
Generalized Flows, Intrinsic Stochas-
ticity, and Turbulent Transport
Weinan E and Eric Vanden Eijnden

Courant Institute of Mathematical Sciences,

New York University, New York, NY 10012

ABSTRACT The study of passive scalar trans-

port in a turbulent velocity �eld leads naturally to

the notion of generalized 
ows which are families of

probability distributions on the space of solutions to

the associated ODEs, which no longer admit unique

solutions in general. Two most natural regulariza-

tions of this problem, namely the regularization via

adding small molecular di�usion and the regulariza-

tion via smoothing out the velocity �eld are consid-

ered. White-in-time random velocity �elds are used

as an example to examine the variety of phenomena

that take place when the velocity �eld is not spa-

tially regular. Three di�erent regimes characterized

by their degrees of compressibility are isolated in the

parameter space. In the regime of intermediate com-

pressibility, the two di�erent regularizations give rise

to two di�erent generalized 
ows and consequently

two di�erent scaling behavior for the structure func-

tions of the passive scalar. Physically this means

that the scaling depends on Prandtl number. Sur-

prisingly the two di�erent regularizations give rise to

the same generalized 
ows in the other two regimes

even though the sense of convergence can be very dif-

ferent. The \one force, one solution" principle is es-

tablished for the scalar �eld in the weakly compress-

ible regime, and for the di�erence of the scalar in the

strongly compressible regime which is the regime of

inverse cascade. Existence and uniqueness of an in-

variant measure is also proved in these regimes when

the transport equation is suitably forced. Finally in-

complete self-similarity in the spirit of Barenblatt-

Chorin is established.

Introduction

Recent e�orts on the understanding of the fundamental physics

of hydrodynamic turbulence have concentrated on the expla-

nation of the observed violations of Kolmogorov's scaling.

These violations re
ect the occurrence of large 
uctuations
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in the velocity �eld on the small scales, a phenomenon re-

ferred to as intermittency. Some progress in the understand-

ing of intermittency has been achieved recently through the

study of simple model problems that include Burgers equa-

tion [1, 2] and the passive advection of a scalar by a velocity

�eld of known statistics [3, 4, 5, 6]. This paper is a sum-

mary of the many interesting mathematical issues that arise

in the problem of passive scalar advection together with our

understanding of these issues. We put some of our results in

the perspective of a new phenomenological model proposed

recently by Barenblatt and Chorin [7, 8] using the formalism

of incomplete self-similarity.

Generalized Flows

Consider the transport equation for the scalar �eld ��(x; t)
in Rd :

@��

@t
+ (u(x; t) � r)�� = ����: (1)

We will be interested in �� in the limit as �! 0. It is known

from classical results that if u is Lipschitz continuous in x,
then as �! 0, �� converges to �, the solution of

@�

@t
+ (u(x; t) � r)� = 0: (2)

Furthermore, if we de�ne f's;t(x)g to be the 
ow generated

by the velocity �eld u, satisfying the ordinary di�erential

equations (ODEs)

d's;t(x)

dt
= u('s;t(x); t); 's;s(x) = x; (3)

for s < t, then the solution of the transport equation in 2 for

the initial condition ��(x; 0) = �0(x) is given by

�(x; t) = �0('
�1
0;t (x)) = �0('t;0(x)): (4)

This classical scenario breaks down when u fails to be Lips-

chitz continuous in x, which is precisely the case for fully de-

veloped turbulent velocity �elds. In this case Kolmogorov's

theory of turbulent 
ows suggests that u will only be H�older

continuous with an exponent roughly equal to 1
3
. In such sit-

uations the solution of the ODEs in 3 may fail to be unique

[9], and we then have to consider probability distributions on

the set of solutions in order to solve the transport equation

in 2. This is the essence of the notion of generalized 
ows

proposed by Brenier [10, 11] (see also [12]).
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There are two ways to think about probability distribu-

tions on the solutions of the ODEs in 3. We can either think

of it as probability measures on the path-space (functions

of t) supported by paths which are solutions of 3, or we can

think of it as transition probability at time t if the starting
position at time s is x. In the classical situation when u is

Lipschitz continuous, this transition probability degenerates

to a point mass centered at the unique solution of 3. When

Lipschitz condition fails, this transition probability may be

non-degenerate and the system in 3 is intrinsically stochastic.

