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Abstract

We study the connection between atomistic and continuum models for the elas-
tic deformation of crystalline solids at zero temperature. We prove, under certain
sharp stability conditions, that the correct nonlinear elasticity model is given by
the classical Cauchy–Born rule in the sense that elastically deformed states of the
atomistic model are closely approximated by solutions of the continuum model
with stored energy functionals obtained from the Cauchy–Born rule. The analysis
is carried out for both simple and complex lattices, and for this purpose, we develop
the necessary tools for performing asymptotic analysis on such lattices. Our results
are sharp and they also suggest criteria for the onset of instabilities of crystalline
solids.

1. Introduction

This series of papers [11, 17, 28, 29] and [30] is devoted to a mathematical
study of the connection between atomistic and continuum models of crystalline
solids at zero temperature. In the present paper, we study the simplest situation
when classical potentials are used in the atomistic models, and when there are no
defects in the crystal. In this case the bridge between the atomistic and continuum
models is served by the classical Cauchy–Born rule [4, 6, 13]. Our main objective
is to establish the validity of the Cauchy–Born rule, for static problems in the pres-
ent paper and for dynamic problems in the next paper [11]. In doing so, we also
establish a sharp criterion for the stability of crystalline solids under stress and this
allows us to study instabilities and defect formation in crystals [29].

The characteristics of crystalline solids can be summarized as follows:

1. Atoms in solids stick together due to the cohesive forces. Consequently the
atoms in a crystal are arranged on a lattice. The origin of the cohesive force and
the choice of the lattice are determined by the electronic structure of the atoms.
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However, once the lattice is selected, its geometry has a profound influence on
the mechanical properties of the solid.

2. If the applied force is not too large, the solid deforms elastically to respond
to the applied force. In this regime, the mechanical properties of the solid are
characterized mainly by its elastic parameters such as the elastic moduli.

3. Above a certain threshold, defects, such as dislocations, form in the crystal. The
structure of the defects are influenced largely by the geometry of the lattice.
However, as we will see in subsequent papers [28] and [30], this is not always the
case, and more refined considerations about the nature of the bonding between
atoms are sometimes necessary. In this regime, the mechanical properties of
the solid are characterized by various barriers such as the Peierls stress for
dislocation motion.

This paper is concerned with the second point. In particular, we are interested
in how the atomistic and continuum models are related to each other in the elastic
regime. Naturally there has been a long history of work on this topic, going back at
least to Cauchy who derived expressions for the linear elastic moduli from atomistic
pair potentials and the well-known Cauchy relations [20]. Modern treatment began
with the treatise of Born and Huang [6]. The basic result is the Cauchy–Born
rule (see Section 2 for details) which establishes a relation between atomistic and
continuum models for elastically deformed crystals. In the mathematics literature,
Braides, Dal Maso and Garroni studied atomistic models using the concept
of �-convergence [7], and proved that certain discrete functionals with pairwise
interaction converge to a continuum model. One interesting aspect of their work
is that their results allow for fractures to occur in the material (see also the work
of Truskinovsky [24]). Blanc, Le Bris and Lions assumed that the microscopic
displacement of the atoms follows a smooth macroscopic displacement field, and
derived, in the continuum limit, both bulk and surface energy expressions from
atomistic models [5]. Their leading order bulk energy term is given by the Cauchy–
Born rule. Friesecke and Theil [14] examined a special lattice and spring model.
By extending the work on convexity of continuous functionals to discrete models,
they succeeded quite remarkably in proving that in certain parameter regimes, the
Cauchy–Born rule does give the energy of the global minimizer in the thermo-
dynamic limit. They also identified parameter regimes for which this statement
fails and they interpreted this as being the failure of the Cauchy–Born rule.

This paper is devoted to a proof that shows that the Cauchy–Born rule is always
valid for elastically deformed crystals, as long as the right unit cell is used in for-
mulating the Cauchy–Born rule. This statement is intuitively quite obvious. Indeed
much of the work in this paper is devoted to the existence and characterization of
elastically deformed states for the atomistic model, and this is where the stability
conditions, which are the key conditions for our theorems, come in. However, to
formulate the right theorem, it is crucial to understand that elastically deformed
states are in general only local minimizers of the energy, not global minimizers.
This observation is not new (see for example [10, 24]) and can be seen from the
following simple example.
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undeformed state

elastically deformed state

fractured state

Fig. 1. A schematic figure for the one-dimensional chain example

Consider a chain of N atoms on a line with positions x1, . . . , xN (see Fig. 1).
Their total potential energy is given by

E{x1, . . . , xN } =
N−1∑

i=1

V0

( xi+1 − xi

ε

)
,

where

V0 = 4(r−12 − r−6)

is the Lennard-Jones potential [16] and ε is the equilibrium bond length. In the
absence of external loading, neglect boundary effects and consider only the nearest
neighbor interaction, the equilibrium positions of the atoms are given approxi-
mately by x j = 21/6 jε. We will consider the case when the following condition
of external loading is applied: the position of the left-most atom is kept fixed, the
right-most atom is displaced by an amount that we denote as D0. To have a finite
elastic strain, D0 should scale as D0 ∼ L = 21/6(N − 1)ε.

There are two obvious approximate solutions to this problem: the first is a uni-
formly deformed elastic state: x j = j (21/6ε + d) where d = D0/N . The energy
of this state is approximately

E1 ∼ (N − 1)V0(2
1/6 + 21/6 D0/L),

The second approximate solution is a fractured state: x j � 21/6 jε for j � N − 1
and xN = 21/6 Nε + D0. The energy of this state is approximately:

E2 ∼ V0(2
1/6 + D0/ε).

Obviously for large N , the fractured state has less energy than the elastically de-
formed state. This example indicates that elastically deformed states are sometimes
only local minimizers at zero temperature. Fractured states may have less energy.
The reason that crystals do not fracture spontaneously under loading is that the
energy barrier for fracture is too high for real systems.

The fact that we have to deal with local minimizers simplifies the analysis at
zero temperature, but complicates the situation at finite temperature. In the latter
case, the right approach is to prove that elastically deformed states are metastable
states. At the present time, this is still a difficult problem.
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With these remarks, we can put previous results as well as the results obtained
in this paper into perspective. First of all, we understand that the counter-examples
constructed by Friesecke and Theil are due to the instabilities of the lattice which
have caused either the onset of plastic deformation, phase transformation, or melting
of the lattice. If the system undergoes phase transformation, then the Cauchy–Born
rule has to be modified using the unit cell of the new phase. In other cases, we
do not expect elasticity models to apply. The work of Braides et al. also analyzes
global minimizers. The novelty of their work lies in that they have realized the ana-
lytical consequence of the example discussed above and allowed fracture states in
their set-up by choosing the approximate function space over which �-convergence
is discussed. Their results in high dimensions require that the atomistic potential
satisfies the super-linear growth condition, a condition which is rarely met in real
solids. The approach that is closest to ours is perhaps that of Blanc, Le Bris and
Lions. The difference is that they assumed that the atomic displacement follows that
of a macroscopically smooth vector field, whereas we prove that this is indeed the
case under certain stability conditions. This difference is best seen from a simple
example. Consider the Lennard-Jones potential with next-nearest neighbor inter-
action on square and triangular lattices. As we show below, the stability conditions
are satisfied by the triangular lattice but violated by the square lattice. Therefore,
from Theorem 2.2, we are able to conclude that the Cauchy–Born rule is valid on
the triangular lattice but not on the square lattice. In [17], we show that the square
lattice is indeed unstable and spontaneous phase transformation occurs. In contrast,
the results of [5] are equally valid for the triangular lattice and the square lattice.
From a technical viewpoint, we can view the passage from the atomistic models
to the continuum models as the convergence of some nonlinear finite difference
schemes. The work of Blanc et al. is concerned with consistency. Our work proves
convergence. The basic strategy is the same as that of Strang [22] for proving
convergence of finite difference methods for nonlinear problems. Besides stability
of the linearized problem, the other key component is asymptotic analysis of the
atomistic model. Since we have at hand a highly unusual finite difference scheme,
we have to develop the necessary tools for carrying out asymptotic and stability
analysis in this setting. Indeed, much of the present paper is devoted exactly to that.

Since this is the first in this series of papers, we will discuss briefly the contents
of subsequent papers. In the next paper, we will extend the results of the present
paper to dynamic problems. This will allow us to formulate the sharp stability cri-
teria for crystalline solids under stress. [29] is a natural growth of the present paper
and [11], in which we carry out a systematic study of the onset of instability and
plastic deformation of crystals, includes a classification of linear instabilities and
the subsequent nonlinear and atomistic evolution of the crystal. [28] is devoted to
the generalization of the classical Peierls–Nabarro model, which is a model of dis-
locations that combines an atomistic description on the slip surface and a continuum
description of the linear elastic deformation away from the slip surface. The gen-
eralized Peierls–Nabarro model allows us to study the core structure and dynamics
of dislocations and the influence of the underlying lattice. Finally [30] consid-
ers the generalization of the classical Cauchy–Born rule to low dimensional and
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curved structures such as plates, sheets and rods, with applications to the mechanical
properties of carbon nanotubes.

One theme that we will emphasize throughout this series of papers is the inter-
play between the geometric and physical aspects of crystalline solids. As we said
earlier, the geometry of the lattice has a profound influence on the physical prop-
erties of the crystal, such as the onset of plastic deformation, the core structure
and the slip systems of dislocations, and the nature of the cracks. However, this is
not the whole story. There are also examples of properties of solids which are not
reflected at the level of geometry and have to be understood at the level of physics,
e.g. the nature of the bonding between atoms. Some of these issues are discussed
in [28].

2. The generalities

We will begin with a brief discussion on atomic lattices and the atomistic poten-
tials of solids.

2.1. Simple and complex lattices

Atoms in crystals are normally arranged on lattices. Common lattice structures
are body-centered cubic (BCC), face-centered cubic (FCC), diamond lattice, hex-
agonal closed packing (HCP), etc [3]. Under normal experimental conditions, i.e.
room temperature and pressure, iron (Fe) exists in BCC lattice, aluminum (Al)
exists in FCC lattice, and silicon (Si) exists in diamond lattice.

Lattices are divided into two types: simple lattices and complex lattices.

Simple lattices. Simple lattices are also called Bravais lattices. They take the form:

L(ei , o) =
{

x | x =
d∑

i=1

ν i ei + o ν i are integers

}
, (2.1)

where {ei }d
i=1 are the basis vectors, d is the dimension, and o is a particular lattice

site, which can be taken as the origin, due to the translation invariance of lattices.
The basis vectors are not unique.

Out of the examples listed above, BCC and FCC are simple lattices. For FCC,
one set of basis vectors are

e1 = ε

2
(0, 1, 1), e2 = ε

2
(1, 0, 1), e3 = ε

2
(1, 1, 0).

For BCC, we may choose

e1 = ε

2
(−1, 1, 1), e2 = ε

2
(1,−1, 1), e3 = ε

2
(1, 1,−1),

as the basis vectors. Here and in what follows, we use ε to denote the equilibrium
lattice constant.

Another example of a simple lattice is the two-dimensional triangular lattice.
Its basis vectors can be chosen as:

e1 = ε(1, 0), e2 = ε(1/2,
√

3/2).
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Complex lattices. In principle, any lattices can be regarded as a union of congruent
simple lattices [12], i.e. they can be expressed in the form:

L = L(ei , o) ∪ L(ei , o + p1) ∪ · · · L(ei , o + pk)

for certain integer k, p1, . . . , pk are the shift vectors. For example, the two-
dimensional hexagonal lattice with lattice constant ε can be regarded as the union
of two triangular lattices with shift vector p1 = ε(−1/2,−√

3/6). The dia-
mond lattice is made up of two interpenetrating FCC lattices with shift vector
p1 = ε/4(1, 1, 1). The HCP lattice is obtained by stacking two simple hexagonal
lattices with the shift vector p1 = ε(1/2,

√
3/6,

√
6/3). Some solids consist of

more than one species of atoms. Sodium chloride (NaCl), for example, has equal
number of sodium ions and chloride ions placed at alternating sites of a simple
cubic lattice. This can be viewed as the union of two FCC lattices: one for the
sodium ions and one for the chloride ions.

In this paper, we focus on the case when k = 1. Generalization to high values
of k is in principle straightforward but the technicalities can be quite tedious.

2.2. Potentials

We will restrict our attention to classical potentials of the form:

E{ y1, . . . , yN } = V ( y1, . . . , yN ) −
N∑

j=1

f (x j ) y j , (2.2)

where V is the interaction potential between the atoms, y j and x j are the deformed
and undeformed positions of the j-th atom respectively. V often takes the form:

V ( y1, . . . , yN ) =
∑

i, j

V2( yi/ε, y j/ε) +
∑

i, j,k

V3( yi/ε, y j/ε, yk/ε) + · · · ,

where ε is the lattice constant as before.
Examples of the potentials include:

1. Lennard-Jones potential:

V2(x, y) = V0(r) and V3 = V4 = · · · = 0,

where r = |x − y|, and

V0(r) = 4(r−12 − r−6).

2. Embedded-atom methods: embedded-atom methods were introduced by Daw
and Baskes [8, 9] to model realistic metallic systems. The total energy consists
of two parts: a function of the electron density and a term that accounts for the
repulsive interaction when atoms get close to each other:

V =
∑

i

F(ρi ) + 1

2

∑

i �= j

V2(ri j/ε),
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where ρi is the electron density around the i-th atom, and V2 is a pair potential,
ri j = ∣∣x j − xi

∣∣. The density ρi is usually defined as

ρi =
∑

j �=i

f (ri j ).

The functions f, V2 and F are obtained empirically and calibrated by quantum
mechanical calculations.

3. Stillinger–Weber potential [21]

V = 1

2

∑

i, j

V2(ri j/ε) + 1

3!
∑

i, j,k

V3(xi/ε, x j/ε, xk/ε),

where V2 is a pair potential and V3 is an angular term which usually takes the
form:

V3(xi , x j , xk) = h(ri j , rik, θ j ik),

where

h(ri j , rik, θ j ik) = λe[γ (ri j −a)−1+γ (rik−a)−1](cos θ j ik + 1/3)2

for some parameters λ and γ , θ j ik is angle between x j − xi and xk − xi .

4. Tersoff potential: Tersoff potential [23] is introduced to describe the open struc-
ture of covalently bonded solids such as carbon and silicon. It takes the form:

V = 1

2

∑

i �= j

fC (ri j/ε)
(

fR(ri j/ε) + bi j f A(ri j/ε)
)
.

Here fC is a cut-off function and

fR(r) = A exp(−λ1r), f A(r) = −B exp(−λ2r).

The term bi j is a measure of local bond order,

bi j = (1 + βnξn
i j )

(−1/2n),

where the function ξi j is given by

ξi j =
∑

k �=i, j

fC (rik/ε)g(θi jk) exp(λ3
3(ri j − rik)

3)

with

g(θ) = 1 + c2

d2 − c2

d2 + (h − cos θ)2 .

The parameters A, B, λ1, λ2, λ3, β, n, c, d and h vary for different materials.

Clearly different potentials are required to model different materials. In this
paper, we will work with general atomistic models, and we will make the following
assumptions on the potential functions V .
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1. V is translation invariant.
2. V is invariant with respect to rigid body motion.
3. V is smooth in a neighborhood of the equilibrium state.
4. V has finite range and consequently we will consider only interactions that

involve a fixed number of atoms.

