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Abstract: A new 4th order accurate finite difference scheme for the computation of

unsteady viscous incompressible flows is introduced. The scheme is based on the vorticity-

stream function formulation. It is essentially compact and has the nice features of a compact

scheme with regard to the treatment of boundary conditions. It is also very efficient, at

every time step or Runge-Kutta stage, only two Poisson-like equations have to be solved.

The Poisson-like equations are amenable to standard fast Poisson solvers usually designed

for second order schemes. Detailed comparison with the second order scheme shows the

clear superiority of this new 4th order scheme in resolving both the boundary layers and

the gross features of the flow. This efficient 4th order scheme also made it possible to

compute the driven cavity flow at Reynolds number 106 on a 10242 grid at a reasonable

cost. 4th order convergence is proved under mild regularity requirements. This is the first

such result to our knowledge.

§1. Introduction

Compact schemes have attracted a considerable amount of attention recently in the

area of viscous incompressible flow calculations. Ideally these schemes offer two attractive

features: high order accuracy and small stencil. Consequently the number of numerical

boundary conditions needed is considerably reduced, compared with standard high order

schemes. This is of great importance for the computation of viscous incompressible flows

for which numerical boundary conditions have always been an issue.

There has been numerous work on the construction of compact schemes for the incom-

pressible Navier-Stokes equations (see for example [8, 3, 13]). The most noted ones include
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the work of Gupta [8] and Dennis et.al. [3]. Almost all of these schemes are geared toward

steady flow calculations even though the ideas may in principle be applied to unsteady flows

as well. In the case of steady flows, these schemes have shown a great deal of potential [13].

As we emphasized repeatedly in [4], a basic design principle for finite difference schemes

in vorticity-stream function formulation is to avoid coupling between the vorticity boundary

condition and interior field equations. In this regard, the nonlinear convection terms present

a problem for designing compact schemes. In [3, 8], this difficulty was overcome by using

an appropriate change of variables. While accomplishing the task of obtaining compact

differencing formulas for the convective terms, this trick also introduces a considerable

amount of complexity into the scheme. This greatly limits the feasibility of these schemes.

The main purpose of this paper is to introduce a simple and efficient 4-th order scheme

which overcomes all these difficulties. One main idea is the following. Since the simultaneous

presence of the convection and viscous terms makes it difficult to construct simple and

efficient compact schemes which fit nicely the structure of both the momentum equation

and the kinematic constraint, it is natural to relax slightly the requirement of compactness

(for the convection terms) so long as it does not complicate the treatment of the boundary

conditions. The scheme we construct below is essentially compact and retains all the nice

features of compact schemes. Specifically, this new scheme has the following features:

(1). It is almost explicit. For 2D problems, only two Poisson or Helmholtz equations

are solved at each time step or each stage of the Runge-Kutta method. This changes to six

Poisson solves for 3D problems. No iteration is required between the boundary values of

vorticity and the interior field variables. Furthermore, the Poisson and Helmholtz equations

can be solved using standard fast Poisson solvers designed for second order schemes.

(2). The scheme is very simple and easy to implement. The complexity of the scheme

is essentially the same as that of a standard second order scheme. The simplicity of this

scheme enables us to prove rigorously convergence with 4-th order accuracy. This is the

first such result known to us.

The simplicity of this method also makes it very attractive for implementation on parallel
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machines. The compactness of the stencil means that very little information needs to be

passed between different processors.

This new scheme also compares well with spectral methods. It has the advantage of being

simple, robust, efficient, and much more stable. It is well-known that if the viscous term is

treated explicitly, the stability constraint for time steps associated with a Chebyshev method

has the form: ν ∆t
∆x4 ≤ Const, whereas for our method the time step restriction coming

from the diffusion term has the form ν ∆t
∆x2 ≤ Const. Consequently most calculations with

Chebyshev methods use implicit treatment of the viscous term. To be fair we should also

mention that Chebyshev methods also have the feature that they cluster much more points

on the boundary. So they resolve boundary layers better than finite difference methods

on uniform grids. On the other hand for high Reynolds number flows, it is not clear that

boundary layer is the most difficult part to resolve. Aside from that, while 4th order schemes

are in theory less accurate than spectral methods, the difference can only be seen at a very

high level of accuracy [12]. For most problems of practical interest, the 4th order methods

are comparable in accuracy with the spectral method [12].

Another important issue is whether the method has any cell Reynolds number constraint.

As was discussed in [4], because of the 4th order Runge-Kutta time-stepping procedure we

use, coupled with a centered type of scheme in space, this new method does not have any

cell Reynolds number constraint. In fact, for the calculations presented in Section 3, the

cell Reynolds number will be as high as 103.

There are several competing ways of making 4th order schemes in the literature [11, 9,

18, 19]. Among them, [9, 11] use the velocity-pressure formulation and the technique of

applying the differentiated PDEs at the boundary. [18] uses the vorticity-streamfunction

formulation with Hermite interpolation and second order formulas at the boundary. [19]

also uses vorticity-streamfunction formulation and one-sided differences at the boundary.

One can even extrapolate the results of a second order scheme to get 4th order accuracy

[20]. A fair and detailed comparison of how well these different schemes actually perform

is not an easy task and can only be left for future work.
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The rest of this paper is organized as follows. In §2 we describe the scheme. In §3 we

show our preliminary numerical results. We make a fairly detailed comparison of this new

4th order scheme with the classical second order scheme using the example of driven cavity

flow. Our results show a clear superiority of this 4th order scheme in resolving both the

boundary layers and the gross features of the flow. We also show the numerical results

computed on a 10242 grid at Reynolds number 106. The convergence results are proved in

§4. Some remarks are made in §5.

