the lifting errors to
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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heal, we use the estimated coarseforward time derivativescG

or c02c(t;c0) to perform relatively largereverseprojec-
tions in time. Under appropriate conditions this is a sta
algorithm.52

For reverse integration fromc0 equal to the length of the
forward healing/estimation step, we can use a simple E
integrator,

c~2Dt;c0!'2c~0;c0!2c~Dt;c0!. ~7!

We then~1! lift again from the projectedc(2Dt;c0), ~2!
run again MD ~whether forward or backward in time! to
obtain a new estimate of the local, coarse forward-in-timecG

or c02c(t;c0); and ~3! reverse project again the coar
variable backward in time.

What was discussed here is the simplest ‘‘projective f
ward Euler’’ method used backward in time; it is clear th
more elaborate multistep coarse projective integration m
ods can be used to accelerate both the forward and rev
coarse integration in our context. Notice that this ‘‘rever
integration’’ is useful not only in a microscopic/stochas
context, but also in the case of stiff deterministic problems
general, and even discretizations of dissipative partial dif
ential equations.52 Such generalizations of coarse projecti
integrations~including coarse projective Runge–Kutta, A
ams, and even implicit implementations of such algorith
in the ‘‘coarse’’ case! are outlined in Refs. 15 and 44 and a
the subject of ongoing research in collaboration with C.
Gear. This ‘‘short step forward in the full space, large s
backward approximately on the manifold’’ can be used
systematically integrate the unavailable equations backw
in time on the free energy surface. For this one-dimensio
problem, the ‘‘saddle’’ is actually a ‘‘source,’’ i.e., an attra
tor backward in time. Suitably initialized, reverse integrati

of c(t;c0) will then converge to the saddle wherec(t ;˙c0)

50 and]c(t ;˙c0)/]c.0. Reverse integration can becom
an efficient way of both exploring the surface and escap
free energy minima. It appears that, if all but one or two
the coarse backward directions are very stiff~i.e., a separa-
tion of time scales prevails for the coarse variable drift!, their
effect is quickly damped by the short forward integration
With the appropriate step choices, the reverse integration
probably only ‘‘see’’ the slow backward directions, and u
them to ‘‘climb back up’’ the slow backward path~s!. Meth-
ods for the construction of stable manifolds for low
dimensional dynamical systems~see, e.g., Refs. 53 and 54!
can, under favorable time scale separation conditions, be
ful in exploring the free energy surface through reve
coarse integration.

F. Calculation of rates

We can also use CMD to estimate rates of interconv
sion between states. Instead of performing one long run,
determine the short-time dynamics in the space spanne
the coarse variables from many short, appropriately init
ized replica runs. The replica runs are used to const
propagators. Assuming some degree of regularity~smooth-
ness! these propagators are then applied recursively to in
Downloaded 09 Nov 2004 to 128.122.128.25. Redistribution subject to AI
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the long-time dynamics. FromN replica simulations of
length t, we can estimate a propagator as a sum ofd func-
tions at the end points of each trajectory,

p~c,tuc0,0!'N21(
i 51

N

d@c2c i~ t;c0!#. ~8!

Alternatively, propagators could be built by filtering the da
or by using cumulants of the distribution at timet. Under the
assumption of Markovian dynamics, the distribution at tim
of 2t, 3t, etc., can be determined by recursive application
the Chapman–Kolmogorov identity,

p~c,2tuc0,0!5h~c!E p~c,tuc8,0!p~c8,tuc0,0!dc8.

~9!

Without absorbing points@h(c)51 for all c#, we expect to
recover the equilibrium distribution by iterating to infinit
time,bG(c)52 ln p(c,t→`uc0,0). Equation~9! provides an
alternative route to the free energy surface, in addition to
~1!. We note that under the Markovian assumption, the ac
functional describing the relative probabilities of a dynam
path ~here,c0 ,c1 ,...,cN) in the space of the coarse var
ables is given by the product of the corresponding propa
tors,

e2s(c0 ,c1 ,...,cN)[e2bG(c0) )
i 50

N21

p~c i 11 ,tuc i ,0!. ~10!

