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Abstract. Orbital minimization is among the most promising linear scaling
algorithms for electronic structure calculation. However, to achieve linear scal-
ing, one has to truncate the support of the orbitals and this introduces many
problems, the most important of which is the occurrence of numerous local
minima. In this paper, we introduce a simple modification of the orbital mini-
mization method, by adding a localization step into the algorithm. This local-
ization step selects the most localized representation of the subspace spanned
by the orbitals obtained during the intermediate stages of the iteration process.
We show that the addition of the localization step substantially reduces the
chances that the iterations get trapped at local minima.

1. Introduction. Orbital minimization (OM, in short) is one of the most promis-
ing linear scaling algorithms for computing the electronic structure of materials or
molecules. In its simplest form, the problem is to minimize the functional:

E(Ψ) = Tr
(

(ΨT Ψ)−1ΨTHΨ
)

. (1)

Here H is the Hamiltonian operator acting on RN , Ψ = (ψ1, · · · , ψM ) is the N×M
matrix formed by the orbitals {ψ1, · · · , ψM}. It is easy to see that the functional
E is invariant under any non-singular linear transformations:

E(Ψ) = E(ΨG) (2)

for any non-singular M × M matrix G. Hence E should really be viewed as a
functional defined on the Grassmann manifold that consists of the M dimensional
subspaces of RN . In particular, the minimizer of E should be a subspace of RN .
Indeed it is easy to check that the minimizer of E is simply the eigen-subspace
of H corresponding to its M smallest eigenvalues. In fact, we can view E as the
generalization of the Rayleigh quotient for subspaces.
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From another angle, we see that the minimizer of E is not unique: If Ψ is a
minimizer, then any non-singular linear transformation of Ψ is also a minimizer,
since it spans the same subspace. Therefore it is not surprising that choosing the
appropriate representation of the subspace is a significant aspect of this problem.
This was the motivation of [2] and is also the focus of the present paper.

From a numerical viewpoint, this problem can be solved using more or less stan-
dard optimization techniques such as the steepest decent and the conjugate gradient
method, as illustrated below. This is the basis of OM. Different versions of OM have
been proposed since the 1990s, see [4, 7] and the references therein. Besides (1),
another popular form of OM is:

Ẽ(Ψ) = Tr
(

(2I − ΨT Ψ)ΨTHΨ
)

. (3)

As was observed in [14, 15], ifH is negative definite, the inverse of the overlap matrix
ΨT Ψ in (1) can be replaced by 2I−ΨT Ψ without changing the global minimum. By
shifting H , i.e. replacing H by H − µI, one can always make H negative definite,
and this does not change the solution of the problem. Therefore, minimizing E

is equivalent to minimizing Ẽ. Compared with (1), (3) has the advantage that it
does not require calculating the inverse of the overlap matrix. Furthermore, one
can show that under fairly general conditions, orthogonality between the orbitals is
guaranteed to hold for the global minimizer [13, 16]. In fact, (3) can also be derived
by considering the constrained minimization problem:

E(Ψ) = Tr
(

ΨTHΨ − (ΨT Ψ − I)Λ
)

(4)

where Λ is an M ×M matrix consisting of the Lagrange multipliers for the con-
straints:

ΨT Ψ = I. (5)

For this reason, it is natural to associate (3) or (4) with orthogonal orbital mini-
mization and (1) with non-orthogonal orbital minimization. Further references on
OM can be found in [1, 5, 9, 19, 20, 21]. For the comparison of different schemes,
we refer to [11, 17].

In this paper, we will focus on the nonorthogonal representation (1) only. There
are two main reasons. The first is that nonorthogonal orbitals can be more localized
than orthogonal ones. As we will see below, the main point of the new OM algo-
rithm is to add a localization step. The performace of the new algorithm critically
depends on how localized the orbitals are. The second is that the nonorthogonal for-
mulation (1) does not contain other numerical parameters such as the µ orthogonal
formulation. As has been observed before [17], the rate of convergence depends quite
sensitively on the value of µ. In this regard, the performance of the nonorthogonal
formulation is more stable.

