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In this note we give a simple proof of a result conjectured by Onsager [1] on the
energy conservation for weak solutions of the 3D incompressible Euler’s equation. In order
to avoid questions regarding boundaries, we will assume periodic boundary conditions with
period box D = [0, 1]3. We will use the summation convention and frequently suppress
the independent variable t for notational convenience. We use Bα,q

p to denote the Besov
spaces.

Theorem. Let u = (u1, u2, u3) ∈ L3([0, T ], Bα,∞
3 (D))∩ C([0, T ], L2(D)) be a weak solu-

tion of the 3D incompressible Euler’s equation, i.e.

−
∫ T

0

∫

D

uj(x, t)∂tψj(x, t)d3xdt−
∫

D

uj(x, 0)ψj(x, 0)d3x

−
∫ T

0

∫

D

∂iψj(x, t)ui(x, t)uj(x, t)d3xdt−
∫ T

0

∫

D

∂iψi(x, t)p(x, t)d3xdt = 0

(1)

for every test function ψ = (ψ1, ψ2, ψ3) ∈ C∞(D × R1) with compact support. If α > 1
3
,

then

(2)
∫

R3

|u(x, t)|2d3x =
∫

R3

|u(x, 0)|2d3x, for t ∈ [0, T ).

This is basically the content of Onsager’s conjecture, except Onsager stated his con-
jecture in Hölder spaces rather than Besov spaces. Obviously the above theorem implies
the corresponding results in Hölder spaces. Onsager conjectured further that (2) ceases
to be true for α≤ 1

3 . The significance of Onsager’s conjecture can be appreciated in the
context of Kolmogorov’s theory of turbulence. This was also the motivation of Onsager.
Kolmogorov predicts that in a fully developed turbulent flow, the energy spectrum E(·) in
the inertial range is given by a power law:

(3) E(k) = C0ε̄
2/3k−5/3

where ε̄ is the ensemble average of the energy dissipation rate ε̄ = ν
〈|∇u|2〉. One of the

two key assumptions Kolmogorov made in order to obtain (3) is that ε̄ is a positive finite
number, independent of viscosity. Stated in physical space, (3) becomes

(4)
〈|u(x+ r)− u(x)|2〉 1

2 ∝ C0|r| 13

which means that u has Hölder exponent 1
3 in a statistically averaged sense.

The difference between (3–4) and Onsager’s statement is that (3–4) is a statement
about statistically averaged quantities, whereas Onsager’s is path-wise.
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In a series of two papers [2] Eyink has proved energy conservation (2) for the case
when the Besov space is replaced by Hölder space Cα with exponent α > 1

2
, and the case

when α > 1
3 but with the Hölder norm replaced by a stronger norm

(5) ‖u‖Cα∗ = Σk|k|α|ûk|, ûk =
∫

D

u(x)eik·xd3x.

The purpose of the present note is to give a simple proof for the sharp result in Besov
spaces. The Besov space formulation corresponds to the following physical interpretation
of the result: if 〈|u(x+ r)− u(x)|3〉 1

3 ≤ Crα

for α > 1
3 then ε̄ = 0.

Proof: For the sake of simplicity, we will proceed as if the solution is differentiable in time.
The additional arguments needed to mollify in time are straightforward. Let ϕ ∈ C∞

0 (R3)
be a standard mollifier supported in B(0, 1), ϕε(x) = 1

ε3ϕ
(
x
ε

)
, vε

ε = v ∗ ϕε for v ∈ D′(R3).

We have the following facts about functions in Bα,∞
3 :

‖u(·+ y)− u(·)‖L3 ≤C|y|α‖u‖Bα,∞
3

,(6)

‖u− uε‖L3 ≤Cεα‖u‖Bα,∞
3

(7)

‖∇uε‖L3 ≤Cεα−1‖u‖Bα,∞
3

(8)

Define

(9) rε(u, u)(x) =
∫
ϕε(y)(δyu(x)⊗ δyu(x))d3y

where
δyu(x) = u(x− y)− u(x).

Then it is easy to check that

(10) (u⊗ u)ε = uε ⊗ uε + rε(u, u)− (u− uε)⊗ (u− uε)

This is the main identity and holds pointwise.
Under the assumption of differentiability in time, we get from (1)

1
2
d

dt

∫

D

|uε(x, t)|2d3x =
∫

D

Tr((u⊗ u)ε(∇uε))d3x

Hence

(11)
∫

D

|uε(x, t)|2d3x−
∫

D

|uε(x, 0)|2d3x = 2

t∫

0

dτ

∫

D

Tr((u⊗ u)ε(∇uε))d3x
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It can be easily checked that this last equality also holds when the differentiability assump-
tion is replaced by uε ∈ C([0, T ];L2(D)). Using (6), we get

(12) ‖rε(u, u)‖L3/2 ≤Cε2α‖u‖2
Bα,∞

3

Since
∫
D

Tr((uε ⊗ uε)∇uε)d3x = 0, we have from (10),

∣∣∣∣∣∣
∫

D

|uε(x, t)|2d3x−
∫

D

|uε(x, 0)|2d3x

∣∣∣∣∣∣ ≤

≤C

t∫

0

dτ
{
‖rε‖2/3

L3/2‖∇uε‖1/3
L3 + ‖u− uε‖2/3

L3 ‖∇uε‖1/3
L3

}

≤Cε3α−1

t∫

0

‖u(· , τ)‖3
Bα,∞

3
dτ → 0

as ε→ 0.
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