There is a parallel story for the case when u is a white-in-

time random process de�ned on a probability space (
;F ;P).
We will denote the elements in 
 by ! and indicate the depen-

dence on realization of the random velocity �eld by a super-

or a subscript !. In connection with the transport equation

in 2, it is most natural to consider the stochastic ODEs

d'!s;t(x) = u('!s;t(x); t)dt; '!s;s(x) = x; (5)

in Stratonovich sense. In this case, it is shown [13] that if

the local characteristic of u is spatially twice continuously

di�erentiable, then the system in 5 has a unique solution.

Such conditions are not satis�ed by typical turbulent velocity

�elds on the scale of interest. When the regularity condition

on u fails, there are at least two natural ways to regularize 3

or 5. The �rst is to add di�usion:

d'!;�
s;t

(x) = u('!;�
s;t

(x); t)dt +
p
2�d�(t); (6)

and consider the limit as �! 0. We will call this the �-limit.

The second is to smooth out the velocity �eld. Let  " be

de�ned as

 "(x) =
1

"d
 
�x
"

�
;

where  is a standard molli�er:  � 0,
R
Rd
 dx = 1,  decays

fast at in�nity. Let u" = u ?  " and consider

d'!;"s;t (x) = u"('!;"s;t (x); t)dt; (7)

in the limit as "! 0. We will call this the "-limit. Physically

� plays the role of molecular di�usivity, " can be thought of

as a crude model of the viscous cut-o� scale. The �-limit

corresponds to the situation when the Prandtl number tends

to zero, Pr ! 0, whereas the "-limit corresponds to the sit-

uation when the Prandtl number diverges, Pr ! 1. The

following questions naturally arise:

(Q1) Do the regularized equations in 6 and 7 converge to the

same limit?
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(Q2) If not, what characterizes these limits?

(Q3) Does there exist a unique statistical steady state when

the transport equation in 1 is suitably forced?

(Q4) What are the statistical and geometrical properties of

solutions in the statistical steady state?

Below we address questions Q1, Q3, Q4 on a speci�c model

introduced by Kraichnan [14]. Question Q2 is an extremely

interesting one which we intend to consider in a future pub-

lication.

Before proceeding further, we relate the regularized 
ows

in 6, 7 to the solutions of the transport equations. Consider

the �-regularization �rst. It is convenient to introduce the

backward transition probability

g�
!
(x; tjdy; s) = E�Æ(y � '!;�

t;s
(x))dy; s < t; (8)

where the expectation is taken with respect to �(t), and

'!;�t;s (x) is the 
ow inverse to '!;�s;t (x) de�ned in 6 (i.e. '
!;�

s;t (x)
is the forward 
ow and '!;�

t;s
(x) is the backward 
ow). The

action of g�
!
generates a semi-group of transformation

S!;�t;s  (x) =

Z
Rd

 (y)g�!(x; tjdy; s); (9)

for all test functions  . ��!(x; t) = S!;�t;s  (x) solve the trans-
port equation in 1 for the initial condition ��

!
(x; s) =  (x).

Similarly, for the 
ow in 7, de�ne

S!;"t;s  (x) =  ('!;"t;s (x)); s < t: (10)

�"
!
(x; t) = S!;"

t;s
 (x) solves the transport equation

@�"

@t
+ (u"(x; t) � r)�" = 0; (11)

with initial condition �(x; s) =  (x). Similar de�nitions can

be given for forward 
ows but we will restrict attention to

the backward ones since we are primarily interested in scalar

transport. The results given below generalize trivially for

forward 
ows.

Kraichnan Model

In [14] Kraichnan introduced one of the simplest model of

passive scalar by considering the advection by a Gaussian,
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spatially non-smooth and white-in-time velocity �eld. The

fact that white-in-time velocity �elds may exhibit intermit-

tency was �rst recognized by Majda [15]. De�nitive work on

Kraichnan model has been done afterwards in [3, 4, 5, 6].