In practice, in order to obtain linear scaling, one has to truncate the support of
the orbitals. Let L be the size of the support of the orbitals after truncation. We
use the notation

ΨL = ((ψ1)L, · · · , (ψM )L)

to denote the truncated orbitals, see Figure 1 as an example. The truncated func-
tional takes the form:

EL(ΨL) = Tr
(

(ΨT
LΨL)−1ΨT

LHΨL

)

. (6)

We can view this as the restriction of the original energy functional to the space of
truncated orbitals ΨL.
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Figure 1. The support of the truncated orbitals. N = 500, M =
10, and the size of the support for each orbital L = 150.

The intuitive reason for the truncation of the orbitals is that orbitals are often
localized [10], i.e. each orbital decays very fast away from its center. In particular,
for insulators, it is generally believed and to some extend proved that this decay
can be made at an exponential rate [10, 18]. Therefore, in principle we should only
incur a small error if we truncate the support of the orbitals beyond certain size.

However, it is widely observed that the performance of this truncated version of
OM is much less stable than the original OM. The most serious difficulty is that the
truncated problem has numerous local minima and the numerical solutions are often
trapped in these local minima. To illustrate this point, we show in Figure 2 the
results of OM for a simple model problem to be discussed later (the first example
in Section 3). We chose N = 500,M = 10, L = 150. Both standard steepest
decent (Algorithm 1 in Section 3) and conjugate gradient (Algorithm 3 in Section
3) algorithms are used as the optimization procedure. We initialize the algorithms
with random initial conditions, i.e. each component of the vectors are independent
random variables uniformly distributed in [0, 1]. We stop the iteration when the
relative change of energy is less than some tolerance ǫ and we used a variety of
values of ǫ, ranging from 10−7 to 10−10. The results are rather insensitive to the
value of ǫ used.

Figure 2 is a plot of the energy of the converged solutions against an index that
numbers the initial conditions. It is obvious from Figure 2 that for a substantial
percentage of the initial conditions, the numerical solutions are trapped at the local
minima (or saddle point). This is a rather unpleasant feature of the algorithm. As
expected, the results are improved as we increase the size of L (see Figure 3).

At an intuitive level, it is easy to see that something like this might happen.
The original problem is invariant under any non-singular linear transformation of
the orbitals, see (2). However, after truncation (6), this invariance property is lost.
Instead, we are looking for solutions in the subspace spanned by the truncated
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Figure 2. 50 random tests of the steepest descent and conjugate
gradient algorithms for the second order discretization of the oper-
ator H = − 1

2∇
2 + V (x) in Section 3, N = 500, M = 10, L = 150,

the error tolerance ǫ is chosen to be 10−7 and 10−10 respectively.

vectors. Therefore, it is entirely possible that some of the saddle points of the
original problem will generate nearby local minima for the new problem.

Our strategy for overcoming this difficulty is to look for representations of the
subspaces that are closest to the truncated space. This is done by introducing a
localization step into the algorithm. This localization step substantially reduces the
chances that the numerical solution gets trapped at the local minima. In fact, also
shown in Figure 1 are the results of the OM with localization (hereafter denoted as
OML). It is quite obvious that there are a lot fewer incidences of trapping by the
local minima.

The idea of adding a localization step was first introduced in the localized sub-
space iteration (LSI) algorithm in [2]. [2] also analyzed systematically the perfor-
mance of different localization procedures, and in particular the influence of the
choice of the weight function for weight-function-based localization. However, it
should be noted that the localization procedure itself has been quite popular for
some time, particularly following the seminal work by Marzari and Vanderbilt [12].

We will first present a localization procedure which appears to be simpler than
the standard ones based on weight functions.
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Figure 3. 50 random tests of the steepest descent and conjugate
gradient algorithms for the second order discretization of the oper-
ator H = − 1

2∇
2 + V (x) in Section 3, N = 500, M = 10, ǫ = 10−7,

L is set to be 250 and 350 respectively.