We can use Eq.~9! to estimate ‘‘reaction rates.’’ To find
first-passage time distributions from a ‘‘reactant’’ state to
‘‘product’’ state, absorbing points can be inserted by mu
plying the integral in the Chapman–Kolmogorov relatio
Eq. ~9!, with h(c)50 inside the ‘‘product’’ region and
h(c)51 outside. This assumes that the timet is short rela-
tive to the average time for escape from the reactant
product well. Integration ofp(c,ntuc0,0) overc then gives
a survival time distribution at timent starting fromc5c0 ,

S~nt!5E p~c,ntuc0,0!dc. ~11!

Application of Eq.~9! requires propagators at intermediatec
values. This is where regularity in coarse phase space is
sumed: propagators at intermediate values can be estim
by interpolation from replica runs initialized with differen
values ofc. For an intermediate valuec2 , we can use a
simple linear interpolation,

p~c,tuc2,0!'~12a!p~c,tuc0,0!1ap~c,tuc1,0! ~12!

or

p~c,tuc2,0!'~12a!p~c1c22c0 ,tuc0,0!

1ap~c1c22c1 ,tuc1,0!, ~13!

wherea5(c22c0)/(c12c0) with propagators forc0 and
c1 given by Eq.~8!. For diffusion on a linear potential with
D constant, the linear interpolation Eq.~13! is exact. If the
diffusion coefficient is position dependent and possibly a
isotropic, appropriate generalizations can be construc
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~Notice that our CMD approachdoesprovide estimates o
the position dependence and the anisotropy of the diffus
coefficient.!

In a certain limit, the concept of an optimal path can
helpful in rate computations. Optimizationover coarse vari-
able pathscan be performed using CMD timesteppers. W
can locally approximate both the deterministicand the ‘‘dif-
fusive’’ part of the evolution through the propagators es
mated from replica runs. If we guess a coarse transition p
between two coarse minima we can write down the coa
action functional for this path. The coarse action functio
can thus be deterministically minimized, using, for examp
dynamic programming methods. One can estimate the se
tivity of the functional to ~discretized! path variations
through nearby short integrations; or, alternatively, ‘‘deriv
tive free’’ optimization methods can be used for this go
and the conversion rate computed~approximated! upon con-
vergence of the optimization.55 We have, in the past, solve
discretized coarse optimization problems for optimal para
eter variation policies;50 we are currently pursuing the appl
cation of the same optimization methods for the computa
of rates in problems with coarse dimension higher th
one.55

In many cases, the concept of the optimal path loses
significance in the computation of rates. Instead, one evo
a state density over the coarse free energy surface, solvin
effect, a Fokker–Planck equation for the evolution of th
density and its stationary state. For a relatively low coar
dimensional problem~i.e., if the coarse free energy surface
two- or three-dimensional! it should be possible to solve thi
Fokker–Planck equation by convolving the propagat
above.

In summary, we force the system to sample the dynam
in weakly populated regions of the ‘‘coarse variable spa
through multiple systematic initializations of the coarse va
ables. This allows us to circumvent the problem that
short-time dynamics ‘‘fully’’ samples the fast degrees of m
tion ~as conditioned on the slow ‘‘coarse variables’’!, but
covers only a small range in the slow variables. We are th
fore trading multiple initializations for long time dynamic
This allows us to sample even the slow dynamics in
coarse variables. This can be a computationally efficient
proach, as can be understood for 1D diffusive barrier cro
ing. By constructing and interpolating the propagators alo
the coordinate leading across the barrier, the rate of cros
can be estimated for arbitrarily high barriers. It is importa
to state, however, that this procedure assumes the dyna
to be ‘‘smooth,’’ such that propagators can be interpolat
and that the dynamics in the coarse variables is Markovia
the time scale of the short replica simulations.