§2. Description of the scheme

We center our discussion on 2D problems. The scheme can be extended naturally to

3D provided that we use the vorticity-vector potential formulation. Since it requires much

more notations we will postpone that to [5].

Our starting point is the incompressible Navier-Stokes equation in vorticity-stream func-

tion formulation

(2.1)




∂ω

∂t
+ (u·∇)ω = ν∆ω ,

∆ψ = ω ,

with the boundary condition

(2.2) ψ = 0,
∂ψ

∂n
= 0

Here ψ is the stream function, u = (u, v) = (−ψy, ψx) is the velocity, ω = −uy + vx is the

vorticity. We can easily include forcing or inhomogeneous boundary conditions.

We first discuss the treatment of the Stokes part, treating the nonlinear convection terms

as if they were some known forcing functions. We will use the notation: f = ∂x(uω)+∂y(vω)

and write the first equation in (2.1) as

(2.3)
∂ω

∂t
= ν�ω − f

The most obvious and well-known compact discretization of (2.3) is

(2.4)
(
1 +

h2

12
�h

)∂ω
∂t

= ν
(
�h +

h2

6
D2
xD

2
y

)
ω −

(
1 +

h2

12
�h

)
f.

6



Here �h is the standard 5-point formula for �, and the operators D2
x, D2

y are defined by

(D2
xg)(x, y) =

g(x+ h, y) − 2g(x, y) + g(x− h, y)
h2

(D2
yg)(x, y) =

g(x, y + h) − 2g(x, y) + g(x, y − h)
h2

In the following, we will also use the notation

(D̃xg)(x, y) =
g(x+ h, y) − g(x− h, y)

2h

(D̃yg)(x, y) =
g(x, y + h) − g(x, y − h)

2h

We have assumed, without loss of generality, that �x = �y = h.

Γ

Γ

x

y

Fig. 1 “ghost” points are indicated with “o”

(2.4) is a O(h4) approximation to (2.3). Similarly we discretize the second equation in
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(2.1) using

(2.5)
(
�h +

h2

6
D2
xD

2
y

)
ψ =

(
1 +

h2

12
�h

)
ω

So far it has been completely standard. We now come to the boundary conditions.

Assume that the mesh is as depicted in Figure 1. It is natural to supplement (2.5) with the

condition of no normal flow:

ψ
∣∣∣
Γ
= 0

In order to obtain the numerical values at the “ghost points” outside the physical domain

Ω, we use the no-slip condition ∂ψ
∂n

∣∣∣
Γ

= 0 twice at the physical boundary Γ = Γx∪Γy: once

using a 4-th order one-sided approximation, once using a 4-th order centered approximation.

For example, at the boundary Γy we have

(2.6)
(
∂ψ

∂x

)
0,j

≈ −3ψ−1,j − 10ψ0,j + 18ψ1,j − 6ψ2,j + ψ3,j

12h

(2.7)
(
∂ψ

∂x

)
0,j

≈ ψ−2,j − 8ψ−1,j + 8ψ1,j − ψ2,j

12h

Consequently, we have

(2.8) ψ−1,j = 6ψ1,j − 2ψ2,j +
1
3
ψ3,j − 4h

(
∂ψ

∂x

)
0,j

(2.9) ψ−2,j = 40ψ1,j − 15ψ2,j +
8
3
ψ3,j − 20h

(
∂ψ

∂x

)
0,j

To evaluate the vorticity at the boundary, we use a 4-th order approximation of ω = �ψ =

ψxx:

(2.10) ω0,j =
1

12h2

(
16(ψ−1,j + ψ1,j) − (ψ−2,j + ψ2,j)

)

Using (2.8-2.9), we obtain

(2.11) ω0,j =
108ψ1,j − 27ψ2,j + 4ψ3,j

18h2
− 11

3h

(
∂ψ

∂x

)
0,j

This is known as Briley’s formula. [1].

8



Now the velocity u = (u, v) can be evaluated readily at all interior grid points by using

the standard 4-th order accurate formulas:

(2.12) u = −D̃y

(
1 − h2

6
D2
y

)
ψ; v = D̃x

(
1− h2

6
D2
x

)
ψ,

or some standard compact difference operators. On the boundary Γ, we use naturally

(2.13) u = 0, v = 0.

To treat the convection terms, we note that

(2.14)
(
1 +

h2

12
�h

)
D̃x

(
1 − h2

6
D2
x

)
= D̃x

(
1 +

h2

6
D2
y

)
− h2

12
�hD̃x +O(h4) .

Hence we can approximate
(
1 + h2

12�h

)
f to 4-th order using

(2.15) (
1 +

h2

12
�h

)
f

=
(
1 +

h2

12
�h

){
D̃x

(
1 − h2

6
D2
x

)
(uω) + D̃y

(
1 − h2

6
D2
y

)
(vω)

}
+O(h4)

= D̃x

(
1 +

h2

6
D2
y

)
(uω) + D̃y

(
1 +

h2

6
D2
x

)
(vω) − h2

12
�h

(
D̃x(uω) + D̃y(vω)

)
+O(h4)

= D̃x

(
1 +

h2

6
D2
y

)
(uω) + D̃y

(
1 +

h2

6
D2
x

)
(vω) − h2

12
�h

(
uD̃xω + vD̃yω

)
+O(h4)

The operator appearing in the first term of the right hand side of (2.15) has a 9-point

compact stencil, and so does the operator in the second term. The third term, however,

is not compact. Nevertheless this does not present any problem computationally for two

reasons: In the interior of the domain (for i, j ≥ 2), this term can be evaluated very

efficiently since the convection terms will be treated explicitly in the fully discrete scheme.