In fact, our presentation will be limited to potentials that contain only two-body
or three-body potentials. However, it is straightforward to extend our results to more
general potentials that satisfy these conditions. To avoid complication in notation,
we will sometimes only write out the three-body terms in the expressions for the
potential. Extensions to general multi-body terms should be quite straightforward
from the three-body terms. The first two assumptions are general [6], while the
latter two are specific technical assumptions. Note that a direct consequence of the
invariance of V with respect to rigid body motion is that V is an even function, i.e.

V (x1, . . . , xN ) = V (−x1, . . . ,−xN ). (2.3)

This is easily understood since V is a function of atom distances and angles by
invariance with respect to rigid body motion [15].

At zero temperature, the atomistic model becomes a minimization problem:

min
y1,..., yN

subject to certain boundary condition

E{ y1, . . . , yN },

from which we determine the position of every atom. We define

u j = y j − x j

as the displacement of the j-th atom under the applied force.
In continuum model of solids, we describe the displacement by a vector field

u. Denote by 
 the domain occupied by the material in the undeformed state. The
displacement field is determined by a variational problem:

∫




{
W (∇u(x)) − f (x) · u(x)

}
dx, (2.4)

subject to certain boundary conditions. Here W is the stored energy density, which
in general is a function of the displacement gradient ∇u. A very important question
is how to obtain W . In the continuum mechanics literature, W is often obtained
empirically through fitting a few experimental parameters such as the elastic mod-
uli. Here we will study how W can be obtained from the atomistic models.

For simplicity, we will concentrate on the case when the periodic boundary con-
dition is imposed over the material: the displacement is assumed to be the sum of a
linear function and a periodic function, the linear part is assumed to be fixed. Extend-
ing the analysis to nonperiodic boundary conditions requires substantial changes
of the analysis, since new classes of instabilities may occur at the boundary.

There are two important length scales in this problem. One is the lattice con-
stant. The other is the size of the material. Their ratio is a small parameter that we
will use in our estimates below.
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2.3. Cauchy–Born rule

2.3.1. Cauchy–Born rule for simple lattice. First of all, let us fix the notation.
We will fix one atom in a perfect lattice as the origin. All other atoms are viewed
as translation of the origin, and we denote the translation vector generically as s.
In this way, we may write V2(s) = V2(0, s) and V3(s1, s2) = V3(0, s1, s2). We
assume that V is zero if one of the si is zero. Denote

∇V3(s1, s2) = (
∂α1 V3(s1, s2), ∂α2 V3(s1, s2)

)
.

We let

D+
� xi = xi+s�

− xi , D−
� xi = xi − xi−s�

for � = 1, 2, . . . , d,

where d is the dimension of the system, and (s1, . . . , sd) is a fixed basis for the
lattice. Clearly, D+

� and D−
� depend on s�. However, using this simplified notation

will not cause confusion.
For complex lattices, we need an additional notation. Assuming that the lattice

is made up of two simple lattices, one with atoms labeled by A and another with
atoms labeled by B, we let:

D+
p x A

i = x B
i − x A

i .

Here x A
i and x B

i belong to the same unit cell. The stored energy density WCB is
a function of d × d matrices. Given a d × d matrix A, WCB(A) is computed by
first deforming an infinite crystal uniformly with displacement gradient A, and then
setting WCB(A) to be the energy of the deformed unit cell

WCB(A) = lim
m→∞

∑
yi , y j , yk∈(I+A)L∩ m D V ( yi , y j , yk)

|m D| . (2.5)

Here D is an arbitrary open domain in R
d , L denotes the lattice L(ei , o) defined

in (2.1) and |m D| denote the volume of m D.
The key point in (2.5) is that the lattice is uniformly deformed, i.e. no internal

relaxation is allowed for the atoms in m D. This is contrary to the definition of
energy densities in �-limits (see [7] and [14]). It is easy to check that this definition
is independent of the choice of D.

The limit in (2.5) can be computed explicitly. For two-body potentials, we have

WCB(A) = 1

2ϑ0

∑

s

V2
(
(I + A)s

)
, (2.6)

where s runs over the ranges of the potential V2, ϑ0 is the volume of the unit cell. For
simplicity of notation, we will omit the volume factor in subsequent presentation.

In particular, if the atomistic model is a Lennard-Jones potential on a one-
dimensional simple lattice, we have

WCB(A) = ζ 2(6)

ζ(12)

(1

4
|1 + A|−12 − 1

2
|1 + A|−6

)
, (2.7)

where ζ(·) is the Riemann zeta function. See Fig. 2.
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Fig. 2. Solid line: stored energy density obtained from the Lennard-Jones potential via CB
rule in terms of 1 + A. Dotted line: the original Lennard-Jones potential

For three-body potentials, we have

WCB(A) =
∑

〈 s1,s2 〉

1

3! V3
(
(I + A)s1, (I + A)s2

)
. (2.8)

For general many-body potentials,

WCB(A) =
∑

m=2

1

m!
∑

〈 s1,··· ,sm−1 〉
Vm((I + A)s1, . . . , (I + A)sm−1). (2.9)

For three-body potentials, the variational operator for WCB is:

div
(
DAWCB(∇u)

) =
∑

〈 s1,s2 〉

{
(∂2

α1
V3)(s1 · ∇)2u + (∂2

α2
V3)(s2 · ∇)2u

+ 2(∂α1α2 V3)(s1 · ∇)(s2 · ∇)u
}
, (2.10)

where ∂2
α1

V3, ∂α1α2 V3 and ∂2
α2

V3 are all evaluated at
(
s1 +(s1 ·∇)u, s2 +(s2 ·∇)u

)
.
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2.3.2. Cauchy–Born rule for complex lattice. For a complex lattice, we first
associate with it a Bravais sublattice denoted by L0 so that the unit cell generated
by the basis vectors coincides with the unit cell of the complex lattice. The remain-
ing lattice points are treated as internal degrees of freedom, denoted by p. These
are the shift vectors. To simplify the notation, we will assume that the complex
lattice is the union of two simple lattices (k = 1). To compute WCB(A), we deform
the Bravais sublattice uniformly with deformation gradient A. We then relax the
internal degrees of freedom keeping the position of the deformed Bravais lattice
fixed. This gives

WCB(A) = min
p

W (A, p), (2.11)

where

W (A, p) = lim
m→∞

1

|m D|
∑

V ( yi + zi p, y j + z j p, yk + zk p). (2.12)

Here the summation is carried out for yi , y j , yk ∈ (I+A)L ∩m D and zi , z j , zk =
0, 1.

We will give two specific examples of WCB for complex lattices. First we con-
sider a one-dimensional chain with two alternating species of atoms A and B,
with pairwise interactions. We denote the interaction potential between A atoms
by VAA, the interaction potential between B atoms by VB B , and the interaction
potential between A and B atoms by VAB . Denote the shift of a B atom from its
left neighboring A atom by p. Then WCB(A) = minp W (A, p) with

W (A, p) =
∑

j∈Z

(
VAB

(
(1 + A)( j + 1)ε − p

) + VAB
(
(1 + A) jε + p

))

+
∑

j∈Z

(
VAA

(
(1 + A) jε

) + VB B
(
(1 + A) jε

))
,

where ε is the lattice constant. Observe that for any A, W (A, p) is symmetric with
respect to p∗ = (1 + A)ε/2, and therefore p∗ = (1 + A)ε/2 is either a local
maximum or a local minimum of W (A, p). In the latter case, we have

WCB(A) =
∑

j∈Z

(
VAA

(
(1 + A) jε

) + VB B
(
(1 + A) jε

)

+ 2VAB
(
(1 + A)( j + 1/2)ε

))
(2.13)

at that local minimum.
Next we consider the hexagonal lattice. We again assume that there are two spe-

cies of atoms, A and B, located at the open and filled circles in Fig. 3, respectively.
As in the one-dimensional case, there are three terms in W (A, p):

W (A, p) = WAA(A) + WAB(A, p) + WB B(A)
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A

B

Fig. 3. Hexagonal lattice. Two species of atoms: atom A and atom B

with

Wκκ(A) =
∑

〈 s1,s2 〉
Vκκ((I + A)s1, (I + A)s2) κ = A or B,

and

WAB(A, p) =
∑

〈 s1,s2 〉

[
VAB((I + A)s1 + p, (I + A)s2 + p)

+ VAB((I + A)s1 + p, (I + A)s2)

+ VAB((I + A)s1, (I + A)s2 + p)
]
.

A special case of this lattice is the graphite sheet for carbon. In that case, there is
only one species of atoms. Hence VAA, VB B and VAB are all equal.

We next derive the Euler–Lagrange equations in this case. There are two sets
of Euler–Lagrange equations. The first comes from the local minimization with
respect to the internal degree of freedom p, i.e. (2.11), which reads:

∂ pWAB(A, p) = 0, (2.14)

namely,
∑

〈 s1,s2 〉

[
(∂α1 + ∂α2)VAB((I + A)s1 + p, (I + A)s2 + p)

+ ∂α1 VAB((I + A)s1 + p, (I + A)s2)

+ ∂α2 VAB((I + A)s1, (I + A)s2 + p)
] = 0. (2.15)

The second Euler–Lagrange equation comes from the minimization problem (2.4),

div
(
DAWCB(∇u)

) = f , (2.16)
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where DAWCB(A) = DA
(
WAA(A) + WAB(A, p) + WB B(A)

)
, and for κ, κ ′ = A

or B,

div
(
DAWκκ ′(∇u)

) =
∑

〈 s1,s2 〉

2∑

i, j=1

(
∂2
αi α j

Vκκ ′
)
(si · ∇)(s j · ∇)u,

where ∂2
αi α j

Vκκ ′ (κ, κ ′ = A or B) is evaluated at
(
s1 + (s1 · ∇)u, s2 + (s2 · ∇)u

)
.

It follows from the Hellmann–Feynman theorem [27] that

div
(
DAWAB(∇u)

)

=
∑

〈 s1,s2 〉

2∑

i, j=1

∂2
αi α j

ṼAB(si · ∇)(s j · ∇)u

+
∑

〈 s1,s2 〉

[(
∂2
α1

(V 1
AB + V 2

AB) + ∂α1α2(V 1
AB + V 3

AB)
)
(s1 · ∇)(DA p · ∇)u

+ (
∂α1α2(V 1

AB + V 2
AB) + ∂2

α2
(V 1

AB + V 3
AB)

)
(s1 · ∇)(DA p · ∇)u

]
,

where ṼAB = V 1
AB + V 2

AB + V 3
AB with

V 1
AB = VAB

(
s1 + (s1 · ∇)u + p(∇u), s2 + (s2 · ∇)u + p(∇u)

)
,

V 2
AB = VAB

(
s1 + (s1 · ∇)u + p(∇u), s2 + (s2 · ∇)u

)
,

V 3
AB = VAB

(
s1 + (s1 · ∇)u, s2 + (s2 · ∇)u + p(∇u)

)
,

where p is obtained from the algebraic equations (2.14).

2.3.3. The elastic stiffness tensor. For a given stored energy function WCB, the
elastic stiffness tensor can be expressed as

Cαβγ δ = ∂2WCB

∂ Aαβ∂ Aγ δ

(0) 1 � α, β, γ, δ � d.

If WCB is obtained from a pairwise potential, we have

Cαβγ δ =
∑

s

(
V ′′

2 (|s|) |s|−2 − V ′
2(|s|) |s|−3)sαsβsγ sδ, (2.17)

where the summation is carried out for all s = (s1, . . . , sd). The above for-
mula is proven in Lemma 3.2. Discussions for the more general cases are found
in Appendix B.
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2.4. Spectral analysis of the dynamical matrix

A lot can be learned about the lattice statics and lattice dynamics from phonon
analysis, which is the discrete Fourier analysis of lattice waves at the equilibrium
or uniformly deformed states. This is standard material in textbooks on solid state
physics (see for example [3] and [26]). As we need some of the terminology, we
will briefly discuss a simple example of a one-dimensional chain.

Consider the following example:

M
d2 y j

dt2 = − ∂V

∂y j
= V ′(y j+1 − y j ) − V ′(y j − y j−1),

where M is the mass of the atom. Let y j = jε + ỹ j , and linearizing the above
equation, we get

M
d2 ỹ j

dt2 = V ′′(ε)(ỹ j+1 − 2 ỹ j + ỹ j−1). (2.18)

Let ỹ j (k) = ei(k x j −ω t), we obtain

ω2(k) = 4

M
V ′′(ε) sin2 kε

2
,

where k = 2π�
Nε

with � = −[N/2], . . . , [N/2].
For the more general case, it is useful to define the reciprocal lattice, which is

the lattice of points in the k-space that satisfy ei k·x = 1 for all x ∈ L . The first
Brillouin zone in the k-space is defined as the subset of points that are closer to the
origin than to any other point on the reciprocal lattice.

For complex lattices, the phonon spectrum contains both acoustic and optical
branches [3], which will be denoted by ωa and ωo respectively.

What we really need in the present work is the spectral analysis of the dynam-
ical matrix, which is the matrix defined by the right-hand side of (2.18). For the
simple example discussed above, we consider the eigenvalue problem:

ω̃2 y j = − ∂V

∂y j
= V ′(y j+1 − y j ) − V ′(y j − y j−1).

Then

ω̃2(k) = 4V ′′(ε) sin2 kε

2
.

The difference between the phonon spectrum and the spectrum of the dynam-
ical matrix lies in the mass matrix. If there is only one species of atoms, the mass
matrix is a scalar matrix. In this case, the two spectra are the same up to a scaling
factor. If there are more than one species of atoms, then the two spectra can be
quite different. However, they are still closely related [18, 26]. In particular, the
spectrum of the dynamical matrix will have acoustic and optical branches, which
will be denoted by ω̃a and ω̃c respectively.
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In the general case, the dynamical matrix is defined by the discrete Fourier
transform of the Hessian matrix of the potential function V , which is given by

H( y) = {Hαβ(i, j)}( y): = ∂2V

∂ yi (α)∂ y j (β)
( y),

where yi (α) denotes the α-th component of yi . Let H0 = H(x) be the Hessian
matrix at the undeformed state. For a complex lattice with two species of atoms,
for example, the Hessian matrix H0 takes a block form

H0 =
(

HAA HAB

HB A HB B

)
,

where

{Hκκ ′ }αβ(i, j) = ∂2V

∂ yκ
i (α)∂ yκ ′

j (β)
(x)

for κ, κ ′ = A or B. The dynamical matrix associated with each block is defined by

{Dκκ ′ [n]}αβ = 1

N

N∑

i=1

N∑

j=1

{Hκκ ′ }αβ(i, j)ei(xκ′
j −xκ

i )·kn

for κ, κ ′ = A or B, xκ
i = xi + x(κ) with x(κ) being the shift vector, and {kn}

belongs to the reciprocal space. Obviously, D is a 2d × 2d block matrix.
Using [18, equation (2.22)], we have that D is Hermitian. Therefore, all eigen-

values are real. Denote by {[ω̃(k)]2} the set of eigenvalues of D. We call ω̃(k) the
spectrum of the dynamical matrix D.