Interpolating the propagators to solve a Fokker–Pla
equation brings up an analogy with the so-called ‘‘ga
tooth’’ methods in Refs. 14 and 23. In this approach, re
larity of the solution of a Fokker–Planck equation in spa
and time can, in principle, be used to accelerate a parti
based solver by evolving particles in ‘‘patches’’ of spac
time, separated by empty gaps. Communication across
‘‘gaps’’ of the ‘‘teeth’’ in which the particle density evolve
is, of course, the key to the approach. The construction
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boundary conditions capable of effecting this may sign
cantly enhance the performance of Brownian dynamics t
solvers.23,56,57

III. MOLECULAR DYNAMICS SIMULATIONS

MD simulations of the hydrated Ala dipeptide are pe
formed with the sander module in theAMBER 6.0 simulation
package~University of California at San Francisco! and the
parm94 force field.58 The dipeptide is simulated in a period
cally replicated box with 607 TIP3P water molecules59

Particle-mesh Ewald summation is used for the long-ra
electrostatic interactions.60 The system is simulated at con
stant volume corresponding to;1 bar pressure, as dete
mined during an initial equilibration run. The temperature
maintained at 300 K by weak coupling~10 ps time constant!
to a Berendsen thermostat.61 Bond lengths involving hydro-
gen atoms are constrained using the SHAKE algorithm62

After 500 ps of equilibration, we collect data for 7 ns, wi
configurations saved every 0.5 ps for analysis. All simu
tions use a time step of 0.001 ps.

Replica runs are initialized by drawing particle velociti
from a Maxwell–Boltzmann distribution. For rigid TIP3
water molecules, rigid body translational and rotational v
locities are generated in their principal-axes system. Ini
velocities along~possibly linked! constrained bonds of the
dipeptide are removed recursively.

‘‘Lifting’’ to a new target value of the coarse coordinat
c in CMD is accomplished by a short run with a tight ha
monic potential,k(c2c0)2/2, acting on the dihedral angl
c, with k5100 kcal mol21 rad21. With ‘‘lifting’’ here occur-
ring not instantaneously but over a finite time interval, t
fast variables are given time to adapt to the changes in
coarse variable. This effectively shortens the time neede
mature the system at the new state, as prescribed by
updated coarse variable.

At every iteration of the Newton–Raphson search for
location of stationary points, ten initial configurations a
created as structures along a 5-ps run with a harmonic c
straint holdingc near the target value. For each of the t
configurations, ten sets of random initial velocities are dra
from a Maxwell–Boltzmann distribution, followed by 0.5 p
of MD.

IV. RESULTS AND DISCUSSION

A. Equilibrium molecular dynamics

From 7- and 24-ns equilibrium runs with 607 and 2
water molecules, respectively, we estimate the free ene
surfacebG(c)52 ln p(c) shown in Fig. 3, wherep(c) is
given by the histogram of the dihedral anglec. We find two
minima, one corresponding to a right-handeda helix @with
G(c'20.3 rad)'0] and the other to an extended structu
@with G(c5p)'1 kcal mol21]. In the two-dimensional
w–c Ramachandran plot of Fig. 3, we observe a small po
lation in the left-handeda-helical minimum during the 24-ns
run, but not the 7-ns run. In the following, we will focus o
the equilibrium between the extended and right-handeda
helical structures. The lower of the two barriers separat
the two minima, with a height of about 3 kcal mol21 near
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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c51 rad, shows a considerable amount of structure, wit
small dip~7-ns run! or shoulder~24-ns run! near the polypro-
line PII minimum (c'2p/3).

For the second barrier nearc522p/3 rad, we estimate
a height of about 5 kcal mol21 from umbrella sampling in
the barrier region, in agreement with the value obtained
Bolhuis et al.34 Overall, our equilibrium runs give a ver
similar G(c) to the one obtained by Bolhuiset al.34 with
umbrella sampling.

From the variance vara(c) of c in the a-helical mini-
mum, and the decay timetc of the corresponding autocorre
lation function, we estimate a diffusion coefficient ofD
'vara(c)/tc'0.15 rad2 ps21.

B. Free energy surface

To map the free energy surfaces with CMD, we assu
that the distributions of fast variables~bond lengths, etc.! are
quickly slaved to the slow variables, and that the avera
dynamics of coarse variables are governed by the underl
free energy surface. We thus expect that the averaged pr
tions onto the coarse variables drift over a short~here: sub-
ps! time scale towards free energy minima. Figure 4 sho
c(t;c0) as a function of timet for runs starting from 13
different initial configurations.