Near the boundary (i, or j = 1), we need the boundary value of uD̃xω+ vD̃yω on Γ. In the

present case, we can set

(2.16) uD̃xω + vD̃yω
∣∣∣
Γ
= 0

and still preserve 4-th order accuracy. More generally, given u, v and ω, it is easy to evaluate

uD̃xω + vD̃yω at the boundary with second order accuracy. For example if Γ is a wall, we
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must have v = 0. Hence uD̃xω + vD̃yω = uD̃xω which can be readily computed. If Γ is

an in- or out-flow boundary, we can often specify the values of vorticity near Γ. Therefore

uD̃xω + vD̃yω can again be easily computed. These will be discussed in more detail later.

Finally, we discuss the temporal discretization procedure. For simplicity we will present

the forward Euler time-discretization. The extension to multi-step or Runge-Kutta methods

is straightforward. In the computations presented below we use the classical 4-th order

Runge-Kutta method.

Initialization: Given {ω0
ij}, compute

(
1 +

h2

12
∆h

)
ω0 = ω0

Time-stepping: Given {ωnij}, we compute {ωn+1
ij } via the following steps.

Step 1. Update
{
ωn+1
i,j

}
i≥1, j≥1

using

(2.18)

ωn+1 − ωn

∆t
+ D̃x

(
1 +

h2

6
D2
y

)
(unωn) + D̃y

(
1 +

h2

6
D2
x

)
(vnωn)

−h
2

12
∆h(unD̃xω

n + vnD̃yω
n) = ν

(
∆h +

h2

6
D2
xD

2
y

)
ωn

Step 2. Solve for
{
ψn+1
i,j

}
i≥1,j≥1

using

(2.19)
(
∆h +

h2

6
D2
xD

2
y

)
ψn+1 = ωn+1

with the boundary condition

ψn+1
∣∣∣
Γ
= 0.

Compute ψn+1 at the “ghost points” using (2.8).

Step 3. Solve for
{
ωn+1
i,j

}
i≥1,j≥1

using

(2.20)
(
1 +

h2

12
∆h

)
ωn+1 = ωn+1

with the boundary condition (2.11).

Step 4. Update the velocity using

(2.21) un+1 = −D̃y

(
1 − h2

6
D2
y

)
ψn+1 , vn+1 = D̃x

(
1− h2

6
D2
x

)
ψn+1
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or some compact 4th order differencing [2] for i, j ≥ 1, and un+1
∣∣∣
Γ
= 0, vn+1

∣∣∣
Γ
= 0.

The efficiency of this method is obvious. Unlike most other schemes based on vorticity-

stream function formulation, here there is no need to iterate between the boundary values

of vorticity and the interior field variables. Only two Poisson-like equations, namely (2.19)

and (2.20), are solved at each step or each stage of the Runge-Kutta method. Both can be

solved using standard fast Poisson solvers.

The changes needed for the case ∆x �= ∆y are essentially obvious:

∆h +
h2

6
D2
xD

2
y changes to ∆h +

1
12

(∆x2 + ∆y2)D2
xD

2
y ,

1 +
h2

12
∆h changes to 1 +

1
12

(
∆x2D2

x + ∆y2D2
y

)
,

1 +
h2

6
D2
x changes to 1 +

∆x2

6
D2
x ,

1 +
h2

6
D2
y changes to 1 +

∆y2

6
D2
y .

Likewise, external forcing can be incorporated in a trivial way. Another extension which

we need below for the driven cavity flow is the case when the physical boundary slips. In

this case (2.16) is no longer consistent. However, an easy modification of (2.16) is sufficient.

Take the case when Γx slips with velocity ub(x):

u = ub(x) , v = 0

on Γx. In this case

uD̃xω + vD̃yω
∣∣∣
Γ
= ub(x)D̃xω

which can be readily computed since ω|Γx is known.

At boundaries where there is an in- or out-flow, the formulas should be modified. For

clarity, we first present the modification for Thom’s formula coupled with the standard

second order scheme [4]. The homogeneous Dirichlet boundary condition (2.2) changes into

(2.22) ψn+1

∣∣∣∣
Γ
= ψbc , ψbc(s) =

∫ s

0
un ds
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where s parametrizes the boundary, un is the normal component of u. Using the above

relation, we get

ωi,0 = ∆hψi,0 =
ψi,1 − 2ψi,0 + ψi,−1

h2
+ ∂xv(xi) +O(h2)

Thom’s formula becomes

(2.23) ωi,0 = 2
ψi,1 − ψbc(xi)

h2
+

2
h
ubc(xi) + ∂xvbc(xi) .

Similarly for the 4th order scheme, the vorticity boundary condition (2.11) changes to

ωi,0 =
108ψi,1 − 27ψi,2 + 4ψi,3 − 125ψbc(xi)

18h2
+

11
3h
ubc(xi) + ∂xv(xi)

and (2.16) becomes

uD̃xω + vD̃yω
∣∣∣
Γ
= ub(x)D̃xω + vb(x)Dyω

where Dy is a second order accurate one-sided approximation to ∂y.