We will consider a generalization of Kraichnan model in-

troduced in [16] (see also [17]). The velocity u is assumed

to be a statistically homogeneous, isotropic and stationary

Gaussian �eld with mean zero and covariance

Eu�(x; t)u�(y; s) = (C0Æ�� � c��(x� y))Æ(t� s): (12)

We assume that u has a correlation length `0, i.e. the co-

variance in 12 decays fast for jx � yj > `0. Consequently

c��(x) ! C0Æ�� as jxj=`0 ! 1. On the other hand, we

will be mainly interested in small scale phenomena for which

jxj � `0. In this range, we take c��(x) = d��(x)+O(jxj2=`20)
with

d��(x) = AdP
��
(x) +BdS

��
(x); (13)

and

dP
��
(x) = D

�
Æ�� + �

x�x�

jxj2

�
jxj� ;

dS��(x) = D

�
(d+ � � 1)Æ�� � �

x�x�

jxj2

�
jxj� :

(14)

D is a parameter with dimension [length]2��[time]�1. The

dimensionless parameters A and B measure the divergence

and rotation of the �eld u. A = 0 corresponds to incompress-

ible �elds with r � u = 0. B = 0 corresponds to irrotational

�elds with r� u = 0. The parameter � measures the spatial

regularity of u. For � 2 (0; 2), the local characteristic of u
fails to be twice di�erentiable and this fact has important

consequences on both the transport equation in 2 and the

systems of ODEs in 3 or 5.

Existing physics literature concentrates on the �-limit for

Kraichnan model. Let S2 = A+(d�1)B, C2 = A, P = C2=S2.
P 2 [0; 1] is a measure of the degree of compressibility of u.
The pioneering work of Gaw�edzki and Vergassola [16] (see

also [17]) identi�es two di�erent regimes for the �-limit:

1. The strongly compressible regime when P � d=�2. In
this regime g�! converges to a 
ow of maps, i.e. there exists

a two-parameter family of maps f'!t;s(x)g such that

g�!(x; tjdy; s)! Æ(y � '!t;s(x))dy: (15)

Moreover particles have �nite probability to coalesce under

the 
ow of f'!
t;s
(x)g.
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2. When P < d=�2, g�
!
converges to a \generalized stochas-

tic 
ow"

g�
!
(x; tjdy; s)! g!(x; tjdy; s); (16)

and the limit g! is a nontrivial probability distribution in y.
This means that the image of a particle under the 
ow de�ned

by the velocity �eld u is non-unique and has a non-trivial

distribution. In other words, particle trajectories branch.

The following result provides rigorous justi�cation of these

predictions and also answer the question Q1. In particular,

it points out that there are three di�erent regimes if both the

� and the "-limits are considered.

Theorem 1 In the strongly compressible regime when

P �
d

�2
; (17)

there exists a two-parameter family of random maps f'!
t;s
(x)g,

such that for all smooth test functions  and for all (s; t; x),
s < t,

E
�
S
!;�

t;s
 (x) �  ('!

t;s
(x))

�2 ! 0; (18)

as �! 0, and

E
�
 ('!;"

t;s
(x)) �  ('!

t;s
(x))

�2 ! 0; (19)

as " ! 0. Moreover, the limiting 
ow f'!
t;s
(x)g coalesces in

the sense that for almost all (t; x; y), x 6= y, we can de�ne a

time � such that �1 < � < t a.s. and

'!t;s(x) = '!t;s(y); (20)

for s � � .
In the weakly compressible regime when

P �
d+ � � 2

2�
; (21)

there exists a random family of generalized 
ows g!(x; tjdy; s),
such that for all test function  ,

S!
t;s
 (x) =

Z
Rd

 (y)g!(x; tjdy; s); (22)

satis�es

E
�
S!;�t;s  (x) � S!t;s (x)

�2 ! 0; (23)

as �! 0 for all (s; t; x), s < t, and

E
�Z

Rd

�(x)
�
 ('!;"

t;s
(x)) � S!

t;s
 (x)

�
dx
�2
! 0; (24)
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as " ! 0 for all (s; t), s < t, and for all test functions �.
Moreover, g!(x; tjdy; s) is non-degenerate in the sense that