Also shown is the probability distributionp(c) of c
from the 24-ns equilibrium run~with c on the vertical axis!.
We find thatc(t;c0) indeed drifts toward the maxima o
p(c) and away from minima. Similar behavior is found fo
the corresponding dynamics projected onto thew–c Ram-
achandran plane. To get a more quantitative estimate of
free energy surface, we estimatecG throughout the interva
2p,c,p. From 67 different initial configurations, we ru
50 short (t50.5 ps) replica simulations. Thec i(t;c0)
curves of the replicas are averaged and fitted to straight li
Figure 5 shows the corresponding slopecG , scaled byD

50.15 rad2 ps21, as a function of the average angle^c̄&
5t21*0

tc(t;c0)dt. As mentioned before, we average he
over the whole interval, including the initial maturation tim
We also calculated the local diffusion coefficientD(c) from
Eq. ~2!. Near the minima ofG(c), we recover the value fo
the equilibrium run. Near barriers, however, curvature effe
are relevant even at the 0.5 ps time scale because o

FIG. 3. Free energy surfaces of the alanine dipeptide.~Right! Free energy
surface in thew–c plane from the 24-ns run with 265 water molecul
(1kBT contour lines!. ~Left! Free energy in units ofkBT ~horizontal axis! as
a function of thec dihedral angle~vertical axis!. The solid and dashed line
are the results from the 7- and 24-ns runs with 607 and 265 water molec
respectively.
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relatively rapid relaxation ofc compared totmol . For sim-
plicity, we will in the following use a constantD
50.15 rad2 ps21 instead of correctingD(c) for the curva-

ture effects by using thec0-dependence of thec(t ;˙c0) data.
As expected from Eq.~1!, theD21cG data scatter around

the free energy derivative2b]G/]c which is accurately
reproduced by a spline approximation to theD21cG data.
Integration with respect toc of the cG data~sorted with re-
spect toc and linearly interpolated! thus provides an esti
mate of the free energyG(c), as shown in Fig. 6. This is a
fundamental result: multiple short~0.5 ps! replica runs pro-
jected onto coarse variables can be used to probe the un
lying free energy surface.

We also note that the scatter of the derivative data gi
direct indication for the presence of additional slow va
ables. We find the largest scatter nearc51 rad where Bol-
huis et al.34 have shown that a slow ‘‘solvent’’ coordinate
relevant for barrier crossing.

es,FIG. 4. Drift in thec dihedral angle. The panel on the left showsc(t;c0) as
a function of time averaged over 50 runs with different initial velocities. T
thick line shows the equilibrium probability~horizontal axis; arbitrary units!
of c ~vertical axis! to demonstrate thatc(t;c0) converges toward the mos
populated regions ofc. The panel on the right shows the ‘‘drift’’ ofw(t;w0)
andc(t;c0) in a Ramachandran plot~thick lines!. Initial configurations of
the replica runs were chosen from structures along the 7-ns equilibrium
Thick arrows point from the initial values ofw and c to the final values.
Thin lines are free energy contours separated by 1kBT.

FIG. 5. Drift velocity cG as a function of thec dihedral angle. Shown are

D21cG ~filled circles! and the mean force2b]G(c)/]c ~solid line! for D

50.15 rad2 ps21. The dashed line is a spline approximation to theD21cG

data.
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C. Free energy minima and saddles
as stationary points

From Fig. 5, we expect that Newton–Raphson type, c
traction mapping algorithms for finding stationary poin
should indeed converge to the free energy maxima
minima. We test this for the most unstable saddle nearcmax

522.15 rad ~as determined from umbrella sampling!. We
save ten configurations along a 5-ps MD trajectory with
tight harmonic constraint holdingc nearc052p/2. From
each of the ten configurations, we start tent50.5-ps replica
simulations with different velocities. Figure 7 shows the d

ference c(t;c0)2c0 as a function of the averag

@c(t;c0)1c0#/2. Despite the scatter in the difference da
of round 1, a linear fit already predicts zero drift atc1