This scheme is named essentially compact (EC4 for short) since the only non-compact

part occurs in the treatment of the convection terms, and the non-compact differencing

does not increase the need for numerically supplemented boundary conditions. So the

most attractive features of the compact schemes are retained. Only one one-sided formula

(2.6) is used. The rest are centered differences. This is the minimum number of one-sided

formulas one can get away with for a fourth order scheme [22]. This feature of our scheme

greatly simplifies the analysis presented below. We should remark that clever use of one-

sided differences in the convection terms might lead to a better method for high Reynolds

number flows. But this is a different level of issue and will not be addressed here.

§3. Numerical Results

We implemented EC4 on the SPARC station and the C-90 at Pittsburgh Supercom-

puting Center, for both 2D and 3D problems. Here we report an example of our 2D

computation–the driven cavity flow. Numerical results for 3D will be presented in [5].

We used the classical 4-th order Runge-Kutta method to discretize time. We tested

numerically that the CFL number
(
= max

{
ν ∆t

∆x2 , |u|∞ ∆t
∆x

})
for the fully nonlinear code
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is about 1.8125. The Poisson and Helmholtz equations are solved using FFT. The 4-th

order accuracy of the code is checked by putting in different kinds of functions satisfying

the Navier-Stokes equation with appropriate forcing.

We will center our discussion on the comparison between EC4 and the standard second

order scheme (with Thom’s formula as the vorticity boundary condition). The details of this

second order method and its efficient implementation was discussed in [4]. For the present

discussion it is only necessary to know that the implementation of these two methods are

very similar: both use 4-th order Runge-Kutta in time and FFT to solve the Poisson-like

equations. In fact the EC4 code was a small modification of the second order code. The

flow domain is [0, 1] × [0, 1], with no-slip condition imposed. The upper boundary moves

with velocity ub(x). Most of our results are computed with ub(x) = 16x2(1−x)2 and initial

data: ψ0(x, y) = (y2 − y3)ub(x). These results will be presented in Sections 3.1–3.3. We

have also tried the more conventional boundary condition ub(x) = 1 with impulsive start.

These results will be presented in Section 3.4.

3.1. Ability to resolve the boundary layers

One major difficulty in the computation of high Reynolds number incompressible flows

is the resolution of the viscous boundary layer. The thickness of the boundary layer is on the

order of
√
ν (in dimensionless units) which is comparable to the smallest active scale in a 2D

incompressible flow [9]. This viscous boundary layer has to be resolved to some extent since

it separates eventually and the vortical structures generated from the separation drastically

influence the overall flow.

In Figures 2.a and 2.b we plot the numerically computed vorticity field using respectively

the second order scheme and EC4 at a horizontal cut {y = 0.5} at t = 2. Both computations

are done on a 1282 grid with ν = 10−4. The solid line is the numerically converged solution

computed using the second order method on a 4002 grid. The superiority of EC4 in resolving

the boundary layer is rather clear. While both solutions on the coarse grid undershoot in

the boundary layer, the solution given by EC4 undershoots much less than the one given

by the second order scheme. Moreover, there is also an appreciable amount of overshoot in
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the solution of the second order scheme.

(Note to printer: Please place Figures 2.a and 2.b near here).

Another sign for EC4’s ability to better resolve the boundary layer is displayed in Figures

3.a and 3.b, where we compare the contour plots of the numerically computed vorticity field

using, respectively, the second order scheme and EC4 on a 1002 grid. Mesh-scale oscillations

can be seen quite clearly in Figure 3.a for the second order scheme, but not in Figure 3.b

for EC4. We should remark that in this case the flow is only marginally resolved for EC4,

but it is not resolved by any reasonable standards for the second order scheme.

(Note to printer: Please place Figures 3.a and 3.b near here).

3.2. Ability to resolve gross features of the flow

In this category we will only present one piece of evidence displayed in Figures 4.a-c.

These three figures look very similar, except for one important difference. In the numerically

converged solution plotted in Figure 4.a, the vortex at the lower right corner has a bump on

one side. This bump is clearly reproduced in Figure 4.b which is the result of a calculation

using EC4 on a 962 grid. However, this feature is missed entirely in Figure 4.c, which shows

the result of the second order scheme on a 1282 grid.

(Note to printer: Please place Figures 4.a-c near here).

3.3. Numerical result of the driven cavity flow at Reynolds number 106 com-

puted on a 10242 grid

Most important among all of these features is the exciting possibility brought by this new

efficient 4th order scheme to resolve flows at higher Reynolds number. In [4] we computed

the driven cavity flow at Reynolds number 105 using the second order scheme on a 10242

grid (which is typically what we can do with our modest computing budget). Attempts

to compute the flow at Reynolds number 106 failed since numerical solution quickly turns

into noise. With EC4, we have been able not only to confirm these earlier results, but also

to compute the driven cavity flow at Reynolds number 106. Below we report some of our

results.

Figure 5 shows the vorticity contour at t = 2. This should be compared with Figure
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6 which shows the same information at Reynolds number 105. The initial and boundary

conditions are the same. The overall structure appeared in both figures are very similar, but

the vortices shed from the separated boundary layer at Reynolds number 106 are smaller.