S!
t;s
 2(x)�

�
S!
t;s
 (x)

�2
> 0 a.s. (25)

In the intermediate regime when

d+ � � 2

2�
< P <

d

�2
; (26)

there exists a random family of maps f'!
t;s
(x)g, and a random

family of generalized 
ows g!(x; tjdy; s), such that for all test

function  and for all (s; t; x), s < t,

E
�
S
!;�

t;s  (x)� S!
s;t
 (x)

�2 ! 0 (27)

as �! 0, and

E
�
 ('!;"

t;s
(x)) �  ('!

t;s
(x))

�2 ! 0 (28)

as " ! 0. Furthermore, the limit f'!t;s(x)g coalesces in the

sense of 20, and the limit g! is non-degenerate in the sense

of 25.

Rephrasing the content of this result, we have strong con-

vergence to a family of 
ow maps in the strongly compressible

regime for both the �-limit and the "-limit. In the weakly

compressible regime, we have strong convergence to a fam-

ily of generalized 
ows for the �-limit, but weak convergence

to the same limit for the "-regularization. In fact, using the

terminology of Young measures [18], the limiting generalized


ow fg!(x; tjdy; s)g is nothing but the Young measure for

the sequence of 
ow maps f'!;"s;t (x)g. Finally, in contrast to

what is observed in the other two regimes, the "-limit and �-
limit are not the same in the intermediate regime. It would

be interesting to characterize all the generalized 
ows in this

case.

From Theorem 1, it is natural to de�ne the solution of the

transport equation in 2 for the initial condition �!(x; s) =

�0(x) as

�!(x; t) = St;s�0(x) =

Z
Rd

�0(y)g!(x; tjdy; s); (29)

for the non-degenerate case, and as

�!(x; t) = �0('
!

t;s
(x)); (30)

for the coalescence case. Some consequences of Theorem 1

on �! are investigated in the next section.
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The proof of this result is given in [19]. Crucial to the

proof is the study of P (�jr; s) de�ned for all test function �
as Z

1

0

�(r)P (�jr; s � t)dr

=

Z
Rd�Rd

�(jx� x0j)E (g!(y; tjx; s)g!(z; tjx0; s)) dxdx0;

(31)

in the non-degenerate case, and as

Z
1

0

�(r)P (�jr; s � t)dr = E �(j't;s(y)� 't;s(z)j); (32)

in the coalescence case. Here � = jy � zj and s < t. P (�jr; s)
can be thought of as the probability density that two particles

have distance r at time s < t if their �nal distance is � at time

t. For Kraichnan model, P satis�es the backward equation

�
@P

@s
= �

@

@r
(b(r)P ) +

@2

@r2
(a(r)P ) ; (33)

for the �nal condition lims!0� P (�jr; s) = Æ(r� �), and with

a(r), b(r) such that

a(r) = D(S2 + �C2)r� +O(r2=`20);

b(r) = D((d� 1 + �)S2 � �C2)r��1 +O(r=`20):
(34)

For r � `0, a(r) tends to C0, b(r) to C0(d � 1)=r, and the

equation in 33 reduces to a di�usion equation with constant

coeÆcient. The equation in 33 is singular at r = 0. The

proof of Theorem 1 is essentially reduced to the study of this

singular di�usion equation. This is also the main step for

which the white-in-time nature of the velocity �eld is crucial.

Dissipative Anomaly and Structure Func-

tions

We now study some consequences of Theorem 1 for the pas-

sive scalar �! de�ned in 29 or 30. A �rst key observation

is that when g! is non-degenerate, there exists an anoma-

lous dissipation mechanism for the scalar, whereas no such

anomalous dissipation is present in the coalescence case [16].