2. The localization procedure. In this section, we discuss the localization pro-
cedure that we will use. Given a set of orbitals that composes the matrix Ψ, let
VΨ be the subspace spanned by these orbitals, which are the column vectors of Ψ.
The problem can be formulated as follows: Given Ψ, we would like to find a set of
truncaed orbitals, denoted by Ψ0 such that VΨ0

gives the best approximaiton of VΨ.
To give a precise formulation of this problem, let us first clarify the notion of

truncated orbitals. Assume for the moment that the Hamiltonian H is the dis-
cretization of a differential operator on a mesh with N grid points. Let us select
M representative points out of the N grid points. For example, we may select M
equally-spaced grid points. Denote them by xi, i = 1, · · · ,M . Let Si be a neighbor-
hood of xi. Ψ0 = (ψ0

1 , · · · , ψ
0
M ) is a set of localized orbitals if ψ0

i vanishes outside
Si, for i = 1, · · · ,M (see Figure 1). If Ψ = (ψ1, · · · , ψM ) is an arbitrary set of
orbitals, we will denote by ΨL = ((ψ1)L, · · · , (ψM )L) the set of orbitals obtained
by simply truncating ψi outside Si for each i.

We can now formulate the problem as follows: We would like to find a M ×M

non-singular matrix G such that the new representation ΨG of VΨ minimizes the
cutoff ΨG − (ΨG)L in some sense. For computational efficiency, we will use the
Frobenius norm to measure the error due to cutoff.
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To proceed further, let us observe that minimizing the functional ‖ΨG−(ΨG)L‖F

can be done column by column, i.e. if we write G = (α1, . . . , αM ) in terms of the
column vectors, we obtain M minimization problems

min ‖Ψαi − (Ψαi)L‖2, i = 1, . . . ,M. (7)

These problems can be solved independently.
It is obvious that in (7) the components of Ψαi and (Ψαi)L are equal inside the

localization region Si for each i. Therefore we only need to consider the remaining
components not included in the localization region, which will be truncated. We
will use Ψ(i) to represent the resulted orbitals after deleting the rows corresponding
to the grid points in the localization region. Then the problem becomes to minimize

‖Ψ(i)αi‖2, i = 1, . . . ,M

with some constraint on αi.
One possible choice of the constraint is ‖αi‖2 = 1. We then obtain the following

minimization problem

min
‖αi‖2=1

‖Ψ(i)αi‖2 (8)

This is the problem of finding the smallest singular value for Ψ(i) and αi is the
corresponding right singular vector. Another natural constraint is αT

i e = 1 where
e = (1, · · · , 1)T . The minimization problem

min
αT

i
e=1

‖Ψ(i)αi‖2 (9)

is explicitly solved by

αi =
βi

βT
i e

where βi = ((Ψ(i))T Ψ(i))−1e. In practice, we do not have to compute (Ψ(i))T Ψ(i).
A stable QR algorithm [8] can be used to solve the constrained least-square problem
(9). Since typically M << N , the cost of the localization step in each iteration is
acceptable, typically less than 10% in our runs.

If we think about the changes of the support of the orbitals, we get the fol-
lowing picture: After truncation, the support of the i-th orbital becomes Si. The
support is then increased, due to the application of the Hamiltonian operator on
the orbitals, which is a typical step in many optimization algorithms. Since in the
cases we are interested in, the Hamiltonian operator is very local, therefore the
application of the Hamiltonian operator only increases the support of the orbitals
slightly, as illustrated in Figure 4. αi has contributions only from the columns that
correspond to the components shown in red. Ψ(i) is obtained by removing the rows
corresponding to the components shown in blue. We can even think of Ψ(i+1) as
a low-rank correction of Ψ(i) since Ψ(i+1) can be obtained from Ψ(i) by removing
and adding a few rows and columns. In this way, we can use both low-rank update
versions of the SVD and QR algorithms [8] to get the solution to (7). The support
goes back to Si after the next truncation step.