To examine the resolution of the boundary layers, we display in Figure 7 the horizontal cut

of vorticity at y = 0.5 near the right boundary x = 1, with “x” representing the values

on the grid. The numerical solution displays a sharp transition at the boundary layer.

Even though there are only three points across the boundary layer, the numerical solution

does not contain any appreciable amount of oscillations away from the boundary. Near the

boundary, there is a undershoot at the 4th grid point. Still the undershoot is remarkably

small considering how sharp the transition is across the boundary. Clearly in the present

case the flow is only marginally resolved. We carried out this computation upto t = 10 but

so far we are only able to verify the results upto t = 2 on a 16002 grid.

(Note to printer: Please place Figures 5-7 near here).

We add a remark here about the cost of EC4. Our experience has shown consistently

that EC4 costs less than three times the cost of the second order scheme. For example,

to compute the driven cavity flow at Re = 105 on a 10242 grid on C-90 at the Pittsburgh

Supercomputing Center, with the same time steps, the second order scheme takes 2067

seconds to advance from t = 0 to t = 2, EC4 takes 5628 seconds (both on a single processor).

3.4. Results for the case of ub(x) = 1 with impulsive start (Note to printer: Please

place Figures 8.a-c near here).

In Figures 8.a-b we compare the results computed using EC4 and the second order

method with ub(x) = 1 and impulsive start at Reynolds number Re = 104. This is a

standard test problem, particularly for the steady Navier-Stokes equations [7, 20]. The

numerical parameters are set at: t = 400, CFL=1.5, h = 1/128. The two figures are very

different, even in gross features. To find out which one is closer to the truth, we plot in

Figure 8.c the results of the second order code on a 256 × 256 grid. Clearly it is much

closer to Figure 8.b. These results also resemble closely the ones reported in [7, 20]. For

the second order scheme on a 128× 128 grid, the numerical oscillations generated at the lid
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are so big that they lock the flow at an entirely wrong state.

§4. Proof of 4th order convergence for smooth solutions

Because of their complexity, it is usually very difficult to prove uniform convergence of

high order schemes when boundaries are involved. The compactness of our scheme presents

considerable amount of simplification that enables us to give a fairly elegant proof of 4th

order convergence under mild regularity assumptions.

For simplicity of presentation we will work with the special case when Ω = [0, 1]× [0, 1]

with no-slip boundary condition at {y = 0, 1} and periodic boundary condition at {x = 0, 1}.
The associated numerical grid will be denoted by {xi = i/N, yj = j/N} with i = 0, 1, · · · , N
and j = 0, 1, · · · , N . The periodicity condition in the x-direction means that there is

no boundary term when we sum by parts over the i index. We will concentrate on the

semi-discrete case. Extension to the fully discrete scheme is more or less straightforward.

Extension to the case when we have different number of grid points in the x and y directions

is trivial.

Theorem. For any α > 0, let ψe ∈ L∞([0, T ];C6,α(Ω)) be the solution of the Navier-

Stokes equation (2.1)-(2.2) and uh be the approximate solution of EC4, then we have

sup
0≤t≤T

‖u(·, t) − uh(·, t)‖L2 ≤ Ch4 sup
0≤t≤T

‖ψe(·, t)‖2
C6,α(Ω)

Here we will prove 4th order convergence under the assumption that the solution is as

smooth as we want. The proof of the theorem as stated above goes along the same lines but

is a bit more complicated. The details of that can be obtained directly from the authors.

The convergence proof follows the standard strategy of consistency and stability esti-

mates. In the consistency part, we use the exact stream function as the starting point.

Instead of directly comparing the numerical solutions with the exact velocity and vorticity,

we compare them with the ones constructed from the exact stream function. The con-

structed discrete fields satisfy exactly the boundary conditions in the numerical scheme.

The difference between these constructed fields and the exact ones are estimated in Lemma
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4.1. The advantage of this approach is that all truncation errors are lumped into the mo-

mentum equation, no error terms appear in the boundary conditions. This simplifies the

summation by parts used repeatedly in the stability part of the proof.

Analogous results for the second order schemes were proved in a series of papers [16, 14,

10, 15]. The basic idea used in these papers is that once stability in L2 is established for the

linearized equations, convergence (together with convergence of derivatives) follows from

the general result of Strang [21]. Our interest here is mainly to prove 4th order convergence

for the compact scheme. We are not aware of such result even for the heat equation when

boundaries are present.

4.1. Consistency analysis

Let (ψe, ue, ve, ωe)(x, y, t) be the exact solution of the Navier-Stokes equation (2.1)-(2.2)

and let ψ̂ be a solution of

(4.1)




∆(∂t − ν∆)ψ̂ = 0 ,

ψ̂ = 0 ,
∂ψ̂

∂y
=

1
20
∂5ψe
∂y5

, on Γx ,

ψ̂(x, y, 0) = 0

and ω̂ = ∆ψ̂. Denote

(4.2) ψ = ψe + h4ψ̂ , ω = ωe + h4ω̂ .

The correction terms associated with ψ̂ and ω̂ are needed to get consistency at the boundary.

This is a classical technique [6] necessary even for analyzing finite difference approximations

for the Laplace equation with Dirichlet boundary condition when the physical boundary is

not a grid line (see Appendix 2 of [4]).

Let

(4.4) Ψi,j(t) = ψ(xi, yj, t) ,

for 0 ≤ i ≤ N , 0 ≤ j ≤ N , and

(4.5) Ψi,−1 = 6Ψi,1 − 2Ψi,2 +
1
3
Ψi,3 .