'21.92 rad close to the free energy maximumcmax. After a
second round initialized nearc1 , a quadratic fit~as shown in
Fig. 7! yieldsc2521.98 rad. Inclusion of data from a thir
round initiated nearc2 does not change the fit and predic

FIG. 6. Free energy surface as a function ofc. Results are shown for the
two equilibrium runs with 265~24 ns; long-dashed line! and 607 water

molecules~7 ns; solid line!, and for integration ofD21cG ~dotted line!. Also
shown is the free energy corresponding to the limiting distribution
Chapman–Kolmogorov iterations~short-dashed line with symbols!, evalu-
ated at 56 discrete values ofc.

FIG. 7. Newton–Raphson-type search for the highest barrier neac
'22.15 rad (c'2123°). Starting from an initial structure withc
'2p/2 rad, linear~round 1, squares and solid line! and quadratic fits to
c(t;c0)2c0 data ~round 2, filled triangles; round 3, circles and dash
parabola! are used to locate the unstable stationary point withc(t;c0)
2c0 . The open triangle indicates the maximum in the free energy surf
as determined by umbrella sampling.
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an unstable (]cG /]c.0) stationary point atc522 rad. The
rapid convergence of the Newton–Raphson-type sea
shows how locations of the dominant features of free ene
surfaces~i.e., minima and saddles! can be identified dynami-
cally by searching~given good initial guesses!! for stationary
points of the coarse dynamics through contraction mappin

D. Coarse projective integration

We illustrate coarse projective integration in the tw
dimensional Ramachandran plane of dihedral anglesw and
c. In each integration step we start from identical structu
but random initial velocities assigned according to
Maxwell–Boltzmann distribution. The forward difference
of the dihedral angles,w(t;w0 ,c0)2w0 and c(t;w0 ,c0)
2c0 , are calculated from 0.5-ps MD simulations of 50 re
licas. Linear extrapolation is then used to project forward
time for 0.5 ps. ‘‘Lifting’’ is accomplished through a 0.5-p
MD run with harmonic constraints holding bothw andc near
their new target values.

Before showing the results, we should point out that t
is not a particularly ‘‘good’’ problem for coarse integration
indeed, for these conditions the average solution v
quickly ~within 2 ps! finds its way to the bottom of the well
Coarse projective integration will probably be beneficial
situations in which the ‘‘healing period’’ is short compared
the slow dynamics~i.e., if there exists a gap in the eigenva
ues of the linearization of the drift part of the problem!. If
that gap is large~i.e., if there exists a long slow transient o
the coarse behavior towards the stable minimum!, then pro-
jective integration has the potential to accelerate the con
gence. Here, both processes—healing and drift of the ex
tation down into the well bottom—are relatively fast, an
~for the number of copies we use! quite noisy. Figure 8
shows the resulting dynamics. We confirm that within thr
forward integration steps, the system reaches the free en
minimum in the w–c plane. Coarse projective integratio
can thus be exploited to potentially accelerate CMD towa
stable stationary points forward in time. The reason for

f

e,

FIG. 8. Coarse projective integration in thew–c plane. Thin solid lines

show the average trajectories (w̄,c̄). Arrows indicate the projective integra
tion steps~labeled 1, 2, and 3!. Dotted lines are contour lines at 1kBT
intervals.
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cluding the forward in time coarse projective integration
this particular case, however, is more for completeness,
to motivate the next section.

E. Reverse coarse integration

To escape from a free energy minimum we can also
to use reverse integration. Whereas forward integration
the expected coarse variables@here,c(t;c0)] converges to-
wardsstablestationary points~i.e., free energy minima!, re-
verse integration goes ‘‘up the mountains’’ towardssource-
type, unstablestationary points. For a one-dimension
coarse problem the ‘‘saddle’’ is indeed such a ‘‘source.’’ W
start from a configuration withc'0 near the bottom of the
a-helical well and perform 13 reverse integration steps
length Dt50.5 ps. At each step, we initialize 50 replica
with identical structures and random Maxwell–Boltzma
velocities, and run regular MDforward in time for Dt

50.5 ps. We then use Eq.~7! to estimatec(2Dt;c0) and
‘‘lift’’ the t50 structure by running a 0.5-ps MD with

harmonic constraint onc with c(2Dt;c0) as the target
value. The final configuration is then used as a starting st
ture for the forward replica runs in the next reverse integ
tion step.