To get an idea of how the localization step changes the performance of the al-
gorithm, we show in Figure 5 the error due to truncation with (right) or without
(left) the localization step added. Obviously the truncated components are much
smaller with the localization step.

The localization procedure proposed here appears to be simpler than the one pro-
posed in [2]. For example, Ψ(i) does not include the rows in the localization region
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Figure 4. Expansion of the support of the orbitals applying the
Hamiltonian operator 50 times, N = 500, M = 10, L = 150.

and this leads to smaller problems. In addition, we avoid solving the generalized
eigenvalue problem.

3. OM with localization. In this section, we will show how to incorporate the
localization step into the different variants of the OM algorithm. We will test these
algorithms on two model problems. The first is an example for which H is a second
order discretization of the operator H = − 1

2∇
2 + V (x), where

V (x) = α
∑

j

e−(x−rj)
2/(2σ2d2)

is the external potential. The system is defined on the the interval [0, 10] with peri-
odic boundary condition. We used the values rj = 0.5, 1.5, . . . , 9.5, α = −100.0, d =
1.0 and σ = 0.01. The discretization parametersN ,M and L are chosen asN = 500,
M = 10 and L = 150, 250, 350 respectively. Here L is the size of the support Si

(number of grid points in Si).
The parameters have been chosen to correspond to the case of an insulator, i.e.

there is a gap between the eigenvalues corresponding to the eigen-subspace spanned
by the optimal orbitals and the rest of the spectrum. In the context of electronic
structure, in this case, one can find exponentially decaying orbitals [10]. Therefore,
we expect the localization procedure to work quite well, and if we find the right set
of representative orbitals, the error due to truncation can be made quite small.

The second example is for the case whenH is simply a second order discretization
of the one-dimensional Laplacian operator, which is equivalent to setting α = 0 in
the first example. Even though the operator is very simple, this is actually a tough
example since there are no spectral gap for this problem, i.e. it corresponds to the
case of a metal in the setting of electronic structure analysis. In this case, we expect
the orbitals to decay at a slower rate. Therefore, the error caused by truncation
should be larger compared with the previous case.
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Figure 5. Truncated components of the fifth orbital in the second
iteration of the steepest descent algorithm. The result of direct
truncation is shown on the left. The result of truncation after
localization is shown on the right.

3.1. Steepest decent algorithm. We start with the steepest decent algorithm.
It is easy to verify that the gradient of the truncated functional EL(ΨL) is the
truncation of the gradient of the functional E(ΨL) [13]

∇EL(ΨL) = (∇E(ΨL))L.

A direct application of the steepest decent algorithm with truncation is as follows:

Algorithm 1 Steepest Decent with Truncation (SD)
Input: Ψ0

L, initial guess of ΨL

1) Start: D0
L = −∇EL(Ψ0

L)
2) Iterate: For k = 0, 1, . . . ,

3) αk = argminαEL(Ψk
L + αDk

L)

4) Ψk+1
L = Ψk

L + αkD
k
L

5) Dk+1
L = −∇EL(Ψk+1

L )
6) Check convergence
7) EndDo
Output: Ψk

L, approximation of (ΨL)∗ (the minimizer of EL).
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To add the localization step, at the kth iteration, we replace Dk
L by the gradient

Dk of the original functional (1). The new orbitals Ψk+1 are then calculated from
Dk. However, instead of direct truncation, we first use the localization procedure
to find a nonsingular transformation G described in the last section. This leads to
the following algorithm:

Algorithm 2 Steepest Decent with Localization (SDL)
Input: Ψ0

L, initial guess of ΨL

1) Start: D0 = −∇E(Ψ0)
2) Iterate: For k = 0, 1, . . . ,

3) αk = argminαE(Ψk
L + αDk)

4) Ψk+1 = Ψk
L + αkD

k

5) G = argminG‖Ψ
k+1G− (Ψk+1G)L‖F

6) Ψk+1
L = (Ψk+1G)L

7) Dk+1 = −∇E(Ψk+1
L )

8) Check convergence
9) EndDo
Output: Ψk

L, approximation of (ΨL)∗.