2.5. Main results

Let 
 be a bounded cube. For any nonnegative integer m and positive integer k,
we denote by W k,p(
; R

m) the Sobolev space of mappings y: 
 → R
m such that

‖ y‖W k,p < ∞ (see [1] for the definition). In particular, W k,p
# (
; R

m) denotes the
Sobolev space of periodic functions whose distributional derivatives of order less
than k are in the space L p(
). We write W 1,p(
) for W 1,p(
; R

1) and H1(
) for
W 1,2(
).

Summation convention will be used. We will use | · | to denote the absolute
value of a scalar quantity, the Euclidean norm of a vector and the volume of a set.
In several places we denote by ‖ · ‖�2 the �2 norm of a vector to avoid confusion.
For a vector v, ∇v is the tensor with components (∇v)i j = ∂ jvi ; for a tensor field
S, div S is the vector with components ∂ j Si j . Given any function y: R

d×d → R,
we define

DA y(A) =
( ∂y

∂ Ai j

)
and D2

A y(A) =
( ∂2 y

∂ Ai j∂ Akl

)
,
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where R
d×d denotes the set of real d × d matrices. We also define R

d×d+ as the set
of real d × d matrices with positive determinant. For a matrix A = {ai j } ∈ R

d×d ,

we define the norm ‖A‖: = (∑d
i=1

∑d
j=1 a2

i j

)1/2.
For any p > d and m � 0 define

X : =
⎧
⎨

⎩ v ∈ W m+2,p(
; R
d) ∩ W 1,p

# (
; R
d) |

∫




v = 0

⎫
⎬

⎭ ,

and Y : = W m,p(
; R
d).

Let B ∈ R
d×d+ . Given the total energy functional

I (v): =
∫




{
WCB(∇v(x)) − f (x) · v(x)

}
dx, (2.19)

where WCB(∇v) is given by (2.5) or (2.11) with A = ∇v, we seek a solution u,
such that u − B · x ∈ X and

I (u) = min
v−B·x∈X

I (v).

The Euler–Lagrange equation of the above minimization problem is:
{L(v): = − div

(
DAWCB(∇v)

) = f in 
,

v − B · x is periodic on ∂
.
(2.20)

As to the atomistic model, we assume that y−x−B̃ ·x is periodic for x belongs
to L ∩ ∂
, where B̃ = B ⊗ I2N×2N . To guarantee the uniqueness of solutions, we
require, for example, for the case there are two species of atoms,

2N∑

i=1

yi = 0.

We write the minimization problem for the atomistic model as

min
y∈A

E{ y1, . . . , y2N }, (2.21)

where the admissible set A is defined as

A =
{

y ∈ R
2N×d | y − x − B̃ · x is periodic for x ∈ L ∩ ∂
 and

2N∑

i=1

yi = 0

}
.

The Euler–Lagrange equation associated with the above minimization problem is
⎧
⎪⎪⎨

⎪⎪⎩

T ( y) = 0,

y − x − B̃ · x is periodic and for x ∈ L ∩ ∂
 and
2N∑

i=1

yi = 0,
(2.22)
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where T = (T1, . . . , T2N ) with Ti : R
2N×d → R

d defined by

Ti ( y): = − ∂V

∂ yi
− f (xi ) 1 � i � 2N . (2.23)

Definition 2.1. The function v0 − B · x ∈ X is a W 1,∞ local minimizer of I if and
only if there exists δ > 0 such that

I (v0) � I (v)

for all v − B · x ∈ X satisfying

‖v − v0‖W 1,∞ < δ.

Definition 2.2. z0 ∈ A is a discrete W 1,∞ local minimizer of E if and only if there
exists δ > 0 such that

E(z0) � E(z)

for all z ∈ A satisfying

|z − z0|1,∞ < δ,

where the discrete W 1,∞ norm is defined for any z ∈ R
2N×d excluding the constant

vector by

|z|1,∞ = ε−1 max
1�i�2N

max|xi j |=ε

∣∣zi − z j
∣∣ , (2.24)

where xi j = xi − x j .

Our main assumption is the following:

Assumption A. There exist two constants Λ1 and Λ2, independent of ε, such that
the acoustic and optical branches of the spectrum of the dynamical matrix satisfy

ω̃a(k) � Λ1 |k| , (2.25)

and

ω̃o(k) � Λ2/ε, (2.26)

respectively, where k is any vector in the first Brillouin zone.

In the next section, we will discuss where the scaling factor ε in (2.26) comes
from. In subsequent papers [17] and [29], we will show that if Assumption A is
violated, then results of the type (2.27) cease to be valid. Therefore, Assumption A
is not only sufficient for Theorems 2.1, 2.2 and 2.3, but also essentially necessary.

Our main results are:

Theorem 2.1. If Assumption A holds and p > d, m � 0, then there exist three
constants κ1, κ2 and δ such that for any B ∈ R

d×d+ with ‖B‖ � κ1 and for any
f ∈ Y with ‖ f ‖W m,p � κ2, the problem (2.20) has one and only one solution uCB

that satisfies ‖uCB − B · x‖W m+2,p � δ, and uCB is a W 1,∞ local minimizer of the
total energy functional (2.19).
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Theorem 2.2. If Assumption A holds and p > d, m � 6, then there exist two con-
stants M1 and M2 such that for any B ∈ R

d×d+ with ‖B‖ � M1 and for any f ∈ Y
with ‖ f ‖W m,p � M2, the problem (2.22) has one and only one solution yε, and yε

is a discrete W 1,∞ local minimizer of the energy functional (2.2). Moreover, yε

satisfies

‖ yε − yCB ‖d � Cε, (2.27)

where yCB = x + uCB(x). The norm ‖ · ‖d is defined as

‖ z ‖d : = εd/2(zT H0 z)1/2 (2.28)

for any z ∈ R
2N×d excluding the constant vector, where H0 is the Hessian matrix

of the atomistic potential at the undeformed state.

We will see later that ‖ · ‖d is a discrete analogue of the H1 norm (cf. Lemma
6.4 and Lemma 6.5).

Theorem 2.3. Under the same condition as in Theorem 2.2, if the crystal lattice is
a simple lattice, then (2.27) can be improved to

‖ yε − yCB ‖d � Cε2. (2.29)

3. The stability condition

In this section, we will show that our Assumption A implies that W (A, p) sat-
isfies a generalized Legendre–Hadamard condition. We will also discuss explicit
examples of the stability conditions. This allows us to appreciate the difference
between the results of Blanc et al. and the results of the present paper.

Lemma 3.1. If Assumption A is valid, then W (A, p) satisfies the generalized
Legendre–Hadamard condition at the undeformed configuration: there exist two
constants Λ1 and Λ2, independent of ε, such that for all ξ , η, ζ ∈ R

d ,

(ξ ⊗ η, ζ )

(
D2

AW (0, p0) DA pW (0, p0)

D pAW (0, p0) D2
pW (0, p0)

)(
ξ ⊗ η

ζ

)

� Λ1 |ξ |2 |η|2 + Λ2 |ζ |2 , (3.1)

where p0 is the shift vector at the undeformed configuration.

Proof. We first note the following equivalent form of (3.1), we call it
Assumption B.

– D2
p W (0, p0) is positive definite.

– WCB satisfies the Legendre–Hadamard condition at the undeformed configura-
tion:

D2
AWCB(0)(ξ ⊗ η, ξ ⊗ η) � Λ |ξ |2 |η|2 for all ξ , η ∈ R

d .
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The equivalence between (3.1) and Assumption B is a consequence of the fol-
lowing simple calculation: at A = 0 and p = p0, we have

(
I −DA pW

[
D2

pW
]−1

0 I

)⎛

⎝
D2

AW DA pW

D pAW D2
pW

⎞

⎠
(

I 0
−[

D2
pW

]−1
D p AW I

)

=
(

D2
AW − DA pW

[
D2

pW
]−1

D p AW 0
0 D2

pW

)
=

(
D2

AWCB 0
0 D2

pW

)
.

In terms of the elastic stiffness tensor, the second condition of Assumption B
can also be rewritten as:

C(ξ ⊗ η, ξ ⊗ η) � Λ |ξ |2 |η|2 for all ξ , η ∈ R
d . (3.2)

Next we prove that Assumption A implies Assumption B. We only give the
proof for the simple lattice here, while that for the complex lattice is postponed to
Appendix C since it is much more involved.

Using the translation invariance of L , we write D[k] as

Dαγ [k] =
N∑

j=1

Hαγ (0, j)ei k·x j .

For the simple lattice, each atom site is a center of inversion symmetry. Therefore,
we rewrite D[k] as

Dαγ [k] = 1

2

N∑

j=1

Hαγ (0, j)
(
ei k·x j + e−i k·x j

) =
N∑

j=1

Hαγ (0, j) cos(k · x j ).

By translation invariance, we have
∑N

j=1 Hαγ (0, j) = 0. Therefore,

Dαγ [k] =
N∑

j=1

Hαγ (0, j)
(
cos(k · x j ) − 1

) = −2
N∑

j=1

Hαγ (0, j) sin2 k · x j

2

= −1

2

N∑

j=1

Hαγ (0, j)
∣∣k · x j

∣∣2

+ 2
N∑

j=1

Hαγ (0, j)
[( k · x j

2

)2 − sin2 k · x j

2

]
.

Using the expression of C [26], we have

Dαγ [k] = Cαβγ δkβkδ + 2
N∑

j=1

Hαγ (0, j)
[( k · x j

2

)2 − sin2 k · x j

2

]
. (3.3)
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Using the basic inequality: cos x � 1 − x2/2 + x4/(4!) for all x ∈ R, we have

0 �
(κ · x j

2

)2 − sin2 k · x j

2
�

|k|4 ∣∣x j
∣∣4

12
. (3.4)

Using the assumption that V has finite range and the fact that Hαγ = O(ε−2), we
get that there exists C independent of ε and k such that

2

∣∣∣∣∣∣

N∑

j=1

Hαγ (0, j)
[( k · x j

2

)2 − sin2 k · x j

2

]
∣∣∣∣∣∣
� Cε2 |k|4 .

Substituting the above two equations into (3.3), and using Assumption A, we obtain,
for any η ∈ R

d and k ∈ R
d in the first Brillouin zone,

C(k ⊗ η, k ⊗ η) � ηT D[k]η − Cε2 |k|4 |η|2
� (Λ1 − Cε2 |k|2) |k|2 |η|2
� (Λ1/2) |k|2 |η|2 ,

where we have used the fact that k is of O(1) since they are in the first Brillouin
zone. The above inequality is homogeneous with respect to k, therefore, it is also
valid for any k ∈ R

d . This gives Assumption B. ��

3.1. Stability condition for the continuum model

We shall prove that (3.2) is valid for the triangular lattice and fails for the square
lattice with the Lennard-Jones potential. We write the Lennard-Jones potential as

V (r) = 4(r−12 − r−6). (3.5)

The following lemma simplifies the expression of the elastic stiffness tensor by
exploiting the symmetry property of the underlying lattices.

Lemma 3.2. The elastic stiffness tensor C is of the form:

Cαβγ δ =
∑

s

(
V ′′(|s|) |s|2 − V ′(|s|) |s|) |s|−4 sαsβ sγ sδ. (3.6)

Proof. A direct calculation gives

Cαβγ δ =
∑

s

(
V ′′(|s|) |s|2 − V ′(|s|) |s|)) |s|−4 sαsβ sγ sδ

+
∑

s

V ′(|s|) |s|−1 δαγ sβ sδ.

Using

DAWCB(0) = 0, (3.7)

we have
∑

s

V ′(|s|) |s|−1 δαγ sβ sδ = δαγ DAWCB(0) = 0.

Thus (3.6) holds. ��
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Using (3.6), we have

C1111 = C2222 =
∑

s

(
V ′′(|s|) |s|2 − V ′(|s|) |s|) |s|−4 |s1|4 ,

C1122 = C1212 =
∑

s

(
V ′′(|s|) |s|2 − V ′(|s|) |s|) |s|−4 |s1|2 |s2|2 .

(3.8)

For the triangular lattice, using the above lemma, we obtain

C(ξ ⊗ η, ξ ⊗ η) = C1111(ξ
2
1 η2

1 + ξ2
2 η2

2) + 2C1122ξ1ξ2η1η2

+ C1122(ξ1η2 + ξ2η1)
2

= (C1111 − C1122)(ξ
2
1 η2

1 + ξ2
2 η2

2)

+ C1122[(ξ1η1 + ξ2η2)
2 + (ξ1η2 + ξ2η1)

2].

Using the explicit form of V (3.5), a straightforward calculation gives

C1111 − C1122 > 0 and C1122 > 0.

C(ξ ⊗ η, ξ ⊗ η) � min(C1111 − C1122, C1122)
[
ξ2

1 η2
1 + ξ2

2 η2
2 + (ξ1η1 + ξ2η2)

2

+ (ξ1η2 + ξ2η1)
2].

Using the elementary identity:

ξ2
1 η2

1 + ξ2
2 η2

2 + (ξ1η1 + ξ2η2)
2 + (ξ1η2 + ξ2η1)

2

= 1

2
|ξ |2 |η|2 + 3

2
(ξ1η1 + ξ2η2)

2 + 1

2
(ξ1η2 + ξ2η1)

2,

we have

C(ξ ⊗ η, ξ ⊗ η) � Λ |ξ |2 |η|2

with Λ = 1
2 min(C1111 − C1122, C1122) > 0.

For the square lattice, let ξ1 = η2 = 0, we have

C(ξ ⊗ η, ξ ⊗ η) = C1122ξ
2
2 η2

1 < 0

for any ξ2, η1 �= 0 since C1122 < 0 by (3.8)2 and a direct calculation.
If we only consider the nearest neighborhood interaction, we have C1122 =

C1212 = 0, i.e. the shear modulus of the macroscopic model is zero. We refer
to [17] for discussions on the manifestation of this instability.
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3.2. Stability condition for the atomistic model

We will check Assumption A for N × N triangular and square lattices. Write

ω̃2(k) = 2λ(k). (3.9)

A straightforward calculation gives, in the case of triangular lattice with nearest
neighbor interaction

λ(k) = a
[
α + β + γ − (

(α − β)2 + (β − γ )2 + (γ − α)2)1/2
/
√

2
]
,

where a = V ′′(ε), and

α = sin2 π

N
k1, β = sin2 π

N
k2, γ = sin2 π

N
(k1 − k2) (3.10)

with k = (k1, k2).
If the next-nearest neighbor interaction is taken into account, then

λ(k) = (a + b)(α + β + γ ) + (c + d)(̃α + β̃ + γ̃ )

− 1

2

([(a − b)(2α − β − γ ) + (d − c)(2β̃ − α̃ − γ̃ )]2

+ 3[(a − b)(β − γ ) + (c − d)(̃α − γ̃ )]2)1/2
,

where α, β and γ are the same as (3.10) while

α̃ = sin2 π

N
(k1 + k2), β̃ = sin2 π

N
(−k1 + 2k2), γ̃ = sin2 π

N
(−2k1 + k2),

and

b = V ′(ε)ε−1, c = V ′(
√

3ε), d = V ′(
√

3ε)(
√

3ε)−1,

where

ε =
(

2
1 + 3−6

1 + 3−3

)1/6
.