17



Let

(4.6) Ui,j = −D̃y

(
1− h2

6
D2
y

)
Ψi,j , Vi,j = D̃x

(
1 − h2

6
D2
x

)
Ψi,j ,

(4.7) Ωi,j =
(
∆h +

h2

6
D2
xD

2
y

)
Ψi,j

for 0 ≤ i ≤ N , 1 ≤ j ≤ N − 1, and let Ωi,j be the solution of

(4.8)
(
1 +

h2

12
∆h

)
Ωi,j = Ωi,j ,

with the boundary condition:

(4.9) Ωi,0 =
1

18h2

(
108Ψi,1 − 27Ψi,2 + 4Ψi,3

)
, 0 ≤ i ≤ N

and similarly for {Ωi,N}. It is helpful here to think of ψ as been extended smoothly to a

neighborhood of Ω: Ωδ = [0, 1] × [−δ, 1 + δ], and still retain periodicity in the x-variable.

Such an extension is always possible.

Lemma 4.1. We have

(4.10)

Ωi,0(t) = ωe(xi, y0, t) +O(h4) ,

Ui,j(t) = ue(xi, yj , t) +O(h4) ,

Vi,j(t) = ve(xi, yj , t) +O(h4) .

Proof: We will drop the time variable t in the proof. Using Taylor expansion and

the fact that

ψe
∣∣∣
Γ
=
∂ψe
∂y

∣∣∣
Γ
= 0

we have

(4.11) ψe(xi, y−1) = 6ψe(xi, y1)− 2ψe(xi, y2) +
1
3
ψe(xi, y3)− h5

5
∂5
yψe(xi, y0) +O(h6)

where y−1 = −h. Similarly, using the fact that

(4.12) ψ̂
∣∣∣
Γ
= 0.

we also have

(4.13) ψ̂(xi, y−1) = 6ψ̂(xi, y1)− 2ψ̂(xi, y2) +
1
3
ψ̂(xi, y3) + 4h∂yψ̂(xi, y0) +O(h2) .

18



Hence from (4.2), (4.11-12) we have

(4.14) ψ(xi, y−1) = 6ψ(xi, y1)− 2ψ(xi, y2) +
1
3
ψ(xi, y3) +O(h6) .

For the boundary vorticity we have

ω(xi, y0) = ∂2
xψ(xi, y0) =

1
12h2

(
11ψ(xi, y−1) + 6ψ(xi, y1) + 4ψ(xi, y2) − ψ(xi, y3)

)
+O(h4).

Using (4.14), this becomes

ω(xi, y0, t) =
1

18h2

(
108Ψi,1 − 27Ψi,2 + 4Ψi,3

)
+O(h4) = Ωi,0 +O(h4) .

(This is an alternative way of deriving Briley’s formula). This implies

(4.15) Ωi,0 = ωe(xi, y0, t) +O(h4) .

We also have

(4.16)

Ωi,j =
(
∆h +

h2

6
D2
xD

2
y

)
Ψi,j

= ∆ψ(xi, yj) +
h2

12
(∂4
x + ∂4

y)ψ(xi, yj) +
h2

6
∂2
x∂

2
yψ(xi, yj) +O(h4)

= ∆ψe(xi, yj) +
h2

12
∆2ψe(xi, yj) +O(h4)

=
(
1 +

h2

12
∆

)
ωe(xi, yj) +O(h4)

=
(
1 +

h2

12
∆h

)
ωe(xi, yj) +O(h4) .

Therefore we get 


(
1 +

h2

12
∆h

)
(Ωi,j − ωe(xi, yj)) = O(h4) ,

(Ω − ωe)
∣∣∣
Γ
= O(h4) .

Since the matrix I + h2

12∆h is uniformly diagonal dominant, we have

(4.17) Ωi,j = ωe(xi, yj) +O(h4) .

This proves the first inequality of (4.10). The rest follows directly from (4.5) and (4.6), and

the fact that

(4.18) Ψi,−1(t) = ψe(xi, y−1, t) + h4ψ̃(xi, y−1, t) +O(h6) .

19



This completes the proof of the lemma.

Finally we compute the truncation error in the momentum equation. At (xi, yj), 0 ≤
i ≤M , 1 ≤ j ≤ N − 1, we have

(4.19) (
1 +

h2

12
∆h

)
∂tΩ + D̃x

(
1 +

h2

6
D2
y

)
(UΩ) + D̃y

(
1 +

h2

6
D2
x

)
(V Ω)

−h
2

12
∆h

(
UD̃xΩ + V D̃xΩ

)
− ν

(
∆h +

h2

6
D2
xD

2
y

)
Ω

=
(
1 +

h2

12
∆

)
∂tω + ∂x

(
1 +

h2

6
∂2
x

)(
1 +

h2

6
∂2
y

)
(uω) + ∂y

(
1 +

h2

6
∂2
y

)(
1 +

h2

6
∂2
x

)
(vω)

−h
2

12
∆

(
u∂xω + v∂yω

)
− ν

(
∆ +

h2

12
(∂4
x + ∂4

y) +
h2

6
∂2
x∂

2
y

)
ω +O(h4)

=
(
1 +

h2

12
∆

)
∂tω +

(
1 +

h2

6
∆

)
∂x(uω) +

(
1 +

h2

6
∆

)
∂y(vω)

−h
2

12
∆

(
u∂xω + v∂yω

)
− ν

(
1 +

h2

12
∆

)
∆ω +O(h4)

=
(
1 +

h2

12
∆

)(
∂tω + u∂xω + v∂yω − ν∆ω

)
+O(h4)

= O(h4) .