The results for the first example are shown in Figure 6. One can see clearly that
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Figure 6. 50 random tests of the steepest descent (SD) and steep-
est decent with localization (SDL) algorithms for the second order
discretization of the operator H = − 1

2∇
2+V (x), N = 500,M = 10,

ǫ = 10−7, L = 150.

results from Algorithm 2 show much less trapping at local minima than results from
Algorithm 1.

3.2. Conjugate gradient method. If we use the conjugate gradient method with
direction truncation of the orbitals, we obtain the following algorithm:

Algorithm 3 Conjugate Gradient with Truncation (CG)
Input: Ψ0

L, initial guess of ΨL

1) Start: R0
L = −∇EL(Ψ0

L), D0
L = R0

L

2) Iterate: For k = 0, 1, . . . ,

3) αk = argminαEL(Ψk
L + αDk

L)



10 WEIGUO GAO AND WEINAN E

4) Ψk+1
L = Ψk

L + αkD
k
L

5) Rk+1
L = −∇EL(Ψk+1

L )

6) βk+1 =
< Rk+1

L , Rk+1
L >

< Rk
L, R

k
L >

7) Dk+1
L = Rk+1

L + βk+1D
k
L

8) Check convergence
9) EndDo
Output: Ψk

L, approximation of (ΨL)∗.

When adding the localization step, we also need to transform the search direction
accordingly.

Algorithm 4 Conjugate Gradient with Localization (CGL)
Input: Ψ0

L, initial guess of ΨL

1) Start: R0 = −∇E(Ψ0), D0 = R0

2) Iterate: For k = 0, 1, . . . ,

3) αk = argminαE(Ψk
L + αDk)

4) Ψk+1 = Ψk
L + αkD

k

5) G = argminG‖Ψ
k+1G− (Ψk+1G)L‖F

6) Ψk+1
L = (Ψk+1G)L

7) Rk+1 = −∇E(Ψk+1
L )

8) βk+1 =
< Rk+1, Rk+1 >

< Rk, Rk >
9) Dk+1 = Rk+1 + βk+1(D

kG)L

10) Check convergence
11) EndDo
Output: Ψk

L, approximation of (ΨL)∗.

Figure 7 shows the numerical results of conjugate gradient method for the same
example. We see that the new algorithm with the localization step added performs
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Figure 7. 50 random tests of the conjugate gradient (CG) and
conjugate gradient with localization (CGL) algorithms for the
second order discretization of the operator H = − 1

2∇
2 + V (x),

N = 500, M = 10, ǫ = 10−7, L = 150.

much better.
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3.3. Grassmann conjugate gradient method. As we remarked earlier, the rea-
son for the generation of numerous local minima in the truncated functional (or
functional defined on truncated orbitals) is that the space of the truncated orbitals
is no longer invariant under non-singular linear transformations. The original func-
tional is well-defined on the Grassmann manifold. This is no longer the case for
the truncated functional. To compensate for this, one might use a version of the
conjugate gradient method that respects the invariance under nonsingular linear
transformation. This is the Grassmann conjugate gradient method, which is also
naturally defined on the Grassmann manifold of RN [3]. In this method, the gradi-
ent must lie in the tangent plane of the Grassmann manifold.

If we use this version of the conjugate gradient method, we obtain the following
orbital minimization algorithms, with or without localization.

Algorithm 5 Grassmann Conjugate Gradient with Truncation (GCG)
Input: Ψ0

L, initial guess of ΨL

1) Start: R0
L = −∇EL(Ψ0

L), D0
L = R0

L

2) Iterate: For k = 0, 1, . . . ,

3) αk = argminαEL(Ψk
L + αDk

L)
4) Dk

new = Dk
L − αkΨk

L((Ψk
L)T Ψk

L)−1(Dk
L)TDk

L

5) Rk
new = Rk

L − αkΨk
L((Ψk

L)T Ψk
L)−1(Dk

L)TRk
L

6) Ψk+1
L = Ψk

L + αkD
k
L

7) Rk+1
L = −∇EL(Ψk+1

L )

8) βk+1 =
< Rk+1

L , Rk+1
L >

< Rk
new , R

k
new >

9) Dk+1
L = Rk+1

L + βk+1D
k
new

10) Check convergence
11) EndDo
Output: Ψk

L, approximation of (ΨL)∗.