For the square lattice, if we only consider the nearest neighbor interaction, then
we have

λ1(k) = 2aα, λ2(k) = 2aβ,

where α, β are defined earlier. Obviously, there does not exist a constant Λ such
that

ω̃(k) � Λ |k| .
If we take into account the next-nearest neighbor interaction, then we have

λ(k) = (a + b)(α + β) + (e + f )(̃α + γ )

− ([(a − b)2(α − β)2 + (e − f )2(̃α − γ )2)1/2
,
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where

e = V ′′(
√

2ε), f = V ′(
√

2ε)(
√

2ε)−1,

and

ε =
(

2
1 + 2−6

1 + 2−3

)1/6
.

From Fig. 4 we see Assumption A is satisfied by the triangular lattice but fails
for the square lattice. Therefore, our results imply that the Cauchy–Born rule is valid
for the triangular lattice but not for the square lattice. Numerical results show that
this is indeed the case [17]. Note that the work of Blanc et al. does not distinguish
between the two cases.

Next we turn to complex lattices. Again we will consider a one-dimensional
chain with two species of atoms A and B. We do not assume nearest neighbor
interaction. The equilibrium equations for A and B are:

m A
d2 y A

i

dt2 = V ′
AB(yB

i − y A
i ) + V ′

AA(y A
i+1 − y A

i )

− V ′
AB(y A

i − yB
i−1) − V ′

AA(y A
i − y A

i−1),

m B
d2 yB

i

dt2 = V ′
AB(y A

i+1 − yB
i ) + V ′

B B(yB
i+1 − yB

i )

− V ′
AB(yB

i − y A
i ) − V ′

B B(yB
i − yB

i−1).

We may assume m A = m B = 1 since we concern the spectrum of the dynamical
matrix. Let y A

i = iε + ỹ A
i and yB

i = iε + p + ỹ B
i , linearizing the above equation,
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Fig. 4. Spectrum of the dynamical matrix corresponding to the larger wave speed for trian-
gular (left) and square (right) lattices with next-nearest neighbor Lennard-Jones interaction
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and using the Euler–Lagrange equation for optimizing with respect to the shift p,
we obtain

d2 ỹ A
i

dt2 = V ′′
AB(p)(ỹ B

i − ỹ A
i ) − V ′′

AB(ε − p)(ỹ A
i − ỹ B

i−1)

+ V ′′
AA(ε)(ỹ A

i+1 − 2 ỹ A
i + ỹ A

i−1),

d2 ỹ B
i

dt2 = V ′′
AB(ε − p)(ỹ A

i+1 − ỹ B
i ) − V ′′

AB(p)(ỹ B
i − ỹ A

i )

+ V ′′
B B(ε)(ỹ B

i+1 − 2 ỹ B
i + ỹ B

i−1).

Let ỹ A
i = εAei(kiε−ω t) and ỹ B

i = εBei(kiε−ω t), we get

D[k](εA, εB)T = (0, 0)T

with

D11 = ω2 − 4V ′′
AA(ε) sin2 kε

2 − V ′′
AB(p) − V ′′

AB(ε − p),

D12 = V ′′
AB(ε − p)eikε + V ′′

AB(p)eikp,

D21 = V ′′
AB(ε − p)e−ikε + V ′′

AB(p)e−ikp,

D22 = ω2 − 4V ′′
B B(ε) sin2 kε

2 − V ′′
AB(p) − V ′′

AB(ε − p).

Solving the equation det D[k] = 0 we get

ω2± = 2
(
V ′′

AA(ε) + V ′′
B B(ε)

)
sin2 kε

2
+ 1

4

(
V ′′

AB(p) + V ′′
AB(ε − p)

)

±
[
4
(
V ′′

B B(ε) − V ′′
AA(ε)

)2 sin4 kε

2

+ (
V ′′

AB(p) + V ′′
AB(ε − p)

)2 − 4V ′′
AB(p)V ′′

AB(ε − p) sin2 kε

2

]1/2
.

We have, for any k ∈ R,

εωo(k) = εω+(k) � Λ2 (3.11)

with

Λ2: = 1

2

(
V ′′

AB(p) + V ′′
AB(ε − p)

)1/2
ε.

Next we write the acoustic branch as

ω2
a(k) = ω2−(k) = [ω+(k)ω−(k)]2/ω2+(k).

A direct calculation gives

[ω+ω−]2 � 4

(
V ′′

AA(ε) + V ′′
B B(ε) + V ′′

AB(p)V ′′
AB(ε − p)

V ′′
AB(p) + V ′′

AB(ε − p)

)

× (V ′′
AB(p) + V ′′

AB(ε − p)) sin2 kε

2
.
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We bound ω2+ as

ω2+ � 2(V ′′
AB(p) + V ′′

AB(ε − p)) + g(sin kε/2)

with

g(t): =
((

V ′′
B B(ε) − V ′′

AA(ε)
)2

t2 + 1

2
V ′′

AB(p)V ′′
AB(ε − p)

)1/2 |t |
+ (

V ′′
AA(ε) + V ′′

B B(ε)
)
t2 for all 0 � t � 1.

Therefore, we estimate ω2
a as

ω2
a(k) � K2

(
V ′′

AA(ε) + V ′′
B B(ε) + V ′′

AB(p)V ′′
AB(ε − p)

V ′′
AB(p) + V ′′

AB(ε − p)

)
sin2 kε

2
,

where

K2 = 2[V ′′
AB(p) + V ′′

AB(ε − p)]
[V ′′

AB(p) + V ′′
AB(ε − p)] + g(sin kε

2 )
.

Obviously,

K2 �
2[V ′′

AB(p) + V ′′
AB(ε − p)]

[V ′′
AB(p) + V ′′

AB(ε − p)] + g(1)
= :K .

It is seen that K is independent of ε.
Using the basic inequality

sin x

x
� 2

π
for all |x | � π

2
,

we obtain, for k in the first Brillouin zone, i.e. |kε| � π/2,

ωa(k) �
√

K

(
V ′′

AA(ε) + V ′′
B B(ε) + V ′′

AB(p)V ′′
AB(ε − p)

V ′′
AB(p) + V ′′

AB(ε − p)

)1/2 ∣∣∣∣ sin
kε

2

∣∣∣∣

� Λ1 |k| , (3.12)

where

Λ1 =
√

K

π

(
V ′′

AA(ε) + V ′′
B B(ε) + V ′′

AB(p)V ′′
AB(ε − p)

V ′′
AB(p) + V ′′

AB(ε − p)

)1/2

ε.

It is obvious that Λ1 is independent of ε.
In view of (3.12) and (3.11), we verify Assumption A.
In the general case, the factor 1/ε in ω̃o is a consequence of scaling: if we take

the lattice constant to be O(1), then ω̃o = O(1). If we take the lattice constant to
be O(ε) as we do, then V ′′(ε) = O(ε−2), which gives ω̃o = O(ε−1).

In our analysis, it is sufficient to impose stability conditions on rank-one defor-
mations only. This is due to the fact that we have fixed the linear part of the defor-
mation gradient tensor through boundary conditions. If we allow the linear part to
vary, we have to impose additional stability conditions with respect to deformations
of higher rank. In this case, we need to require that the elastic moduli tensor be
positive definite. We refer to [19] for a discussion.
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4. Local minimizers for the continuum model

In this section, we prove Theorem 2.1. The proof is quite standard. The main
tool is the implicit function theorem.

The linearized operator of L at u is defined by:

Llin(u)v = − div
(
D2

AWCB(∇u)∇v
)

for any v ∈ W 1,p
# (
; R

d)

Proof of Theorem 2.1. For any p > d, define the map

T : Y × X → R
d with T ( f , v): = L(v + B · x) − f .

Without loss of generality, we assume that 
 is a unit cube and write

v(x) =
∑

n∈Zd

anei2πn·x with an =
∫




v(x)e−i2πn·xdx.

Therefore,
∫




∇v · D2
AWCB(0) · ∇vdx

= 4π2
d∑

α,β,γ,δ=1

∑

n,m∈Zd

Cαβγ δnαmγ anβ amδ

∫




ei2π(n−m)·xdx

= 4π2
d∑

α,β,γ,δ=1

∑

n∈Zd

Cαβγ δnαnγ anβ anδ .

By Lemma 3.1, we have Assumption B. Using the above expression, we obtain
∫




∇v · D2
AWCB(0) · ∇vdx � 4π2Λ

∑

n∈Zd

|n|2 |an|2

= Λ

∫




|∇v|2 dx. (4.1)

Since
∫




v = 0, using Poincaré’s inequality, we get

∫




∇v · D2
AWCB(0) · ∇vdx � C1‖v‖2

1, (4.2)

where C1 depends on Λ, e.g. C1 = Λπ2/(1 + π2). Define κ = min(C1/(2M), 1)

with M = maxA∈Rd×d

∣∣D3
AWCB(A)

∣∣. If ‖B‖ � κ , then
∣∣∣D2

AWCB(B) − D2
AWCB(0)

∣∣∣ � M‖B‖ � C1/2.
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Therefore,
∫




∇v · D2
AWCB(B) · ∇vdx � (C1/2)‖v‖2

1. (4.3)

Notice that T (0, 0) = 0. Standard regularity theory for elliptic systems (see [2])
allows us to conclude that DvT (0, 0) is a bijection from X onto Y . Since p > d,
we know that W k,p(
; R

d) is a Banach algebra [1] for any k � 1. Therefore, it is
easy to verify that DAWCB is a C2 function from R

d×d+ to R
d×d . It follows from the

implicit function theorem [25, Appendix I] that there exist two constants R and r
such that for all f satisfying ‖ f ‖W m,p � r , there exists one and only one solution
v( f ) ∈ X that satisfies

T ( f , v( f )) = 0, ‖v( f )‖m+2,p � R, (4.4)

and v(0) = 0. Finally we let uCB = v( f ) + B · x. It is clear that uCB satisfies
equation (2.20), uCB − B · x is periodic over ∂
 and

‖uCB − B · x‖W m+2,p � R. (4.5)

Next we show that uCB is actually a W 1,∞ local minimizer. Using a Taylor
expansion around uCB and using (2.20) gives

I (v) − I (uCB)

=
∫




∇(v − uCB) ·
(∫ 1

0
(1 − t)D2

AW (∇ut )dt

)
· ∇(v − uCB)dx, (4.6)

where ut = tv + (1 − t)uCB. It is clear that

∇ut − B = t∇(v − uCB) + ∇v( f ).

Therefore, there exist κ and δ such that if ‖ f ‖L p � κ and ‖v − uCB‖1,∞ � δ, then
∫




∇(v − uCB) · D2
AW (∇ut ) · ∇(v − uCB)dx � (C1/4)‖v − uCB‖2

1 (4.7)

for any 0 � t � 1. It follows from the above inequality and (4.6) that

I (v) − I (uCB) � (C1/4)‖v − uCB‖2
1.

This proves that uCB is a W 1,∞ local minimizer of I . ��
The next two sections are devoted to the proof of Theorem 2.2. We first construct

an approximation solution that satisfies the equilibrium equations of the atomis-
tic problem in Section 5 with higher-order accuracy. To construct exact solutions,
we analyze the stability of the atomistic model. This is done in Section 6, by first
constructing and characterizing the norm ‖ · ‖d , and then proving a perturbation
lemma for this norm. The existence of the solution of the atomistic model then
follows from the fixed-point theorem.
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5. Asymptotic analysis on lattices

In this section, we carry out asymptotic analysis on lattices. The results in this
section not only serve as a preliminary step for proving Theorem 2.2, but also have
interests of their own.

5.1. Asymptotic analysis on simple lattices

We first discuss asymptotic analysis on simple lattices. As we said earlier, with-
out loss of generality, we will restrict our attention to the case where the potential
V is a three-body potential. The equilibrium equation at the site i is of the form:

Lε( yi ) = − ∂V

∂ yi
= f (xi ), (5.1)

where

Lε( yi ) =
∑

〈 s1,s2 〉

[
∂α1 V (D+

1 yi , D+
2 yi ) − ∂α1 V (D−

1 yi , D+
2 yi−s1

)

+ ∂α2 V (D+
1 yi , D+

2 yi ) − ∂α2 V (D+
1 yi−s2

, D−
2 yi )

]
.

Here the summation runs over all 〈 s1, s2 〉 ∈ L × L . In writing this expression, we
have paired the interaction at s1 and s2 directions (see Fig. 5).

The plan is to carry out the analysis in two steps: the first is to approximate (5.1)
by differential equations. The second is to carry out asymptotic analysis on these
differential equations.

Assuming that yi = xi + u(xi ) and substituting it into the above equilibrium
equations, collecting terms of the same order, we may write

Lε( yi ) = L0(u(xi )) + εL1(u(xi )) + ε2L2(u(xi )) + O(ε3). (5.2)

Lemma 5.1. The leading order operator L0 is the same as the variational operator
for WCB.

Moreover, L1 = 0 and L2 is an operator in divergence form.

xixi–s1 xi+s1

xi–s12 xi+s2

xi–s2 xi+s12

Fig. 5. A schematic example for the atomic interactions on simple lattices
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Proof. We may rewrite the operator Lε( yi ) as

Lε( yi ) =
∑

〈 s1,s2 〉

[
∂α1 V (D+

1 yi , D+
2 yi ) − ∂α1 V (D+

1 yi−s1
, D+

2 yi−s1
)

+ ∂α2 V (D+
1 yi , D+

2 yi ) − ∂α2 V (D+
1 yi−s2

, D+
2 yi−s2

)
]

=
∑

〈 s1,s2 〉

(
D−

1 ∂α1 V + D−
2 ∂α2 V

)
(D+

1 yi , D+
2 yi ).

Denote by ∂α j V (D+
1 yi , D+

2 yi ) = ∂α j Vi for j = 1, 2. For any smooth function
ϕ(x) satisfying the periodic boundary condition, after summation by parts, we have

N∑

i=1

Lε( yi )ϕ(xi ) = −
N∑

i=1

∑

〈 s1,s2 〉
∂α1 Vi D+

1 ϕ(xi ) + ∂α2 Vi D+
2 ϕ(xi ). (5.3)

Fix i , for j = 1, 2, Taylor expansion at xi gives

D+
j ϕ(xi ) = (s j · ∇)ϕ(xi ) + 1

2
(s j · ∇)2ϕ(xi ) + O(ε3),

D+
j yi = s j + (s j · ∇)u(xi ) + a j + b j + O(ε4),

where

a j = 1

2
(s j · ∇)2u(xi ) and b j = 1

6
(s j · ∇)3u(xi ).

In what follows, we omit the argument of u and V since u is always evaluated
at xi and V is always evaluated at

(
(s1 + (s1 · ∇)u(xi ), s2 + (s2 · ∇)u(xi )

)
.

∂α j Vi = ∂α j V + (
(a1 + b1)∂α1 + (a2 + b2)∂α2

)
∂α j V

+1

2

(
(a1 + b1)∂α1 + (a2 + b2)∂α2

)2
∂α j V + O(ε2).

Substituting the above four equations into (5.3) and gathering terms of the same
order, we obtain the expressions for the operators L0,L1 and L2:

N∑

i=1

L0(u(xi ))ϕ(xi ) = −
N∑

i=1

∑

〈 s1,s2 〉

2∑

j=1

∂α j V (s j · ∇)ϕ(xi ),

N∑

i=1

L1(u(xi ))ϕ(xi ) = −
N∑

i=1

∑

〈 s1,s2 〉

2∑

j=1

[
(a1∂α1 + a2∂α2)∂α j V (s j · ∇)ϕ(xi )

+ 1

2
∂α j V (s j · ∇)2ϕ(xi )

]
,
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and
N∑

i=1

L2(u(xi ))ϕ(xi )

= −
N∑

i=1

∑

〈 s1,s2 〉

2∑

j=1

[
(b1∂α1 + b2∂α2)∂α j V (s j · ∇)ϕ(xi )

+ 1

2
(a1∂α1 + a2∂α2)∂α j V (s j · ∇)2ϕ(xi )

+ 1

6
∂α j V (s j · ∇)3ϕ(xi )

]
.