The presence of anomalous dissipation is the primary reason

why the transport equation in 1 has a statistical steady state

(invariant measure) if it is appropriately forced, as we will
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show later. Notice that since u is compressible, the trans-

port equation in 1 does not conserve
R
Rd
�2!dx. To isolate

anomalous dissipation, we assume that �0 is an homogeneous

random process, i.e. such that for all x

�0(�)
D
= �0(�+ x); (35)

and consider the average energy

E �2!(x; t); (36)

where the expectation is taken with respect to the statis-

tics of both u and �0. If a (generalized) 
ow of maps can

be associated with the dynamics in 1, E �2! is conserved by

the dynamics in Kraichnan model since, using the statistical

homogeneity of �0, we have

E �2!(x; t) = E �20('
!

t;s(x)) = E �20(x): (37)

Equation 37 holds in the strongly compressible regime and in

the intermediate regime under the "-limit. In these cases, it

follows from 37 and the moment inequality E �2n! � (E �n!)
2,

n 2 N, that the higher order moments are conserved as well

E �2n! (x; t) = E �2n0 (x): (38)

In contrast, when the generalized 
ow is non-degenerate (i.e.

in the weakly compressible regime or in the intermediate

regime in the �-limit) the energy is not conserved:

E �2
!
(x; t) < E �20(x): (39)

Indeed 39 is equivalent toZ
Rd�Rd

E�0(y)�0(z)Eg!(x; tjdy; s)g!(x; tjdz; s)

<

Z
Rd

E�20(y)Eg!(x; tjdy; s) = E�20(x);

(40)

which follows by the non-degeneracy condition in 25.

Another interesting consequence of Theorem 1 is that the

scaling of the second-order structure function is the same for

the �- and the "-limits in the strongly and the weakly com-

pressible cases [20], but it di�ers in the intermediate regime

as a result of the di�erence between the limits in 27 and 28.

For simplicity of presentation, we assume that �0 is isotropic
and Gaussian, with covariance

E �0(x)�0(y) = D0 �D(jx� yj); (41)
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where D(r) is O(r2) for small r and tends rapidly to D0 for

r > � (i.e. � is the correlation length for �0). Denote (n 2 N)

S2n(jx� yj; t) = E(�!(x; t)� �!(y; t))
2n: (42)

In the strongly compressible case, we have for both the �-
and the "-limits

S2(r; t) = O(r� ); (43)

with

� =
2� d� � + 2�P

1 + �P
: (44)

In the weakly compressible case, we have for both the �- and
the "-limits

S2(r) = O(r2��): (45)

In the intermediate regime, the limits di�er, and the �-limit

scales as in 45, whereas the "-limit scales as in 43. The equa-

tions in 43 and 45 can be derived from

S2(r; t) = 2

Z
1

0

(D0�D(�))(P (0j�;�t)�P (rj�;�t))d�; (46)

where P satis�es the equation in 33. In the coalescence case,

because P develops a delta peak with mass 1 �
R
1

0+
Pd� at

r = 0, the equation in 46 can be further simpli�ed to

S2(r; t) = 2

Z
1

0

D(�)P (rj�;�t)d�: (47)

It is interesting to discuss the higher order structure func-

tions both in the non-degenerate and in the coalescence cases

in 43 and 45 since their scalings highlight very di�erent be-

havior of the scalar. We consider �rst the coalescence case

which is simpler. In this case, because of the very existence

of a 
ow of maps and the absence of dissipative anomaly, we

have

S2n(r; t) =
(2n)!

n!

Z
1

0

(D(�))nP (rj�;�t)d�: (48)

This gives

S2n(r; t) = O(r� ); (49)

with � given by 44 for all n � 2. In fact, coalescence implies

that the temperature �eld �! tends to become 
at except

possibly on a zero-measure set where it presents shock-like

discontinuities. Such a situation with two kinds of spatial

structures for �! is usually refered to as bi-fractal, and, in
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simple cases, one may identify � with the codimension of the

set supporting the discontinuities of �! [21, 22].

The non-degenerate case is more complicated. In this

case, one expects that �! presents a spatial behavior much

richer than the coalescence case, with all kinds of scalings

present. This is the multi-fractal situation for which the

higher order structure functions behave as

S2n(r; t) = O(r�2n ); (50)

with �2n < n(2 � �) for 2n > 2. The actual value of the

�n's cannot be obtained by dimensional analysis, and one

has to resort to various sophisticated perturbation techniques

(see [3, 4, 5, 6]). We will consider again the scaling of the

structure functions at statistical steady state in the section

on incomplete self-similarity.