Figure 9 shows thec values~horizontal axis! as a func-
tion of time ~vertical axis; right-hand scale! for the 13 re-
verse integration steps. Also shown is the free-energy sur
~left-hand scale!. We find that the system rapidly escap
from the free-energy minimum and reaches the barrier n
c51 rad after three reverse integration steps (21.5 ps). The

subsequent fluctuations ofc(2t;c0) about the free-energy
maximum are caused by statistical uncertainties in evalua
c(t;c0)2c0 , and by the possible role of an additional slo
variable, as inferred from the study of Bolhuiset al.34

The time reversibility of classical mechanics is the ba
for one of the main objections to Boltzmann’s kinetic theo
the so-called ‘‘irreversibility paradox.’’ Here, one might n

FIG. 9. Reverse integration. The thin line with open circles sho
c(2t;c0) ~horizontal axis! as a function of timet ~vertical axis, right-hand
scale!. The thick curve shows the free energy surface~in kBT units; left-
hand scale!. The tilted and vertical arrows indicate the initial approach to
unstable stationary point, and the subsequent fluctuations about it, re
tively. Shown as crosses are values forc(2t;c0) estimated from reverse
integration using the same starting configuration but initial velocities
opposite sign.
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ively expect that if we reverse each of the replica trajector
by changing the sign of the initial velocities, ourreverse
integration scheme would turn into aforward integration.
This is not the case. For each of the initial structures alo
the reverse-integration path found before, we run each of
50 replicas forward in time with initial velocities of opposit
sign. The resulting reversec values are also shown in Fig. 9
and are found to agree well with those obtained for the or
nal initial velocities, illustrating the ‘‘irreversible’’ time evo-
lution of the averaged coarse variables. To qualify this res
we point out that the integrator used in the MD simulations
not fully time reversible because of thermostatting and
bond constraint algorithm.

While reverse integration will take us ‘‘up’’ the free
energy surface, it will eventually search for ‘‘mountain top
rather than saddles. Even so, it can still be used as a to
help explore the free energy surface. For a coarsely t
dimensional surface, techniques for approximating the sta
manifolds of fixed points in dynamical systems can be u
to efficiently draw the surface by reverse integration. In
fect, a circle of points surrounding a well-bottom gives
one-parameter family of initial conditions for reverse coa
projective integration that can be used to ‘‘triangulate’’ t
surface. Computational approaches to these problems fo
plicit ordinary differential equations are well developed53,54

and we expect that they can find good use in the case
‘‘coarse stable manifolds.’’ It is also worth mentioning tha
if close to a saddle a large separation of time scales ex
between a slow unstable mode and many fast stable o
projective backward integration may indeed approach
saddle.

F. Kinetics of interconversion

To estimate the rate of escape from thea helical mini-
mum into the extended minimum, we apply the Chapma
Kolmogorov relation, Eq.~9!. The propagators are con
structed from 56 of the runs of 50 replicas used before
estimate the free energy derivative. We use a simple lin
interpolation of the propagators, Eq.~12!, that ignores a
small translational correction for the narrowly spaced sta
ing points c0 . Figure 6 compares the free energy surfa
predicted from Chapman–Kolmogorov iteration,bG(c)
52 ln p(c,t→`uc0,0), to the free energy from the equilib
rium run. The agreement is excellent, with the possible
ception of the poorly sampled barrier nearc522.15 rad.
This shows that Chapman–Kolmogorov iterations are ind
applicable to estimate the equilibrium distribution.