Passing to the limit, and integrating by parts, we have
∫




L0(u(x))ϕ(x)dx = −
∫




∑

〈 s1,s2 〉

2∑

j=1

∂α j V (s j · ∇)ϕdx

=
∑

〈 s1,s2 〉

2∑

j=1

∫




div
(
∂α j V s j

)
ϕ(x)dx,

which gives

L0(u) =
∑

〈 s1,s2 〉

(
∂2
α1

V (s1 · ∇)2u + 2∂α1α2 V (s1 · ∇)(s2 · ∇)u + ∂2
α2

V (s2 · ∇)2u
)
.

We see that L0 is the same as the operator that appears in (2.10).
The proof for the fact that the operator L2 is of divergence form is similar.
Since each atom site in the simple lattice L is a center of inversion symmetric

i.e. if s ∈ L , then −s ∈ L , and thus L1 = 0. This can also be proved by a
straightforward but tedious calculation. ��

Next we expand the solution

u = u0 + εu1 + ε2u2 + · · · .

Substituting it into (5.2), we obtain the equations for u0, u1 and u2. The equation
for u0 is simply the Euler–Lagrange equation (2.10), and u0 satisfies the same
boundary condition as for uCB. Therefore,

u0 = uCB.

For u1 and u2, we have

Lemma 5.2. u1 satisfies

Llin(u0)u1 = 0, (5.4)

and u2 satisfies

Llin(u0)u2 = −L2(u0). (5.5)

Moreover, if Assumption A holds, then u1 = 0 and there exists a function u2 ∈ X
that satisfies (5.5).
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Proof. A straightforward calculation gives

Llin(u0)u1 = −L1(u0) = 0.

Using Lemma 5.1, we get (5.4). Using (4.7) with t = 0, there exists a constant κ

such that if ‖ f ‖L p � κ , then Llin is elliptic at uCB = u0. Therefore, u1 = 0.
A simple calculation gives

Llin(u0)u2 = −1

2

(δ2L0

δu2 (u0)u1

)
u1 − δL1

δu
(u0)u1 − L2(u0) = −L2(u0),

which gives (5.5). It remains to prove that the right-hand side of (5.5) is orthogonal
to a constant function, namely,

∫




L2(u0(x))dx = 0. (5.6)

This is true since L2 is of divergence form, see Lemma 5.1. ��

As a direct consequence of Lemma 5.1 and Lemma 5.2, we have

Corollary 5.1. Define

ỹ = x + u0(x) + ε2u2(x). (5.7)

If f ∈ W 6,p(
; R
d), then there exists a constant C such that

|Lε(̃ y) − f | � Cε3. (5.8)

Proof. Since f ∈ W 6,p(
; R
d), using Theorem 2.1, we conclude that u0 ∈

W 8,p(
; R
d). Therefore, u0 ∈ C7(
) by Sobolev embedding theorem. This gives

that u0 + ε2u2 ∈ C5(
). Therefore,

∣∣∣Lε(̃ y) − L0(u0 + ε2u2) − ε2L2(u0 + ε2u2)

∣∣∣ � Cε3,

where the constant C depends on ‖u0‖C7(
). Using L0(u0) = f and (5.5), we
obtain

∣∣∣L0(u0 + ε2u2) + ε2L2(u0 + ε2u2) − f
∣∣∣ � Cε4,

where the constant C depends on ‖u0‖C4(
). A combination of the above two
inequalities leads to (5.8). ��
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5.2. Asymptotic analysis on complex lattices

Assume that in equilibrium, the crystal consists of two types of atoms, A and
B, each of which occupy a simple lattice. Let us express the equilibrium equations
for atoms A and B in the form:

LA
ε ( yA

i , yB
i ) = f (x A

i ) and LB
ε ( yA

i , yB
i ) = f (x B

i ). (5.9)

We will make the following ansatz:

yA
i = x A

i + u(x A
i ),

yB
i = yA

i + εv1(x A
i ) + ε2v2(x A

i ) + ε3v3(x A
i ) + ε4v4(x A

i ) + · · · .

Substituting this ansatz into (5.9), we obtain

LA
ε = 1

ε
L̃A−1(u, v1) + L̃A

0 (u, v1, v2) + εL̃A
1 (u, v1, v2, v3)

+ ε2L̃A
2 (u, v1, v2, v3, v4) + O(ε3), (5.10)

LB
ε = 1

ε
L̃B−1(u, v1) + L̃B

0 (u, v1, v2) + εL̃B
1 (u, v1, v2, v3)

+ ε2L̃B
2 (u, v1, v2, v3, v4) + O(ε3). (5.11)

Therefore,

LA
ε + LB

ε = 1

ε

(L̃A−1(u, v1) + L̃B−1(u, v1)
) + L̃A

0 (u, v1, v2) + L̃B
0 (u, v1, v2)

+ ε
[L̃A

1 (u, v1, v2, v3) + L̃B
1 (u, v1, v2, v3)

]

+ ε2[L̃A
2 (u, v1, v2, v3, v4) + L̃B

2 (u, v1, v2, v3, v4)
] + O(ε3).

We will show later that

1. L̃B−1 + L̃A−1 = 0.
2. vi+2 cancels out in the O(εi ) term for i � 0.

Therefore we may write

1

2

(LA
ε + LB

ε

) = L0(u, v1) + εL1(u, v1, v2)

+ ε2L2(u, v1, v2, v3) + O(ε3) (5.12)

with

L0(u, v1) = [L̃A
0 (u, v1, 0) + L̃B

0 (u, v1, 0)
]/

2,

L1(u, v1, v2) = [L̃A
1 (u, v1, v2, 0) + L̃B

1 (u, v1, v2, 0)
]/

2,

L2(u, v1, v2, v3) = [L̃A
2 (u, v1, v2, v3, 0) + L̃B

2 (u, v1, v2, v3, 0)
]/

2.



Cauchy-Born Rule and the Stability of Crystalline Solids

Next consider LA
ε − LB

ε , we obtain

L̃A−1(u, v1) − L̃B−1(u, v1) = 0,

L̃A
0 (u, v1, v2) − L̃B

0 (u, v1, v2) = −( p0 · ∇) f ,

L̃A
1 (u, v1, v2, v3) − L̃B

1 (u, v1, v2, v3) = −1

2
( p0 · ∇)2 f ,

L̃A
2 (u, v1, v2, v3, v4) − L̃B

2 (u, v1, v2, v3, v4) = −1

6
( p0 · ∇)3 f .

Observe that these are algebraic equations for v1, v2, v3 and v4 respectively. Their
solvability will be proved in Lemma 5.3.

In the second step, we assume

u = u0 + εu1 + ε2u2 + · · · .

Substituting the above ansatz into (5.12), we obtain the equations satisfied by u0, u1
and u2:

L0(u0, v1) = 0, (5.13)

Llin(u0, v1)u1 = −L1(u0, v1, v2) + 1

2
( p0 · ∇) f , (5.14)

Llin(u0, v1)u2 = −L2(u0, v1, v2, v3) − δL1

δA
(u0, v1, v2)u1

− 1

2

(δ2L0

δA2 (u0, v1)u1

)
u1 + 1

4
( p0 · ∇)2 f , (5.15)

where Llin(·, v1) is the linearized operator of L0 for fixed v1. We next relate these
equations to the Euler–Lagrange equations and show that they are solvable.

To carry out the details of this analysis, again we will work with the case when
V consists of three-body interactions only. It is easy to see how the argument can
be extended to the general case.

Depending on the type of atoms that participate in the interaction, we can group
the terms of V into the following subsets: AAA, AAB, AB B and B B B. The AAA
and B B B terms are treated in the same way as for simple lattices. Hence we will
restrict our attention to the AAB and AB B terms.

Fix an A atom at site xi . Consider its interaction with two B atoms at xi + p
and xi + p − s1. As in the case of simple lattice, we pair this interaction with the
interactions between the atoms at AAB, and at AB B (see Fig. 6). Neglecting other
terms in Lε, we have

LA
ε ( yA

i , yB
i ):

= [
∂α1 VAB( yB

i − yA
i , yB

i−s1
− yA

i ) − ∂α1 VAB( yA
i − yB

i , yA
i+s1

− yB
i )

+ ∂α2 VAB( yB
i − yA

i , yB
i−s1

− yA
i ) − ∂α2 VAB( yA

i−s1
− yB

i−s1
, yA

i − yB
i−s1

)
]
,

where the first and third terms come from the interaction of atoms at xi , xi + p, xi +
p − s1, the second term comes from the interaction of atoms at xi , xi + p, xi + s1,
and the last term comes from the interaction of atoms at xi , xi + p − s1, xi − x1.
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xi
A–s1 xi

A xi
A+s1

xi
A+p–s1 xi

A+p xi+p+s1

Fig. 6. A schematic illustration of the interactions between atoms on complex lattices for
pair 〈 p, p − s 〉

Similarly for the B atom at the site xi + p, we have, corresponding to the
interaction pair shown in Fig. 6:

LB
ε ( yA

i , yB
i ):

= [
∂α1 VAB( yA

i − yB
i , yA

i+s1
− yB

i ) − ∂α1 VAB( yB
i − yA

i , yB
i−s1

− yA
i )

+ ∂α2 VAB( yA
i − yB

i , yA
i+s1

− yB
i ) − ∂α2 VAB( yB

i+s1
− yA

i+s1
, yB

i − yA
i+s1

)
]
.

We may rewrite LA
ε and LB

ε into a more compact form as

LA
ε ( yA

i , yB
i ) = ∂α1 VAB(D+

p yA
i , D+

p−s1
yA

i ) + ∂α1 VAB(D+
p yA

i , D+
p−s1

yA
i+s1

)

+ ∂α2 VAB(D+
p yA

i , D+
p−s1

yA
i )

+ ∂α2 VAB(D+
p yA

i−s1
, D+

p−s1
yA

i ),

and

LB
ε ( yA

i , yB
i ) = −∂α1 VAB(D+

p yA
i , D+

p−s1
yA

i ) − ∂α1 VAB(D+
p yA

i , D+
p−s1

yA
i+s1

)

− ∂α2 VAB(D+
p yA

i , D+
p−s1

yA
i+s1

)

− ∂α2 VAB(D+
p yA

i+s1
, D+

p−s1
yA

i+s1
).

Let ϕ be a smooth periodic function, using summation by parts, we have

N∑

i=1

(LA
ε ( yA

i , yB
i ) + LB

ε ( yA
i , yB

i )
)
ϕi

=
N∑

i=1

(
∂α1 VAB(D+

p yA
i , D+

p−s1
yA

i ) + ∂α2 VAB(D+
p yA

i−s1
, D+

p−s1
yA

i )
)
D−

s1
ϕi .

Taylor expansion at x A
i gives

D−
s1

ϕ = (s1 · ∇)ϕ − 1

2
(s1 · ∇)2ϕ + O(ε3),

D+
p yA

i = εv1 + ε2v2 + ε3v3 + ε4v4 + O(ε5),

and

D+
p−s1

yA
i = −(I + ∇u)s1 + εv1 + a1, D+

p yA
i−s1

= εv1 + b1,
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where

a1 = 1

2
(s1 · ∇)2u − ε(s1 · ∇)v1 + ε2v2 and b1 = −ε(s1 · ∇)v1 + ε2v2.

The following lemma gives a characterization for the differential operators L̃A
i and

L̃B
i .

Lemma 5.3. For i � 0, the differential operators L̃A
i (·, vi+2) and L̃B

i (·, vi+2) are
algebraic equations for the argument vi+2.

Moreover,

L̃A−1(u, v) + L̃B−1(u, v) = 0 (5.16)

for any smooth functions u and v.

Proof. This lemma is a tedious but straightforward calculation. We will omit the
details except to say that it is useful to note the following:

∂α j VAB(−x,− y) = −∂α j VAB(x, y) for j = 1, 2,

which is a direct consequence of (2.3). ��
Lemma 5.4. The differential operator L0 is of the form:

L0(u, v1) = − div
(
∂α2 VAB(εv1,−s1 − (s1 · ∇)u + εv1)s1

)
. (5.17)

Moreover, it is the variational operator for WCB.

Proof. We omit the interaction between the same species. For the pair 〈 p, p− s1 〉,
we consider the following term in WCB:

VAB( p,−(I + A)s1 + p) with A = ∇u.

Applying (2.16) to the pair 〈 p, p − s1 〉, we get the differential operator corre-
sponding to this pair:

L(u, v1) = −∂2
α2

VAB
[
(s1 · ∇)2u − (s1 · ∇) p

] − ∂α1α2 VAB(s1 · ∇) p

= − div
(
∂α2 VAB( p,−(I + A)s1 + p) · s1

)
,

which is the same as the corresponding term in the equation (5.17). ��
Lemma 5.5. All higher-order differential operators Li (i � 1) are in divergence
form.

Proof. This claim is a straightforward consequence of the fact that LA
ε + LB

ε is in
divergence form. ��
Next we consider the terms in LA

ε − LB
ε .
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Lemma 5.6. If Assumption A holds, then for i = −1, 0, 1, . . .,

L̃A
i (u, v1, . . . , vi+2) = 0 and L̃B

i (u, v1, . . . , vi+2) = 0 (5.18)

are solvable in terms of vi+2.

Proof. We only consider the interactions shown in Fig. 6.
First, we consider the O(1/ε) equations. Applying (2.15) to the pair 〈 p, p−s1 〉,

we obtain

∂α1 VAB( p,−(I + A)s1 + p) + ∂α2 VAB( p,−(I + A)s1 + p) = 0,

which is always solvable with respect to p due to Assumption A. Notice that

L̃A−1(uε, v1) = (∂α1 + ∂α2)VAB(εv1,−(I + ∇u)s1 + εv1).

Therefore, the O(1/ε) equations for A atoms are also solvable with v1 = p.
Using (5.16), we see that the other O(1/ε) equations L̃B−1(u, v1) = 0 for B atoms
are also solvable with respect to v1.

In the case when i � 0, a straightforward calculation gives that the coefficients
of the argument vi+2 is:

(∂α1 + ∂α2)
2VAB(εv1,−s1 + (s1 · ∇)u + εv1),

which is positive definite since p is a local minimizer. ��
From the O(1) equations, it is straightforward to obtain the equations for u1

and u2.

Lemma 5.7. If Assumption A holds, then there exist u1, u2 ∈ X that satisfies equa-
tions (5.14) and (5.15), respectively.