One Force, One Solution Principle

We now turn to question Q3, and �rst restrict attention to

the non-degenerate case. This includes the weakly compress-

ible regime and the intermediate regime in the �-limit. As

we already know from the equation 39, the non-degeneracy

of g!(x; tjdy; s) as a probability distribution in y implies dis-

sipation of energy or, phrased di�erently, decay in memory in

the semi-group St;s generated by fg!g. This is the main rea-

son that the forced transport equation has a unique invariant

measure, as we explain now.

We will consider (compare with 1)

@�

@t
+ (u(x; t) � r)� = b(x; t): (51)

where b is a white-noise forcing such that

E b(x; t)b(y; s) = B(jx � yj)Æ(t� s): (52)

B(r) is assumed to be smooth and rapidly decaying to zero

for r > L; L will be referred to as the forcing scale. The

solution of 51 for the initial condition �!(x; s) = �0(x) is

understood as

�!(x; t) = St;s�0(x) +

Z t

s

St;�b(x; �)d�: (53)

De�ne the product probability space (
u�
b;Fu�Fb;Pu�
Pb), and the shift operator

T�!(t) = !(t+ �); (54)

with ! = (!u; !b).
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Theorem 2 (One force{one solution I) For d > 2, for

almost all !, there exists a unique solution of 51 de�ned on

R
d � (�1;1). This solution can be expressed as

�?
!
(x; t) =

Z
t

�1

St;sb(x; s)ds: (55)

Furthermore the map ! ! �?
!
satis�es the invariance property

�?T�!(x; t) = �?!(x; t+ �): (56)

Theorem 2 is the \one force, one solution" principle articu-

lated in [23]. Because of the invariance property 56, the map

in 55 leads to a natural invariant measure. As a consequence

we have

Theorem 3 For d > 2, there exists a unique invariant mea-

sure on L2
loc
(Rd �
) for the dynamics de�ned by 51.

The connection between the map 55 and the invariant mea-

sure, together with uniqueness, is explained in [23]. The re-

striction on the dimensionality in Theorems 2 and 3 arises

because the velocity �eld has �nite correlation length `0, and
can be relaxed upon considering the limit as `0 ! 1 after

appropriate rede�nition of the velocity �eld as in (63) below.

We sketch the proof of Theorem 2. Basically, it amounts

to verifying that the dissipation in the system is strong enough

in the sense that

E
�Z T2

T1

Z
Rd

b(y; s)g(x; tjdy; t+ s)ds
�2
! 0; (57)

as T1, T2 ! �1 for �xed x and t. The average in 57 is given

explicitly by

Z T2

T1

Z
1

0

B(r)P (0jr; s)drds; (58)

where P satis�es 33. The convergence of the integral in 57

depends on the rate of decay in jsj of P (0jr; s). Because of

the integral in r in 58 has a cut-o� at the forcing scale L due

to B(r), we can restrict attention to the behavior of P (0jr; s)
for r < L. For large jsj, it follows from the equation in 33

that P can be approximated by

P (0jr; s) =
C

a(r)jsj�
exp

�Z
r

0

b(�)

a(�)
d�

�
+ o(jsj�a); (59)

where C is a constant and the exponent � is yet to be deter-

mined. The range of value for r in which the approximation
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in 59 is valid increases with jsj. For jsj large enough, most of

the mass of P (0jr; s) is in the range r � `0, where P satis-

�es a di�usion equation with constant di�usion coeÆcient C0

whose exact solution is known. A standard matching argu-

ment between this solution and the approximation in 59 can

be used to estimate � = d=2. Thus, using (34) to evaluate

the integral in (59), we obtain for r < L� `0

P (0jr; s) =
Cr�

jsjd=2
+ o(jsj�d=2); (60)

where � = (d� 1� �(� + 1)P)=(1 + �P). Using 60 gives the

following leading order estimate for the average in 57

C

Z
1

0

B(r)r�dr

Z T2

T1

jsj�d=2ds: (61)

The integral in s in this expression tends to zero as T1, T2 !
�1 if d > 2. It follows that the invariant measure in 55

exists provided d > 2.

Consider now the coalescence case, i.e the strongly com-

pressible regime and the intermediate regime in the "-limit.