Here U and V are defined by (4.6) and hence smooth upto the boundary. At the boundary

they vanish up to O(h4).

4.2. Stability and error estimates

The initial condition for the numerical solution {ψi,j(t)} is taken to be: ψi,j(0) =

ψe(xi, yj, 0). Define

(4.20)
ψ̃i,j = ψi,j −Ψi,j , ω̃i,j = ωi,j −Ωi,j ,

ũi,j = ui,j − Ui,j , ṽi,j = vi,j − Vi,j .
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We have from (4.19) that

(4.21)

(
1 +

h2

12
∆h

)
∂tω̃ − ν

(
∆h +

h2

6
D2
xD

2
y

)
ω̃

= −D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃) − D̃y

(
1 +

h2

6
D2
x

)
(ṽΩ + vω̃)

+
h2

12
∆h(uD̃xω̃ + vD̃yω̃) +

h2

12
∆h(ũD̃xΩ + ṽD̃yΩ) +O(h4) .

From (4.7) and (4.8), we have

(4.22)
(
∆h +

h2

6
D2
xD

2
y

)
ψ̃ =

(
1 +

h2

12
∆h

)
ω̃ .

From (4.5) and (4.6), we obtain

(4.23) ũ = −D̃y

(
1 − h2

6
D2
y

)
ψ̃ , ṽ = D̃x

(
1− h2

6
D2
x

)
ψ̃ .

From (4.3), (4.4) and (4.5), we have

(4.24) ψ̃i,0 = ψ̃i,N = 0 ,

(4.25) ψ̃i,−1 = 6ψ̃i,1 − 2ψ̃i,2 +
1
3
ψ̃i,3

and

(4.26) ω̃i,0 =
1

18h2

(
108ψ̃i,1 − 27ψ̃i,2 + 4ψ̃i,3

)
.

Notice that the error functions satisfy the boundary conditions in the numerical exactly.

The basic strategy in estimating the error is to multiply (4.21) by −(1+ h2

12∆h)ψ̃ij , sum

by parts and estimate the results with special care to the boundary terms. This is done in

several steps which we put together as lemmas. We will use the discrete L2-inner product

(4.27) 〈u , v〉 =
∑

0≤i≤N−1
1≤j≤N−1

ui,j vi,j h
2

and the discrete L2-norm

(4.28) ‖u‖ = 〈u , u〉1/2 .
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Lemma 4.2. The following identities hold:

(4.29)

−
〈(

1 +
h2

12
∆h

)
ψ̃ ,

(
1 +

h2

12
∆h

)
∂tω̃

〉

=
1
2
d

dt

(
‖∇hψ̃‖2 − h2

12
‖∆hψ̃‖2 − h2

6
‖DxDyψ̃‖2 +

h4

72

(
‖DxD

2
yψ̃‖2 + ‖DyD

2
xψ̃‖2

))

and

(4.30)

〈(
1 +

h2

12
∆h

)
ψ̃ ,

(
∆h +

h2

6
D2
xD

2
y

)
ω̃

〉

=
∥∥∥∥(

1 +
h2

12
∆h

)
ω̃

∥∥∥∥2

+
∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1ω̃i,0

+
∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,N−1ω̃i,N

Proof : Using (4.22), (4.24), summing by parts, we have

(4.31) 〈(
1 +

h2

12
∆h

)
ψ̃ ,

(
1 +

h2

12
∆h

)
∂tω̃

〉

=
〈(

1 +
h2

12
∆h

)
ψ̃ ,

(
∆h +

h2

6
D2
xD

2
y

)
∂tψ̃

〉

= 〈ψ̃ , ∆h∂tψ̃〉+ h2

12
〈∆hψ̃ , ∆h∂tψ̃〉 +

h2

6
〈ψ̃ , D2

xD
2
y∂tψ̃〉+

h4

72
〈∆hψ̃ , D

2
xD

2
y∂tψ̃〉 .

Summing by parts and using (4.24) we have

〈ψ̃ , ∆h∂tψ̃〉 = −1
2
d

dt
‖∇hψ̃‖2 ,

〈ψ̃ , D2
xD

2
y∂tψ̃〉 =

1
2
d

dt
‖DxDyψ̃‖2 ,

〈∆hψ̃ , D
2
xD

2
y∂tψ̃〉 = 〈D2

xψ̃ , D
2
xD

2
y∂tψ̃〉 + 〈D2

yψ̃ , D
2
xD

2
y∂tψ̃〉

=
1
2
d

dt

(
‖DyD

2
xψ̃‖2 + ‖DxD

2
yψ̃‖2

)
.