Proof. Using Lemma 5.5, we see that the right-hand side of (5.14) and (5.15)
belong to Y . Next, by Assumption A, there exists a constant κ such that if ‖ f ‖L p �
κ , then Llin is elliptic at u0. Therefore, there exist u1, u2 ∈ X that satisfy the equa-
tions (5.14) and (5.15), respectively. ��
As a direct consequence of Lemma 5.4 and Lemma 5.7, we have

Corollary 5.2. Define

ỹA = x + u0(x) + εu1(x) + ε2u2(x),

ỹB = ỹA + εv1(x) + ε2v2(x) + ε3v3(x) + ε4v4(x).
(5.19)

If f ∈ W 6,p(
; R
d), then there exists a constant C such that

∣∣∣LA
ε (̃ yA, ỹB) − f

∣∣∣ � Cε3,

∣∣∣LB
ε (̃ yA, ỹB) − f

∣∣∣ � Cε3. (5.20)
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Proof. Since f ∈ W 6,p(
; R
d), using Theorem 2.1, we conclude that u0 ∈

W 8,p(
; R
d). Therefore, u0 ∈ C7(
) by the Sobolev embedding theorem. This

gives that ỹA, ỹB ∈ C5(
). Therefore, using (5.14), (5.15), (5.17) and (5.12),
we get

∣∣∣∣
1

2

[LA
ε (̃ yA, ỹB) + LB

ε (̃ yA, ỹB)
] − f

∣∣∣∣ � Cε3,

where C depends on ‖u0‖C7(
).
Using Lemma 5.6 and the equations satisfied by v2, v3 and v4, we obtain

∣∣∣LA
ε (̃ yA, ỹB) − LB

ε (̃ yA, ỹB)

∣∣∣ � Cε3,

where C depends on ‖u0‖C5(
). A combination of the above two results give
(5.20). ��

6. Local minimizer for the atomistic model

In this section, we prove Theorem 2.2 and Theorem 2.3. We will deal directly
with complex lattices with two species of atoms. We assume that there are a total
of 2N atoms, N atoms of type A, and N atoms of type B.

By translation invariance of V , we have Hαβ(i, j) depends only on the differ-
ence of i and j , namely, Hαβ(i, j) = Hαβ(0, j − i), which immediately implies a
simpler expression of the dynamical matrix D:

{Dκκ ′ [n]}αβ =
N∑

j=1

{Hκκ ′ }αβ(0, j)ei(x j +x(κ)−x(κ ′))·kn .

It is clear that

{Hκκ ′ }αβ(i, j) = 1

N

N∑

n=1

{Dκκ ′ [n]}αβe−i(xκ′
j −xκ

i )·kn . (6.1)

For any z ∈ R
N×d , we have

z j = 1

N

N∑

m=1

ẑ[m]e−i x j ·km ,

where { ẑ[m]} are the Fourier coefficients of {z}, defined as

ẑ[m]: =
N∑

n=1

znei xn ·km ,

and {km} are the discrete wave vectors in the first Brillouin zone. Similarly, we may
define ẑ A[m] and ẑB[m].
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For z ∈ R
N×d , we define the discrete H1 norm as

‖z‖1: =
(

1

N 2

N∑

n=1

|kn|2 ∣∣ ẑ[n]∣∣2
)1/2

.

Throughout this section, we will frequently refer to the identities:
∑

x

ei x·k = Nδk,0, (6.2)

and
∑

k

ei x·k = Nδx,0, (6.3)

where x = x A or x = x B and k runs through all the sites in the first Brillouin zone
of lattice L . We refer to [3, Appendix F] for a proof.

We first establish several inequalities concerning {z}, which serve to give a
description of the norm ‖ · ‖d defined in (2.28).

For any z = (z A, zB) ∈ R
2N×d , define yet another norm

‖z‖a : = εd/2−1

⎛

⎜⎜⎝
N∑

i=1

∑
∣∣∣x A

i j

∣∣∣=ε

∣∣∣z A
i − z A

j

∣∣∣
2 +

N∑

i=1

∑
∣∣∣x B

i j

∣∣∣=ε

∣∣∣zB
i − zB

j

∣∣∣

⎞

⎟⎟⎠

1/2

,

where xκ
i j = xκ

i − xκ
j with κ = A, B.

Lemma 6.1. For any z = (z A, zB) ∈ R
2N×d , there exists a constant C that only

depends on the coordination number of L such that

‖z‖a � C(‖z A‖1 + ‖zB‖1). (6.4)

Proof. We have

∣∣∣z A
i − z A

j

∣∣∣
2 = 1

N 2

N∑

n,m=1

ẑ A[n] ẑ A[m][ei x A
i ·knm − ei x A

i ·kn e−i x A
j ·km

− ei x A
j ·km e−i x A

j ·kn + ei x A
i ·knm

]
.

We will decompose εd−2 ∑N
i=1

∑∣∣∣x A
i j

∣∣∣=ε

∣∣∣z A
i − z A

j

∣∣∣
2

into I1+ I2+ I3+ I4 according

to the above expression. Using (6.2), we obtain

I1 = K εd−2

N 2

N∑

n,m=1

ẑ A[n] ẑ A[m]
N∑

i=1

ei x A
i ·knm

= K εd−2

N 2

N∑

n,m=1

ẑ A[n] ẑ A[m]Nδnm = K εd−2

N

N∑

n=1

∣∣∣ ẑ A[n]
∣∣∣
2
,
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where K is the coordination number of the underlying lattice. Similarly, I4 = I1.
Note that

I2 = −εd−2

N 2

N∑

i=1

∑
∣∣∣x A

i j

∣∣∣=ε

N∑

n,m=1

ẑ A[n] ẑ A[m]ei x A
i ·kn e−i(x A

i −x A
i j )·km .

For any point x A
i , x A

i j is the same since all atoms have the same environment.

Therefore, we denote α j = x A
i j . A direct manipulation leads to

I2 = −εd−2

N 2

N∑

i=1

∑
∣∣∣x A

i j

∣∣∣=ε

N∑

n,m=1

ẑ A[n] ẑ A[m]ei x A
i ·kn e−i(x A

i +α j )·km

= −εd−2

N 2

N∑

n,m=1

ẑ A[n] ẑ A[m]
N∑

i=1

ei x A
i ·knm

K∑

j=1

e−iα j ·km

= −εd−2

N

N∑

n=1

∣∣∣ẑ A[n]
∣∣∣
2 K∑

j=1

e−iα j ·km .

Similarly,

I3 = −εd−2

N

N∑

n=1

∣∣∣ ẑ A[n]
∣∣∣
2 K∑

j=1

eiα j ·km .

Summing up the expression for I1, . . . , I4, we obtain

εd−2
N∑

i=1

∑
∣∣∣x A

i j

∣∣∣=ε

∣∣∣z A
i − z A

j

∣∣∣
2 = 2εd−2

N

N∑

n=1

∣∣∣ ẑ A[n]
∣∣∣
2 K∑

j=1

(
1 − cos(α j · kn)

)

= 4εd−2

N

N∑

n=1

∣∣∣ẑ A[n]
∣∣∣
2 K∑

j=1

sin2 α j · kn

2
.

Similarly,

εd−2
N∑

i=1

∑
∣∣∣x A

i j

∣∣∣=ε

∣∣∣zB
i − zB

j

∣∣∣
2 = 4εd−2

N

N∑

n=1

∣∣∣ ẑB[n]
∣∣∣
2 K∑

j=1

sin2 α j · kn

2
.

From these two identities and the definition of the discrete H1 norm ‖z‖1, we have

‖z‖2
a � εd−2

N

N∑

n=1

(∣∣∣ẑ A[n]
∣∣∣
2 +

∣∣∣ẑB[n]
∣∣∣
2
) K∑

j=1

∣∣α j · kn
∣∣2

� C(‖z A‖2
1 + ‖zB‖2

1),

which leads to the desired estimate (6.1). ��
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The following simple fact is useful.

Lemma 6.2. Given a block matrix Ã ∈ R
2d×2d

Ã =
(

A11 A12
A∗

12 A22

)
,

where A11 ∈ R
d×d and A22 ∈ R

d×d are positive definite. If Ã is semi-positive
definite, then for any w, v ∈ R

d ,

wT A11w + vT A22v � 1

2
(w, v)T Ã(w, v). (6.5)

Lemma 6.3. Under Assumption A, for any z = (z A, zB), there exists a constant λ

independent of N and a constant C1 that depends on the coordination number of
L, Λ2 and the dimension d such that

‖ z ‖d �
√

λ/2Λ2ε
d/2−1‖z A − zB‖�2 − C1(‖z A‖1 + ‖zB‖1). (6.6)

Proof. Using the translation invariance of H0, for any 1 � j � 2N , we have

2N∑

i=1

H0(i, j) = 0. (6.7)

Using the above identities, we get

zT H0 z = −1

2

2N∑

i, j=1

(zi − z j )H0(i, j)(zi − z j ),

which can be expanded into

zT H0 z = −1

2

∑

κ=A,B

N∑

i, j=1

(zκ
i − zκ

j )Hκκ(i, j)(zκ
i − zκ

j )

− 1

2

N∑

i, j=1

(z A
i − zB

j )HAB(i, j)(z A
i − zB

j )

− 1

2

N∑

i, j=1

(zB
i − z A

j )H∗
AB(i, j)(zB

i − z A
j ).
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We rewrite the above equation as

zT H0 z = −1

2

N∑

i, j=1

(z A
i − z A

j )(HAA + HAB)(i, j)(z A
i − z A

j )

− 1

2

N∑

i, j=1

(zB
i − zB

j )(HB B + H∗
AB)(i, j)(zB

i − zB
j )

− 1

2

N∑

i, j=1

(z A
j − zB

j )HAB(i, j)(z A
j − zB

j )

− 1

2

N∑

i, j=1

(z A
j − zB

j )H∗
AB(i, j)(z A

j − zB
j ) + I3, (6.8)

where

I3 = −1

2

N∑

i, j=1

(z A
i − z A

j )HAB(i, j)(z A
j − zB

j )

− 1

2

N∑

i, j=1

(z A
j − zB

j )HAB(i, j)(z A
i − z A

j )

− 1

2

N∑

i, j=1

(zB
i − zB

j )H∗
AB(i, j)(z A

j − zB
j )

− 1

2

N∑

i, j=1

(z A
j − zB

j )H∗
AB(i, j)(zB

i − zB
j ).

Using (6.7), we have

N∑

i=1

[HAA(i, j) + H∗
AB(i, j)] = 0,

N∑

i=1

[HAB(i, j) + HB B(i, j)] = 0,

which implies

zT H0 z = 1

2

N∑

i=1

(z A
i − zB

i )

⎧
⎨

⎩

N∑

j=1

(
HAA(i, j) + HB B(i, j)

)
⎫
⎬

⎭ (z A
i − zB

i )

− 1

2

⎡

⎣
N∑

i, j=1

(z A
i − z A

j )(HAA + HAB + H∗
AB)(i, j)(z A

i − z A
j )

−
N∑

i, j=1

(zB
i − zB

j )HB B(i, j)(zB
i − zB

j )

⎤

⎦ + I3 = :I1 + I2 + I3.
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Using (6.1), we have

N∑

j=1

(HAA(i, j) + HB B( j, i)) = 1

N

N∑

n=1

(DAA + DB B)[n]. (6.9)

Using (6.5) with w = v = z A
i − zB

i , for each i and n, we have

(z A
i − zB

i )T (DAA + DB B)[n](z A
i − zB

i )

� 1

2
(z A

i − zB
i , z A

i − zB
i )T D[n](z A

i − zB
i , z A

i − zB
i ).

For each fixed n, we let Q[n] be a 2d × 2d matrix consisting of the normalized
eigenvectors of the eigenvalue problem:

D[n]Qi [n] = ω̃2
i [n]Qi [n] 1 � i � 2d,

where Qi [n] is the i-th column of Q[n]. Let Qi [n] = (Q A
i [n], Q B

i [n])T . Combin-
ing the above two equations, we get

I1 � 1

N

N∑

n=1

N∑

i=1

2d∑

j=1

ω̃2
j [n]

∣∣∣(Q A
i [n] + Q B

i [n]) · (z A
i − zB

i )

∣∣∣
2
. (6.10)

Using (6.5) again with w = z A
i − zB

i and v = zB
i − z A

i , for each i and n, we have

(z A
i − zB

i ) · (DAA + DB B)[n] · (z A
i − zB

i )

� 1

2
(z A

i − zB
i , zB

i − z A
i )T · D[n] · (z A

i − zB
i , zB

i − z A
i ).

Repeating the above procedure, we get another lower bound for I1:

I1 � 1

N

N∑

n=1

N∑

i=1

2d∑

j=1

ω̃2
j [n]

∣∣∣(Q A
i [n] − Q B

i [n]) · (z A
i − zB

i )

∣∣∣
2
. (6.11)

A combination of (6.10) and (6.11) gives

I1 � 1

N

N∑

n=1

N∑

i=1

2d∑

j=1

ω̃2
j [n]

( ∣∣∣Q A
j [n] · (z A

i − zB
i )

∣∣∣
2 +

∣∣∣Q B
j [n] · (z A

i − zB
i )

∣∣∣
2
)

.

Next we claim that there exists a constant λ independent of N such that

I1 � λΛ2
2ε

−2‖z A − zB‖2
�2

. (6.12)

For a fixed n, the optical branch, for example, is j = 1, . . . , d. Therefore,

I1 � 1

N

N∑

n=1

N∑

i=1

d∑

j=1

ω̃2
j [n]

(∣∣∣Q A
j [n] · (z A

i − zB
i )

∣∣∣
2 +

∣∣∣Q B
j [n] · (z A

i − zB
i )

∣∣∣
2
)

.
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As to d = 1, using the fact that the eigenvector Q j [n] is normalized, we have

∣∣∣Q A
j [n] · (z A

i − zB
i )

∣∣∣
2 +

∣∣∣Q B
j [n] · (z A

i − zB
i )

∣∣∣
2 =

∣∣∣z A
i − zB

i

∣∣∣
2
,

which gives

I1 � 1

N

N∑

n=1

N∑

i=1

ω̃2[n]
∣∣∣z A

i − zB
i

∣∣∣
2
. (6.13)

As to d = 3, we claim there exists a constant λ1 independent of j and N such
that

N∑

n=1

N∑

i=1

d∑

j=1

ω̃2
j [n]

(∣∣∣Q A
j [n] · (z A

i − zB
i )

∣∣∣
2 +

∣∣∣Q B
j [n] · (z A

i − zB
i )

∣∣∣
2
)

� λ1

N∑

n=1

N∑

i=1

d∑

j=1

ω̃2
j [n]

∣∣∣z A
i − zB

i

∣∣∣
2
. (6.14)

Denote by w = (z A
i − zB

i )/
∣∣z A

i − zB
i

∣∣ and

F(w) =
d∑

j=1

ω̃2
j [n]

(∣∣∣Q A
j [n] · w

∣∣∣
2 +

∣∣∣Q B
j [n] · w

∣∣∣
2
)

.

Obviously F(w) � 0. If F(w) = 0, we have

Qκ
j [n] · w = 0 for κ = A, B, j = 1, 2, 3.

Obviously, there exist three nonzero constants � j that may depend on n such that

Q A
j [n] = � j Q B

j [n] j = 1, 2, 3.

By the orthogonality of {Q j [n]}, we have

1 + �1�2 = 0 1 + �2�3 = 0 1 + �1�3 = 0.

This is obviously impossible. Therefore, F(w) > 0 for all w. Since |w| = 1, there
exists a constant λ(n) such that

F(w) � λ(n).