To test the applicability to kinetics calculations, we d
termine the rate of escape from the lowest-free energy we
c0520.3 rad into the extended well with 2 rad,c,2p
22.5 rad which defines the absorbing region@h(c)50# in
the iteration, Eq.~9!. By integration overc, we find that the
survival time distribution rapidly becomes exponential with
time constant of 920 ps~see Fig. 10!. As a reference, we also
determine the corresponding survival time distribution fro
the two equilibrium runs. From the 7- and 24-ns runs,
estimate mean-first-passage times of about 400 and 800
respectively. The rate constant for escaping from the alp
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helical well to the extended well calculated by Chapma
Kolmogorov iterations is thus within about a factor of 2
the value from simulation.

For the backward rate coefficient to go from the e
tended minimum (c'p) to the a-helical minimum
(20.6 rad,c,0), the Chapman–Kolmogorov iteratio
gives a rate coefficient of about 1/~33 ps!, consistent with the
free energy difference of about 3.3kBT ~Fig. 3! and the
forward rate coefficient of 1/~920 ps! in a two-state model.
Both MD simulations give backward rate coefficients
about 1/~100 ps!, consistent with the free energy differenc
of about 2kBT and a forward rate coefficient of 1/~800 ps!
for the 24-ns run, but too slow for the forward rate of 1/~400
ps! estimated for the 7-ns run. We have confirmed these
coefficients and the underlying two-state model by determ
ing the decay time of the number correlation functio
^u@c(t)#u@c(0)#& @with u(c)51 inside one well and 0 out
side# and relative populations in the two wells. In the 24-
simulation, the number correlation decays exponentially o
a broad time range. The decay time is insensitive to the
ticular choice of dividing lines in the barrier regions, and
two-state model is consistent with the above rates and
observed equilibrium coefficient.

For comparison, we also calculate the rates of interc
version by numerical solution63 of the Smoluchowski diffu-
sion equation alongc. With a diffusion coefficient D
50.15 rad2 ps21 and a free energy surfaceG(c) from the
equilibrium simulations, we obtain forward and backwa
rate coefficients of 1/~600 ps! and 1/~120 ps!, respectively.
These values are in good agreement with the rate coeffici
from the MD simulations and from the Chapman
Kolmogorov iterations.

Our analysis demonstrates how CMD can use subp
second dynamics to extrapolate by three orders of magni
to nanosecond dynamics. One concern may be that in a
tem with many wells, it will be impossiblea priori to sample
all relevant space in the coarse variables. With reverse i
gration and Newton–Raphson searches, however, we
create propagators for ensembles of configurations that

FIG. 10. Survival time distribution to reach the extended state (2 rad,c
,2p22.5 rad) from thea-helical well, starting fromc0520.3. Results
are shown for the two equilibrium runs with 265~24 ns; solid line! and 607
water molecules~7 ns; long-dashed line!, and for Chapman–Kolmogorov
iterations~dotted line!. The inset shows the survival time distributions
reach thea-helical minimum from an extended configuration (c'p).
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nect between neighboring wells. Starting from different in
tial structures in a given well, the search will lead to multip
exit routes from that well. The Chapman–Kolmogorov iter
tion for this set of local propagators can then be used
project forward in time and carry the system over barrier

V. CONCLUSIONS

The CMD approach uses methods closely related
those of other approaches aiming at the long time dynam
In constrained dynamics,35 a single ‘‘coarse’’ coordinate is
held fixed in time and the corresponding mean force is eva
ated. In CMD, we evaluate instead the drift in the space
coarse variables resulting from the interactions with the r
of the system. In Voter’s parallel replica method,7 multiple
replicas search for exit routes from a metastable state. H
we use multiple replicas to determine the short-time dyna
ics in the coarse variables. This allows us toconstructpaths
out of free-energy wells by recursive application of t
Chapman–Kolmogorov identity, by Newton–Raphs
search for saddle points, or, sometimes, by reverse inte
tion. In the former approach, information about rare event
contained in the tails of the propagators constructed fr
MD, similar to the advancing replica in Voter’s parallel re
lica method.7

In the transition path sampling approach developed
Chandler, Dellago and co-workers,6,36 dynamic paths con-
necting reactant and product regions64 are efficiently
sampled. In CMD, we can use local short-time propagat
to build transition paths in the space of thecoarsevariables.
With the Chapman–Kolmogorov approach, we can estim
the kinetics of barrier crossing. In addition, we can som
times exploit reverse integration toconstructmultiple coarse
transition paths. In the case of a single dominant ‘‘coa
path,’’ deterministic optimization methods~preferably
derivative-free algorithms! may be wrapped around th
coarse timestepper to locate the path.