Algorithm 6 Grassmann Conjugate Gradient with Localization (GCGL)
1) Start: R0 = −∇E(Ψ0), D0 = R0

2) Iterate: For k = 0, 1, . . . ,

3) αk = argminαE(Ψk
L + αDk)

4) Dk
new = Dk

L − αkΨk((Ψk
L)T Ψk

L)−1(Dk
L)TDk

L

5) Rk
new = Rk

L − αkΨk((Ψk
L)T Ψk

L)−1(Dk
L)TRk

L

6) Ψk+1 = Ψk
L + αkD

k

7) G = argminG‖Ψ
k+1G− (Ψk+1G)L‖F

8) Ψk+1
L = (Ψk+1G)L

9) Rk+1 = −∇E(Ψk+1
L )

10) βk+1 =
< Rk+1, Rk+1 >

< Rk
new , R

k
new >

11) Dk+1 = Rk+1 + βk+1(D
k
newG)L

12) Check convergence
13) EndDo
Output: Ψk

L, approximation of (ΨL)∗.

The results are shown in Figure 8.

4. An example without spectral gap. We now consider the second example,
i.e., one-dimensional Laplacian operator. For this example, we chosethe system size
to be N = 100. The results are shown in Figures 9, 10 and 11 respectively.
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Figure 8. 50 random tests of Grassmann conjugate gradi-
ent (GCG) and Grassmann conjugate gradient with localization
(GCGL) algorithms for the second order discretization of the op-
erator H = − 1

2∇
2 + V (x), N = 500, M = 10, ǫ = 10−7, L = 150.

The condition number of the first example is smaller than that of the second, since
there is a spectral gap for the first example [6, 10]. Consequently, it requires more
iterations for convergence for the second example, and this is what we observed.

On the other hand, the algorithms with the localization step always run faster and
give more accurate results for both examples. To demonstrate the of the localization
step, we increase the size of system N to 4000, the number of orbitals M = 20, σ to
−1000.0. The performance of conjugate gradient with and without localization is
presented in Table 1. We see that with the localization step, the conjugate gradient

Test 1 2 3 4 5
CGL 133 155 170 158 148
CG 201 325 359 315 164

Table 1. Numbers of iterations of 5 random tests of the con-
jugate gradient (CG) and conjugate gradient with localization
(CGL) algorithms for the second order discretization of the op-
erator H = − 1

2∇
2 +V (x), N = 4, 000, M = 20, ǫ = 10−7, L = 600.

algorithm takes roughly half the numbers of iterations.

5. Conclusion. We see that the addition of the localization step substantially
improved the performance of orbital minimization, in the sense that it significantly
reduced the chances that the solution be trapped at local minima. It also improves
the convergence rate for the iteration process. In addition, as we will show in future
publications, it substantially improves the accuracy of orbital minimization with
truncation.

From an algorithmic viewpoint, the cost of the localization step is quite reason-
able. In addition, one does not have to include the localization step at each step
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Figure 9. 50 random tests of the steepest descent and conju-
gate gradient algorithms for the second order discretization of one-
dimensional Laplacian operator, N = 500, M = 10, L = 150, ǫ is
chosen to be 10−7 and 10−10 respectively.

of the iteration. It can be used after a number of steps, or whenever the iteration
shows sign of been trapped at local minima.

Many algorithmic issues remain before this becomes a reliable algorithm for elec-
tronic structure analysis. These issues include: adaptively choosing the support of
the orbitals, efficient strategies for dealing with the nonlinear aspects of the problem
(where H itself depends on Ψ), and extension to finite temperature. These issues
will be addressed in future publications.
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