This gives (6.14) with λ1 = min1�n�N λ(n).
As to d = 2, repeating the above procedure, we have

Q A
j [n] = � j (n)Q B

j [n] and Q B
j [n] · w = 0 j = 1, 2,

and

�1(n)�2(n) = −1 for n = 1, . . . , N .
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For N � 2, there always exit two linearly independent vectors Q B
j [n1] and Q B

j [n2]
such that Q B

j [ni ] · w = 0 for i = 1, 2, which immediately leads to w = 0. This
contradicts with |w| = 1. Repeating the procedure for d = 3, we obtain (6.14)
remains valid for d = 2.

Finally, using Assumption A, (6.13) and (6.14), we get (6.12) withλ = min(λ1, 1).
Using Lemma 6.1 and the fact that the atomistic potential has finite range, we

have

|I2| � C2ε
−d(‖z A‖2

1 + ‖zB‖2
1). (6.15)

Similarly, we get

|I3| � C3ε
−d/2−1‖z A − zB‖�2(‖z A‖1 + ‖zB‖1). (6.16)

A combination of (6.12), (6.15) and (6.16) gives (6.6). ��
Lemma 6.4. Under Assumption A, there exists a constant C that only depends on
Λ1,Λ2, d and the coordination number of L such that

‖ z ‖d � C
(‖z A‖1 + ‖zB‖1 + εd/2−1‖z A − zB‖�2

)
. (6.17)

Proof. It is easy to see that

zT H0 z = [z A]T HAA z A + [z A]T HAB zB + [zB]T H∗
AB z A + [zB]T HB B zB .

Using (6.1), we express each item in terms of the dynamical matrix D.

[z A]T HAA z A

= 1

N 3

N∑

i, j=1

N∑

m=1

ẑ A[m]e−i x A
i ·km

N∑

n=1

DAA[n]e−i(x A
j −x A

i )·kn

N∑

p=1

ẑ
A[p]ei x A

j ·k p

= 1

N 3

N∑

m,n,p=1

ẑ A[m]DAA[n] ẑ A[p]
(

N∑

i=1

e−i x A
i ·kmn

)
N∑

j=1

e−i x A
j ·knp .

Using (6.2), we rewrite the above identity into

[z A]T HAA z A = 1

N 3

N∑

m,n,p=1

ẑ A[m]NδnmDAA[n] ẑ A[p]Nδnp

= 1

N

N∑

n=1

ẑ A[n]DAA[n] ẑ A[n].

Proceeding along the same line, we obtain

[zκ ′ ]T Hκκ ′ zκ = 1

N

N∑

n=1

ẑκ [n]Dκκ ′ [n] ẑκ ′
[n]
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for κ, κ ′ = A, B. We thus write zT H0 z as

zT H0 z = 1

N

N∑

n=1

( ẑ A[n], ẑB[n])D[n]( ẑA[n], ẑB[n]).

As in Lemma 6.3 and using

ω̃2
a(n) � Λ2

1 |kn|2 and ω̃2
o(n) � ω̃2

a(n) � Λ2
1 |kn|2 ,

we have

ẑ[n]T D[n] ẑ[n] =
d∑

i=1

(
(ω̃2

a(n))i + (ω̃2
o(n))i

) ∣∣Q[n] ẑ[n]∣∣2

� 2Λ2
1 |kn|2 ∣∣Q ẑ[n]∣∣2 = 2Λ2

1 |kn|2
∣∣ẑ[n]∣∣2 , (6.18)

where we have used the fact that Q is an orthogonal matrix. Therefore, we obtain

zT H0 z � 2Λ2
1

N

N∑

n=1

|kn|2 (
∣∣∣ẑ A[n]

∣∣∣
2 +

∣∣∣ẑB[n]
∣∣∣
2)

� 2Λ2
1 N (‖z A‖2

1 + ‖zB‖2
1)

� CΛ2
1ε

−d(‖z A‖2
1 + ‖zB‖2

1),

which leads to

‖ z ‖2
d � CΛ2

1(‖z A‖2
1 + ‖zB‖2

1). (6.19)

A convex combination of (6.19) and (6.6) leads to (6.17). ��
The identity (6.18) gives an alternative characterization of ‖ · ‖d norm. In the

next lemma, we will show that the right-hand side of (6.17) is actually an equivalent
norm of ‖ z ‖d .

Lemma 6.5. If there exists a constant C independent of ε such that the optical
branch of the dynamical matrix satisfies ω̃o(k) � C/ε, then for any z ∈ R

2N×d ,
there exists a constant C1 such that

‖ z ‖d � C1(‖z A‖1 + ‖zB‖1 + εd/2−1‖z A − zB‖�2). (6.20)

Proof. We start with the identity (6.9) in Lemma 6.3. Using the fact that

(ω̃a(n))i � (ω̃o(n))i � C/ε

for 1 � i � d, we have

I1 � C4ε
−2‖z A − zB‖2

�2
,

which together with (6.15) and (6.16) leads to

‖ z ‖2
d � C4ε

d−2‖z A − zB‖2
�2

+ C2(‖z A‖2
1 + ‖zB‖2

1)

+C3ε
d/2−1‖z A − zB‖�2(‖z A‖1 + ‖zB‖1)

� max(C4, C2, C3/2)(‖z A‖1 + ‖zB‖1 + εd/2−1‖z A − zB‖�2)
2,

which gives (6.20) with C1 = √
max(C4, C2, C3/2). ��
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Next we establish a discrete Poincaré inequality.

Lemma 6.6. For any z ∈ R
N×d that satisfies

∑N
j=1 z j = 0, there exists a constant

C such that

‖z‖�2 � Cε−d/2‖z‖1. (6.21)

Proof. Since
∑N

j=1 z j = 0 and k1 = 0, ẑ[1] = 0. Therefore, by definition,

‖z‖2
�2

= 1

N 2

N∑

j=1

N∑

m=2

ẑ[m]e−i x j ·km

N∑

m=2

ẑ[m]ei x j ·km .

By the Cauchy–Schwartz inequality, we have

N∑

m=2

ẑ[m]e−i x j ·km �
(

N∑

m=2

∣∣ ẑ[m]∣∣2 |km |2
)1/2 ( N∑

m=2

|km |−2

)1/2

.

Combining the above two statements, we obtain

‖z‖2
�2

� 1

N

N∑

m=2

∣∣ ẑ[m]∣∣2 |km |2
N∑

m=2

|km |−2 = N‖z‖2
1

N∑

m=2

|km |−2 .

Since km = ∑d
j=1

m j
N j

b j , where {b j } is the basis of the reciprocal lattice, we

get |km | = 2π
ε

(∑d
j=1

∣∣m j/N j
∣∣2
)1/2

. A direct calculation gives

N∑

m=2

|km |−2 �
( ε

2π

)2
N∑

m=2

⎛

⎝
d∑

j=1

∣∣m j/N j
∣∣2
⎞

⎠
−1

� d−2

(2π)2

d∑

j=1

N j∑

m j =1

(ε N j/m j )
2

� C
d∑

j=1

N j∑

m j =1

m−2
j � C,

where we have used ε N j � C for 1 � j � d. Combining the above two inequali-
ties and noting that N = O(ε−d), we obtain (6.21). ��
Lemma 6.7. If there exists a constant κ such that

εd zT H( y1)z � κ‖z‖2
d for all z = (z A, zB) ∈ R

2N×d , (6.22)

then there exists a constant δ such that for any y2 that satisfies
∣∣ y1 − y2

∣∣
1,∞ � δ,

we have

εd zT H( y2)z � κ

2
‖z‖2

d for all z = (z A, zB) ∈ R
2N×d (6.23)

for sufficiently small ε.
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Proof. Using translation invariance, we have for any 1 � i � 2N ,

2N∑

j=1

H(i, j) = 0,

which leads to

zT H( y)z = −1

2

2N∑

i, j=1

(zi − z j )H(i, j)( y)(zi − z j ).

Therefore, using the fact that the potential V is of finite range, and noting the basic
inequality

∣∣∣z A
i − zB

j

∣∣∣
2

� 2
∣∣∣z A

i − zB
i

∣∣∣
2 + 2

∣∣∣zB
i − zB

j

∣∣∣
2
,

we get
∣∣∣∣∣∣

2N∑

i, j=1

(zi − z j )
(
H(i, j)( y1) − H(i, j)( y2)

)
(zi − z j )

∣∣∣∣∣∣

� Cδε−2
N∑

i=1

∑

|xi j |=ε

(∣∣∣z A
i − z A

j

∣∣∣
2 +

∣∣∣zB
i − zB

j

∣∣∣
2 +

∣∣∣z A
i − zB

j

∣∣∣
2
)

� Cδε−2
N∑

i=1

∑

|xi j |=ε

(∣∣∣z A
i − z A

j

∣∣∣
2 +

∣∣∣zB
i − zB

j

∣∣∣
2
)

+ C Lδε−2
N∑

i=1

∣∣∣z A
i − zB

i

∣∣∣
2
.

It follows from Lemma 6.4 that

εd
∣∣∣zT [H( y2) − H( y1)

]
z
∣∣∣ � Cδ‖z‖2

a + C Lδεd−2‖ z A − zB ‖2
�2

� Cδ‖ z ‖2
d ,

which yields

εd zT H( y2)z = εd zT H( y1)z + εd zT [H( y2) − H( y1)
]
z

� κ‖z‖2
d − Cδ‖z‖2

d

� (κ/2)‖ z ‖2
d

for δ = κ/(2C). This gives (6.23). ��
Lemma 6.8. Assume that ỹ satisfies:

1. There exists a constant κ such that

εd zT H(̃ y)z � κ‖z‖2
d for all z ∈ R

2N×d .

2. There exists a constant q > 2 such that εd/2‖ T (̃ y) ‖�2 � K1ε
q .

3. ỹ − x − B̃ · x is periodic.
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Then there exists a unique solution y that satisfies (2.22) and

‖ y − ỹ‖d � Cεq . (6.24)

Proof. Write

T ( y) = T (̃ y) +
∫ 1

0
(1 − t)H( yt ) dt · ( y − ỹ),

where yt = t y + (1 − t )̃ y. Hence y is a solution of (2.22) if and only if
∫ 1

0
(1 − t)H( yt ) dt · ( y − ỹ) = −T (̃ y). (6.25)

Let

B: =
{

y ∈ A | ‖ y − ỹ‖d < ε2
}

.

We define a map F : B → B as follows. For any y ∈ B, let F( y) be the
solution of the linear system

∫ 1

0
(1 − t)H( yt ) dt · (F( y) − ỹ

) = −T (̃ y). (6.26)

We first show that F is well defined. Since ‖ yt − ỹ‖d � t‖ y − ỹ‖d � ε2, we have∣∣ yt − ỹ
∣∣
1,∞ � Cε2−d/2 < δ, if ε is sufficiently small, given that d � 3. Using the

first assumption on ỹ and Lemma 6.7, we conclude that there exists a constant κ

such that

εd zT H( yt )z � κ

2
‖z‖2

d .

Therefore, the linear system (6.26) is solvable and F is well defined. Moreover,
F( y) − x − B̃ · x is periodic.

F is also continuous since V is smooth. Using Lemma 6.6 and note that∑2N
i=1[F( y)i − ỹi ] = 0, we obtain

κ ε−d‖F( y) − ỹ‖2
d � ‖ F( y) − ỹ ‖�2‖ T (̃ y) ‖�2

� C K1ε
q−d‖F( y) − ỹ‖d . (6.27)

If ‖ F( y) − ỹ ‖d = 0, we have F(B) ⊂ B. Otherwise, the above inequality gives

‖F( y) − ỹ‖d � Cεq ,

which in turn implies F(B) ⊂ B for sufficiently small ε since q > 2. Now the
existence of y follows from the Brouwer fixed point theorem. Moreover, we con-
clude that y satisfies (6.24), and the solution y is locally unique since the Hessian
at y is nondegenerate. ��
Lemma 6.9. There exist two constants M1 and M2 such that if ‖B‖ � M1 and
‖ f ‖W 6,p � M2, then there exists ỹ that satisfies the second and third conditions of
Lemma 6.8 for q = 2.
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This is a direct consequence of Lemma 5.1 and Corollary 5.2.

Lemma 6.10. There exist two constants M1 and M2 such that if ‖B‖ � M1 and
‖ f ‖W 6,p � M2, then there exist a constant κ1 and ỹ such that

εd zT H(̃ y)z � κ1‖ z ‖2
d for all z ∈ R

2N×d . (6.28)

Proof. Define M1 = M2 = δ/(4C), where C is the constant that appears in the
right-hand side of the following inequality. For simple lattices,

|̃y − x|1,∞ � C‖∇uCB‖L∞ + Cε2‖∇u2‖L∞

� C‖∇(uCB − B · x)‖L∞ + C‖B‖ + Cε2‖∇u2‖L∞

� C‖uCB − B · x‖2,p + Cε2‖u2‖2,p + C‖B‖
� C‖ f ‖6,p + C‖B‖ � C(M1 + M2) = δ/2 < δ.

For complex lattices, the estimate for
∣∣̃ yA − x A

∣∣
1,∞ is the same as above. In

addition,
∣∣∣̃ yB − x B

∣∣∣
1,∞ �

∣∣∣̃ yA − x A
∣∣∣
1,∞

+ C(ε2‖∇v2‖1,∞ + ε3‖∇v3‖1,∞ + ε4‖∇v4‖1,∞)

�
∣∣∣̃ yA − x A

∣∣∣
1,∞ + C‖u‖6,∞

� C(M1 + M2) + C‖ f ‖5,p

� C(2M1 + M2) = 3δ/4 < δ.

Note that zT H0 z = ε−d‖ z ‖2
d , therefore (6.28) follows from Lemma 6.7. ��

Proof of Theorem 2.2. It follows from Lemma 6.8 that there exists a yε that sat-
isfies (2.22) and ‖ yε − ỹ ‖d � Cε3. Therefore,

‖ yε − yCB ‖d � ‖ yε − ỹ ‖d + ‖ ỹ − yCB ‖d � Cε3 + Cε � Cε.

This gives (2.27).
For any ŷ ∈ R

2N×d with
∣∣ ŷ − yε

∣∣
1,∞ � δ/2, where δ is the same as in

Lemma 6.7, we write

E( ŷ) − E( yε) = ( ŷ − yε) ·
∫ 1

0
(1 − t)H(t ŷ + (1 − t) yε) dt · ( ŷ − yε).

Note that
∣∣t ŷ + (1 − t) yε − ỹ

∣∣
1,∞ � t

∣∣ ŷ − yε
∣∣
1,∞ + ∣∣ yε − ỹ

∣∣
1,∞ � δ/2 + Cε3−d/2 � δ

for sufficiently small ε. Using Lemma 6.7, there exists a constant C such that

E( ŷ) − E( yε) � Cε−d‖ ŷ − yε ‖2
d > 0.

Therefore yε is a discrete W 1,∞ local minimizer. ��
Proof of Theorem 2.3. The proof is essentially the same as that of Theorem 2.2.
The only difference is

‖ yε − yCB ‖d � ‖ yε − ỹ ‖d + ‖ ỹ − yCB ‖d � Cε3 + Cε2 � Cε2,

since u1 = 0 due to Lemma 5.2. This gives (2.29). ��
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Appendix A. Detailed asymptotic analysis for the one-dimensional model

In this appendix, we will give a detailed asymptotic analysis of the one-
dimensional model. Explicit expressions for L0,L1 and L2 that have been omitted
in Section 5.2 will be given here. We consider a complex lattice with two species
of atoms A and B.