Since no anomalous dissipation is present in this case, no in-

variant measure for the temperature �eld as the one in (55)

exists. It makes sense, however, to ask about the existence of

an invariant measure for the temperature di�erence, i.e. to

consider

Æ�?
!
(x; y; t) =

Z
t

�1

St;s(b(x; s)� b(y; s))ds: (62)

When �?! exists, one has Æ�?!(x; y; t) = �?!(x; t)� �?!(y; t), but
it is conceivable that Æ�?

!
exists in the coalescence case even

though �?! is not de�ned. The reason is that coalescence of the

generalized 
ow implies that the temperature �eld 
attens

with time, which is a dissipation mechanism as far as the

temperature di�erence is concerned. Of course, this e�ect

has to overcome the 
uctuations produced by the forcing,

and the existence of an invariant measure such as 62 will

depend on how fast particles coalesce under the 
ow.

At this point a diÆculty arises. If we were to consider two

particles separated by much more than the correlation length

`0, the dynamics of their distance under the 
ow is governed

by the equation in 33 for r � `0, i.e. by a di�usion equation

with constant di�usion coeÆcient on the scale of interest. It

follows that no tendency of coalescence is observed before the

distance becomes smaller than `0, which, as shown below,

does not happen fast enough in order to overcome the the


uctuations produced by the forcing. In other words,
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Lemma 4 In the coalescence case, for �nite `0, there is no

invariant measure with �nite energy for the temperature dif-

ference.

The obvious question to ask next is what happens if we

let `0 ! 1? This question, however, has to be considered

carefully because the velocity �eld with the covariance in 12

diverges as `0 !1. The right way to proceed is to consider

an alternative velocity v, taken to be Gaussian, white-in-time,

but non-homogeneous, with covariance

E v�(x; t)v�(y; s)
= (c��(x) + c��(y)� c��(x� y))Æ(t� s):

(63)

For �nite `0, one has v(x; t) = u(x; t) � u(a; t), where a is

arbitrary but �xed. However, v makes sense in the limit as

`0 ! 1. Denote by #!(x; t) the temperature �eld advected

by v, i.e. the solution of the transport equation 51 with u
replaced by v. Restricting to zero initial condition, it follows
from the homogeneity of the forcing that the single-time mo-

ments of �! and #! coincide for �nite `0, but in contrast to

�!, #! makes sense as `0 !1. Thus, #! is a natural process

to study the limit as `0 ! 1, and from now on we restrict

attention to this case. Let Æ#!(x; y; t) = #!(x; t) � #!(y; t).
The temperature di�erence Æ#! satis�es the transport equa-

tion

@Æ#

@t
+ (v(x; t) � rx + v(y; t) � ry)Æ# = b(x; t)� b(y; t): (64)

We have

Theorem 5 (One force{one solution II) For almost all

!, in the strongly and the weakly compressible regimes, as well

as in the intermediate regime if the 
ow is non-degenerate,

there exists a unique solution of 64 de�ned on Rd�(�1;1).

This solution can be expressed as

Æ#?
!
(x; y; t) =

Z
t

�1

St;s(b(x; s)� b(y; s))ds: (65)

Furthermore the map ! ! Æ#?! satis�es the invariance prop-

erty

Æ#?T�!(x; y; t) = Æ#?!(x; y; t+ �): (66)

In contrast, in the intermediate regime if the 
ow coalesces

("-limit) there is no such solution with �nite covariance.

An immediate consequence of this theorem is

14



Theorem 6 In the strongly and the weakly compressible

regimes, as well as in the intermediate regime if the 
ow is

non-degenerate, there exists a unique invariant measure on

L2
loc
(Rd � 
) for the dynamics de�ned by 64. In the inter-

mediate regime if the generalized 
ow coalesces, there is no

invariant measure for the equation in 64 with �nite energy.