To explore conformation space, Huber and v
Gunsteren37 have developed a method that couples the
namics of multiple replicas to their average structure. Th
authors point out that ‘‘the average structure of a swarm
molecules converges faster to the structure with lowest
ergy than individual molecules do.’’ In adapted form, this
an essential element of the CMD approach to mapping
coarse free energy surface. In the Newton–Raphson se
and projective forward integration of the coarse variables,
use the time evolution of the averaged coarse variable
converge rapidly to free energy minima. In an earlier pap
Huber et al.38 have explored the idea of adding memory
molecular dynamics to enhance conformational sampling
a recent paper, Laio and Parrinello expanded on this
proach and ingeniously combined coarse timestepping w
‘‘building in’’ a memory that allows the simulation to explor
the free energy surface by, in effect, filling up the wells.9 In
their approach, repulsive markers are left behind along a
jectory projected into the coarse space. Eventually, th
markers drive the system over a barrier leading out of
well ~and, in the process, effectively mapping the well ou!.
Our ‘‘stable manifold through reverse integration’’ maps o
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the wells by essentially reversing the deterministic part of
coarse dynamics.

We have shown here that CMD can be used for ra
searches of the conformation space of flexible molecule
aqueous solution. We demonstrated how the results of m
tiple short~0.5 ps! replica runs can be combined to determi
the free energy surface using two different methods. We h
illustrated how projective forward and reverse integrat
can be used to move toward free energy minima and sad
We have also shown how dynamics at the subpicosec
time scale can be used to predict the slow~0.5–1 ns! kinetics
of barrier crossing.

These encouraging results show that CMD is a rob
method. From the work of Bolhuiset al.34 we know that
additional ‘‘solvent’’ coordinates are kinetically relevant. Th
subspace monitored here does thus not cover the slow
namics completely. Similar behavior is expected in ma
practical applications. While CMD is very flexible with re
spect to the inclusion of additional variables, the construct
of slow ~or ‘‘hydrodynamic’’! variables is often difficult.
Even for the Ala dipeptide, Bolhuiset al.34 could only iden-
tify the second relevant variable in vacuum, but not in wa
In some cases, mode-coupling approaches, as discusse
Kostov and Freed65 for polymer dynamics,66,67may be useful
in expanding the set of coarse variables. Here, we show
CMD can give promising quantitative results even if on
part of the slow dynamics is covered. An explanation for t
result is the averaging invoked. By starting from configu
tions with similarc values, but different drift directions~or
commitment probabilities!, we average over additional slow
variables. Moreover, the presence of such variables ca
apparent in the data as a large scatter in the drift veloc
and directions. Such scatter highlights the need to either
new variables or perform additional simulations.18

In summary, the CMD approach provides an integra
framework, individual components of which are closely r
lated to various approaches aimed at overcoming the ti
scale problem in MD. Here, we have demonstrated t
CMD is a useful approach to extract thermodynamic a
kinetic properties of molecular systems, and to extrapo
their long-time dynamics.

One of the ambitions of coarse computation is not o
to map ‘‘coarse phase space’’ effectively, but also to sea
parameter space efficiently. Indeed, coarse bifurcation a
rithms can be implemented based on the coarse timeste
approach thatconverge onparameter values at which qual
tative transitions occur for the coarse dynamics~see, for ex-
ample, Refs. 18, 20, and 22!. In the present context, thi
would correspond to finding the regime of parameters l
temperature or solution ionic strength at which coarse f
energy wells form. Such coarse timestepper based nume
bifurcation and continuation techniques have been dem
strated for kinetic Monte Carlo, Lattice–Boltzmann, a
Brownian dynamics cases; we are currently transferring
computational technology to the CMD context. Finally, t
CMD approach is not limited to dynamics on a classi
energy surface and can be implemented equivalently if
dynamics occurs on a quantum surface as, for instance
Car–Parrinello MD.44,68
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