Considering the equilibrium equations for atoms A and B respectively

LA
ε (y A

i , yB
i ) = f (x A

i ) and LB
ε (y A

i , yB
i ) = f (x B

i ),

where

LA
ε (y A

i , yB
i ) = V ′

AB(yB
i − y A

i ) − V ′
AB(y A

i − yB
i−1)

+ V ′
AA(y A

i+1 − y A
i ) − V ′

AA(y A
i − y A

i−1),

LB
ε (y A

i , yB
i ) = V ′

AB(y A
i+1 − yB

i ) − V ′
AB(yB

i − y A
i )

+ V ′
B B(yB

i+1 − yB
i ) − V ′

B B(yB
i − yB

i−1),

which can be rewritten as

LA
ε (y A

i , yB
i ) = V ′

AB(D+
p y A

i ) + V ′
AB(D+

p−ε y A
i ) + D−

ε VAA(D+
ε y A

i ),

LB
ε (y A

i , yB
i ) = −V ′

AB(D+
p−ε y A

i+1) − V ′
AB(D+

ε y A
i ) + D−

ε VB B(D+
ε yB

i ).

Proceeding as in Section 5.2, we get

L̃−1(u, v1) = 0, L̃0(u, v1, v2) = − f ′,

L̃1(u, v1, v2, v3) = − 1
2 f ′′, L̃2(u, v1, v2, v3, v4) = − 1

6 f (3),
(A.1)

where

L̃−1(u, v1) = 2V ′
AB(v1) + 2V ′

AB(v1 − 1 − ux ),

L̃0(u, v1, v2) = 2
[
V ′′

AB(v1) + V ′′
AB(v1 − 1 − ux )

]
v2

− V ′′
AB(v1 − 1 − ux )v1x

+ ∂x
(
V ′

AA(1 + ux ) − V ′
B B(1 + ux )

)
,

L̃1(u, v1, v2, v3) = 2V ′′
AB(v1) + V ′′

AB(v1 − 1 − ux )(b1 + b3)

+ V (3)
AB(v1)v

2
2 + 1

2
V (3)

AB(v1 − 1 − ux )(a
2
1 + a2

3)

+ ∂x
(
V ′′

B B(1 + ux )uxx
)
,

where

a1 = v2 − v1x + 1

2
uxx , b1 = v3 − v2x + 1

2
v1xx − 1

6
uxxx ,

a2 = v1x + 1

2
uxx , b2 = v2x + 1

2
v1xx + 1

6
uxxx ,

a3 = v2 − 1

2
uxx , b3 = v3 − 1

6
uxxx .

We omit the expression of L̃2 since we do not need it to solve v4.
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In what follows, we give the explicit expressions of L0,L1 and L2. The argu-
ments of VAB, VAA and VB B will be omitted unless otherwise stated.

L0(u, v1) = −∂x
(
V ′

AB − V ′
AA − V ′

B B

)
,

L1(u, v1, v2) = −1

2
∂2

x

(
V ′

AB + V ′
AA + V ′

B B

)

− ∂x
(
V ′′

ABa1 − 1

2
V ′′

AAuxx − V ′′
B Ba2

)
,

L2(u, v1, v2, v3) = −1

6
∂3

x

(
V ′

AB − V ′
AA − V ′

B B

)

− 1

2
∂2

x

(
V ′′

ABa1 + 1

2
V ′′

AAuxx + V ′′
B Ba2

)

− ∂x

[
V ′′

ABb1 + 1

2
V (3)

ABa2
1 − 1

6
V ′′

AAuxxx − 1

8
V (3)

AAu2
xx

− V ′′
B Bb2 − 1

2
V (3)

B Ba2
2

]
.

Define

α = V ′′
AB(v1 − 1 − ux ), β = V ′′

AB(v1).

It is easy to see that

L1(u, v1, v2) = −∂x
(
(a1 + v1x/2 − uxx/2)V ′′

AB + (−a2 + uxx/2)V ′′
B B

)
.

Differentiating the equation L̃−1(u, v1) = 0, we have

(α + β)v1x = α uxx .

Solving L̃0(u, v1, v2) = − f ′, we get

v2 = α

α + β

v1x

2
− uxx (V ′′

AA − V ′′
B B − f ′)

2(α + β)
.

A combination of the above three equations gives

L1 = ∂x

[ V ′′
AB(v1)

V ′′
AB(v1 − 1 − ux ) + V ′′

AB(v1)

(
Ṽ ′′

AB + V ′′
AA + V ′′

B B + f ′/2
)]

,

where

Ṽ ′′
AB = V ′′

AB(v1 − 1 − ux )V ′′
AB(v1)

V ′′
AB(v1 − 1 − ux ) + V ′′

AB(v1)
.

Solving L̃1(u, v1, v2, v3) = − f ′′/2, we obtain

v3 = α

α + β
(v2x/2 − v1xx/4 + uxxx/6)

− V (3)
AB(v1)

α + β

v2
2

2
− V (3)

AB(v1 − 1 − ux )

α + β

a2
1 + a2

3

4
− G,
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where G = (
∂x (V ′′

B B(1 + ux )ux ) + f ′′/4
)
/(α + β). Substituting v3, v2, a1 and a3

into L2, we obtain

L2 = L1
2 + L2

2 + L3
2,

where

L1
2 = ∂2

x

(uxx

6
(V ′′

AA + V ′′
B B) + αβ

α + β
uxx V ′′

B B

)

+ 1

24
∂x

(
u2

xx (V (3)
AA + V (3)

B B) − V ′′
B B G

)
,

L2
2 = ∂x

[ αβ

4(α + β)

( αβ

(α + β)2 uxx

)

x
+ α

( 1

12
− 1

8

α2

(α + β)2

)( β

α + β

)

x
uxx

− αβ

12(α + β)
uxxx + αβ

2(α + β)
Gx

]
,

L3
2 = ∂x

[( 1

24

β2

(α + β)2 − αβ3

8(α + β)4

)
V (3)

AB(v1 − 1 − ux )u
2
xx

− 1

2
V (3)

AB(v1 − 1 − ux )
( αβ2

(α + β)3 uxx + β

α + β
G
)

G

+ 1

2
V (3)

AB(v1)
( α3

(α + β)3 uxx − α

α + β
G
)

G
]
.

Next let u = u0 + ε u1 + ε2 u2 + · · · , and substituting this ansatz into L0,L1
and L2, we obtain

−∂x
(
V ′

AB(v1 − 1 − u0x ) − V ′
AA(1 + u0x ) − V ′

B B(1 + u0x )
) = f (x).

A straightforward calculation gives

Llin(u0, v1)u1 =∂x

((
V ′′

AB(v1 − 1 − u0x ) + V ′′
AA(1 + u0x ) + V ′′

B B(1 + u0x )
)
u1x

)
.

Therefore, we obtain the equations for u1 and u2:

Llin(u0, v1)u1 = −L1 + f ′/2,

Llin(u0, v1)u2 = −L2 − δL1

δu0
− 1

2

(δ2L0

δu2
0

)
u1 + f ′′/4.

Appendix B. Elastic stiffness tensor for simple and complex lattices

Elastic stiffness tensor and the elastic modulus tensor are two different concepts.
They coincide when the internal stress vanishes [27], i.e. DAWCB(0) = 0.

Equation (2.17) is an explicit expression for the elastic stiffness tensor in the
case of two-body potentials. Here we generalize this formula to many-body poten-
tials. In the case of simple lattice, we have, for any ξ , η ∈ R

d ,

C(ξ ⊗ η, ξ ⊗ η)

=
∑

m=2

∑

〈 s1,...,sm−1 〉

∑

〈 si ,s j 〉
1�i< j�m−1

(
(si · η)(ξ · ∂αi ) + (s j · η)(ξ · ∂α j )

)2
Vm,
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where Vm = Vm(s1, . . . , sm−1). For example, if V contains only three-body
potential V3, then for any ξ , η ∈ R

d ,

C(ξ ⊗ η, ξ ⊗ η) =
∑

〈 s1,s2 〉

(
(s1 · η)(ξ · ∂α1) + (s2 · η)(ξ · ∂α2)

)2
V3(s1, s2).

Next we turn to complex lattices. We first consider the one-dimensional case.
Minimizing W (A, p) with respect to p, we obtain p = p(A). Next differentiating
with respect to A, we get

dp

d A
=

∑
s

(
V ′′

AB((1 + A)s − p) − V ′′
AB((1 + A)s + p)

)
s

∑
s V ′′

AB((1 + A)s − p) + ∑
s V ′′

AB((1 + A)s + p)
.

Note that

D2
AWCB(A) = D2

AW (A, p(A)) + D2
ApW (A, p(A))

=
∑

s

(
V ′′

AA((1 + A)s) + V ′′
B B((1 + A)s)

+ V ′′
AB((1 + A)s + p) + V ′′

AB((1 + A)s − p)
)
s2

+
∑

s

(
V ′′

AB((1 + A)s + p(A)) − V ′′
AB((1 + A)s − p(A))

)
s

dp

d A
.

A combination of the above two identities leads to:

D2
AWCB(A) =

∑

s

(
V ′′

AA((1 + A)s) + V ′′
B B((1 + A)s)

+ V ′′
AB((1 + A)s + p(A)) + V ′′

AB((1 + A)s − p(A))
)
s2

−
(∑

s

(
V ′′

AB((1 + A)s − p(A)) − V ′′
AB((1 + A)s + p(A))

)
s
)2

∑
s V ′′

AB((1 + A)s − p(A)) + ∑
s V ′′

AB((1 + A)s + p(A))
.

Therefore, let p0 = p(0), we have

C =
∑

s

[
V ′′

AA(s) + V ′′
B B(s) + V ′′

AB(s + p0) + V ′′
AB(s − p0)

]
s2

−
(∑

s

[
V ′′

AB(s − p0) − V ′′
AB(s + p0)

]
s
)2

∑
s V ′′

AB(s − p0) + ∑
s V ′′

AB(s + p0)
. (B.1)

As to the high dimensional case, we only consider the one when V is a three-
body potential. Other cases can be dealt with similarly. Solving the algebraic equa-
tions (2.15), we obtain p = p(A). Differentiating (2.15) with respect to A, we
get

DA p = −S(A)−1
∑

〈 s1,s2 〉

2∑

i=1

K i (A)si
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with

S(A) =
∑

〈 s1,s2 〉
(∂α1 + ∂α2)

2V 1
AB(A) + ∂2

α2
V 2

AB(A) + ∂2
α1

V 3
AB(A),

K i (A) =
2∑

j=1

∂2
αi α j

V 1
AB(A) +

2∑

j=1

∂2
α j α2

V 2
AB(A) +

2∑

j=1

∂2
α j α1

V 3
AB(A),

where

V 1
AB(A) = VAB((I + A)̃s1 + p(A), (I + A)̃s2 + p(A)),

V 2
AB(A) = VAB((I + A)̃s1 + p(A), (I + A)̃s2),

V 3
AB(A) = VAB((I + A)̃s1, (I + A)̃s2 + p(A)).

Therefore, we get

D2
A WAB =

∑

〈 s1,s2 〉
(s1 · ∂α1 + s2 · α2)

2
3∑

k=1

V k
AB(A)

−
∑

〈 s1,s2 〉

2∑

i=1

K i (A)

⎛

⎝si ,
∑

〈 s1,s2 〉

2∑

j=1

S(A)−1 K j (A)s j

⎞

⎠ .

Define Ṽ (A) = VAA(A) + VB B(A) + 2
∑3

i=1 V i
AB(A). Then, we have

C(ξ ⊗ η, ξ ⊗ η)

=
∑

〈 s1,s2 〉

(
(ξ · ∂α1)(s1 · η) + (ξ · ∂α2)(s2 · η)

)2
Ṽ (0)

−
⎛

⎝
∑

〈 s1,s2 〉

2∑

i=1

[
K i (0)

]
(ξ , ξ)si · η,

∑

〈 s1,s2 〉

2∑

i=1

[
S(0)−1 K i (0)

]
(ξ , ξ)si · η

⎞

⎠ .

(B.2)

Compare this formula with simple lattices, we see that (B.2) has the form of a Schur
complement when the terms involving p are eliminated.

Appendix C. Proof of Lemma 3.1 for the complex lattice

The objective of this section is to prove Lemma 3.1 for the complex lattice, we
exploit the expansion in [26, Section 12].

Using the definition of WCB and Lemma 6.4, we obtain that D2
pW (0, p0) is pos-

itive definite. It remains to prove that the elastic modulus C satisfies the Legendre–
Hadamard condition at the undeformed configuration. Denote

D̃κκ ′ [k] =
N∑

j=1

Hκκ ′(0, j)Qκκ ′(k, x j ),
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where

Qκκ ′(k, x j ) = 1 + i k · (x j + x(κ) − x(κ ′)
) + 1

2

[
k · (x j + x(κ) − x(κ ′))

]2
.

For s = 1, . . . , d, we define λ(k, s) as

2
∑

Cαβγ δkβkδ yγ (s) = λ(k, s)yα(s), (C.1)

where y = {yα} ∈ R
d satisfying

∑
α yα(s) · yα(s′) = δss′ . By [26, equation

(12.15)], λ(k, s) satisfies
∑

κ ′
D̃κκ ′ [k] · w̃κ ′(k, s) = λ(k, s)wκ(s), (C.2)

where wκ(s) = y(s)/
√

2 for κ = A, B, and

w̃κ(k, s) = wκ(s) + |k| w1
κ(s) + |k|2 w2

κ(s). (C.3)

Scrutinizing the derivation in [26, Section 7 and Section 12], we may find that w1
κ is

just the scaled shifts between atoms A and B, and both w1
κ and w2

κ are linear func-
tions of wκ(s). We may write w1

κ(s) = εA1wκ(s) and w2
κ(s) = ε2A2wκ(s), where

A1 and A2 are two constant matrices whose entries are independent of ε but may
depend on the potential function V . The existence of wκ is a direct consequence
of the translation invariance of H0, while the existence of w1

κ and w2
κ follows from

Lemma 6.4. Moreover, proceeding along the same line that leads to (3.4), we obtain

‖Dκκ ′ [k] − D̃κκ ′ [k]‖ � Cε |k|3 κ, κ ′ = A, B, (C.4)

where C is independent of ε and k.
Using the definition of D and λ, we get

[w̃(k, s)]T D[k] · w̃(k, s) − λ(k, s) |w̃|2 = λ(k, s)w̃ · (w̃ − w)

+[w̃(k, s)]T (D − D̃)[k] · w̃(k, s).

Note the expressions of w̃, y, using (C.4) and (C.3), we have
∣∣∣ω2(k, s) − λ(k, s)

∣∣∣ � C(ε |k| λ(k, s) + ε |k|3),
which in turn implies

(1 + Cε |k|)λ(k, s) � ω2(k, s) − Cε |k|3 .

Using Assumption A, for sufficiently small ε, we obtain

(1 + Cε |k|)λ(k, s) � (Λ − Cε |k|) |k|2 .

For sufficiently small ε and note that k is O(1) for k in the first Brillouin zone,
taking Cε |k| = Λ/2, we obtain

λ(k, s) � Λ

Λ + 2
|k|2 ,

which together with (C.1) gives Assumption B.
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