In regimes for which the generalized 
ow is non-degenerate,

Theorem 5 follows from Theorem 2. In the coalescence cases

one proceeds similarly as in the proof of Theorem 2 and study

the convergence as T1, T2 ! �1 of

E
�Z T2

T1

(b('!t;s(x; s) � b('!t;s(y; s))ds
�2
: (67)

The average in 57 is given explicitly by

2

Z T2

T1

Z
1

0

(B(0)�B(�))P (rj�; s)drds; (68)

where r = jx � yj, P satis�es 33 for `0 = 1. Since in the

coalescence case r = 0 is an exit boundary, it follows that P
looses mass at r = 0+. The convergence of the time integral

in 68 depends on the rate at which mass is lost (i.e. the rate at

which particles coalesce). The analysis of the equation in 33

shows that the process is fast enough in order that the integral

over s in 68 tends to zero as T1, T2 ! �1 in the strongly

compressible regime. In contrast, the integral diverges in the

weakly compressible regime in the coalescence case.

Incomplete self-similarity

We �nally turn to question Q4 and consider the scaling of

the structure functions based on the invariant measure Æ#?

de�ned in 65. Denote

Sn(jx � yj) = E jÆ#?(x; y; t)jn: (69)

The dimensional parameters areB0 = B(0) ([temperature]2[time]�1),

D ([length]2��[time]�1), and L ([length]). It follows that

Sn(r) =
�
B0r

2��

D

�n=2

fn

� r
L

�
; (70)

where the fn's are dimensionless functions which cannot be

obtained by dimensional arguments. For instance, the scal-

ings in 49, 50 correspond to di�erent fn. It is however obvious
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from the equation 70 that, provided the limit exists and is

non-zero

lim
L!1

Sn(r) = Cn

�
B0r

2��

D

�n=2

= O(rn(2��)=2): (71)

where Cn = limr!1 fn(r=L) are numerical constants. The

scaling in 71 is usually referred to as the normal scaling since,

consistent with Kolmogorov's picture, it is independent of

the forcing or the dissipation scales. In contrast, anomalous

scaling is a statement that the structure functions diverge

in the limit of in�nite forcing scale, L ! 1. In the spirit

of Barenblatt-Chorin [7, 8], we may say that normal scaling

holds in case of complete self-similarity, whereas anomalous

scaling is equivalent to incomplete self-similarity.

It is interesting to discuss the existence or non-existence

of the limit in 71 for both the coalescence and the non-

degenerate cases. When the 
ow coalesces, because of the

existence of a 
ow of maps and the absence of dissipative

anomaly, the S2n's of even order 2n � 2 can be computed

exactly from

S2n(r) = 2n(2n� 2)

Z 0

�1

Z
1

0

(B0 �B(�))n

�S2n�2(r; s)P (rj�; s)d�ds:
(72)

Evaluation of the integrals in 72 shows that S2n(r) = 1 for

n � �=(2� �), whereas

S2n(r) = O(r� ); for n <
�

2� �
; (73)

where � is given in 44. Thus, for n < �=(2� �),

f2n(r) = O
�
(r=L)��n(2��)

�
: (74)

It follows that f2n and, hence, S2n tend to zero as L ! 1
for 2 � n < �=(2� �), whereas they are in�nite for all L for

n � �=(2��). In fact, in the coalescence case, it can be shown
from the expressions in 72 that on scales much larger than the

forcing scale L, the structure functions of order n < �=(2��)
behave as

S2n(r) � C2nr
n(2��) as r=L!1: (75)

Thus in the coalescence case, it is more natural to consider

the limit as L ! 0 of the structure functions, for which the
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expression in 75 shows the absence of intermittency correc-

tions.

In the non-degenerate case, one has

S2(r) = O(r2��); (76)

while perturbation analysis gives for the higher order struc-

ture functions [3, 4, 5, 6]

S2n(r) = O(r�2n ); (77)

with �2n < n(2� �) for 2n > 2. It follows that f2(r) = O(1),
while

f2n(r) = O
�
(r=L)�n�n(2��)

�
; 2n > 2: (78)

In other words, as L ! 1, S2 has a limit which exhibits

normal scaling, whereas the S2n's, 2n > 2, diverge. This

may be closely related to the argument in [7, 8] that, in

appropriate limits, intermittency corrections may disappear

and higher than fourth order structure functions may not

exist. We note, however, that Barenblatt and Chorin were

discussing the case of in�nite Reynolds number (here in�-

nite Peclet number, � ! 0) at �nite L, whereas we require

L!1.
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