In the last equality we used the fact that D2
xψ

∣∣∣
j=0,N

= 0 since ψ̃
∣∣∣
j=0,N

= 0. This proves

(4.29). In order to prove (4.30), we need to switch the difference operators acting on ψ̃ and
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ω̃ on the left hand side of (4.30). Boundary term occurs when we sum by parts the Dy

operator. Using (4.24)-(4.26), we have

〈(
1 +

h2

12
∆h

)
ψ̃ ,

(
∆h +

h2

6
D2
xD

2
y

)
ω̃

〉

=
〈(

1 +
h2

12
D2
x +

h2

12
D2
y

)
ψ̃ ,

(
D2
x +

(
1 +

h2

6
D2
x

)
D2
y

)
ω̃

〉

=
〈(

1 +
h2

12
D2
x

)
ψ̃ , D2

xω̃

〉
+
h2

12

〈
D2
yψ̃ ,

(
1 +

h2

6
D2
x

)
D2
yω̃

〉
+
h2

12

〈
D2
yψ̃ , D

2
xω̃

〉

+
〈(

1 +
h2

12
D2
x

)
ψ̃ ,

(
1 +

h2

6
D2
x

)
D2
yω̃

〉
.

We always have

〈(
1 +

h2

12
D2
x

)
ψ̃ , D2

xω̃

〉
=

〈
D2
xψ̃ ,

(
1 +

h2

12
D2
x

)
ω̃

〉
.

Since 〈(
1 +

h2

12
D2
x

)
ψ̃ ,

(
1 +

h2

6
D2
x

)
D2
yω̃

〉

=
〈(

1 +
h2

6
D2
x

)
ψ̃ , D2

yω̃

〉
+
h2

12

〈
D2
xψ̃ , D

2
yω̃

〉
+
h4

72

〈
D2
xψ̃ , D

2
xD

2
yω̃

〉

=
h2

12

〈
D2
xψ̃ , D

2
yω̃

〉
+

〈(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃ , D2

yω̃

〉

and 〈(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃ , D2

yω̃

〉

=
〈
D2
yψ̃ ,

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ω̃

〉
+

∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1 ω̃i,0

+
∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,N−1 ω̃i,N
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we get 〈(
1 +

h2

12
D2
x

)
ψ̃ ,

(
1 +

h2

6
D2
x

)
D2
yω̃

〉

=
〈(

1 +
h2

6
D2
x

)
D2
yψ̃ ,

(
1 +

h2

12
D2
x

)
ω̃

〉
+

∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1 ω̃i,0

+
∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,N−1 ω̃i,N .

Other terms can be dealt with similarly. Now using (4.22) and (4.26) we prove (4.30).

Lemma 4.3. We have

(4.32) ‖D2
yψ̃‖2 ≤

∥∥∥∥(
1 +

h2

12
∆h

)
ω̃

∥∥∥∥2

,

(4.33) ‖ω̃‖2 ≤ 6
5

∥∥∥∥(
1 +

h2

12
∆h

)
ω̃

∥∥∥∥2

,

(4.34)
∥∥∥∥(

1 +
h2

6
D2
x +

h4

72
D4
x

)
D2
yψ̃

∥∥∥∥2

≤ ‖D2
yψ̃‖2 .

Proof : Since {ψ̃i,j} is periodic in i and zero for j = 0, N , we can Fourier transform

{ψ̃i,j} in the i-direction and Sine transform it in the j-direction, i.e.,

(4.35) ψ̃i,j =
∑
k,�

̂̃
ψk,� e

2πikxi sin(%πyj) .

Parserval equality gives

(4.36)
∑
i,j

(ψ̃i,j)2 =
∑
k,�

∣∣∣ ̂̃ψk,�∣∣∣2 .
We neglect the constants in front of the summation since they do not affect the result. Let

(4.37) fk = − 4
h2

sin2
(2πkh

2

)
, g� = − 4

h2
sin2

(%πh
2

)
,

we have

(4.38) D2
xψ̃i,j =

∑
k,l

fk
̂̃
ψk,l , D2

yψ̃i,j =
∑
k,l

g�
̂̃
ψk,l .
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Since 1 − h2

6 g� ≥ 0, we have

∑
i,j

∣∣∣∣(1 +
h2

12
∆h

)
ω̃i,j

∣∣∣∣2 =
∑
i,j

∣∣∣∣(∆h +
h2

6
D2
xD

2
y

)
ψ̃i,j

∣∣∣∣2

=
∑
k,�

∣∣∣∣g� + fk
(
1− h2

6
g�

)∣∣∣∣2 ∣∣∣ ̂̃ψk,�∣∣∣2

≥
∑
k,�

g2
�

∣∣∣ ̂̃ψk,�∣∣∣2 =
∑
i,j

∣∣∣D2
yψ̃i,j

∣∣∣2 .

Similarly, since x = sin2(k∆x2 ) ∈ [0, 1], we have

∑
i,j

|
(
1 +

h2

6
D2
x +

h4

72
D4
x

)
D2
yψ̃i,j |2 =

∑
k,�

g2
�

(
1 +

h2

6
fk +

h4

72
f2
k

)2 ∣∣∣ ̂̃ψk,�∣∣∣2

= max
0≤x≤1

(
1 − 2x

3
+

2x2

9

)2 ∑
k,�

g2
�

∣∣∣ ̂̃ψk,�∣∣∣2

≤
∑
i,j

∣∣∣D2
yψ̃i,j

∣∣∣2 .

The proof of (4.33) is similar. This completes the proof of the lemma.

Lemma 4.4. (Estimate of the Boundary Terms)

(4.39)

∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1ω̃i,0

+
∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,N−1ω̃i,N

≥ −1
2
‖D2

yψ̃‖2 .

Proof : We have
1

18h2

∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1

(
108ψ̃i,1 − 27ψ̃i,2 + 4ψ̃i,3

)

=
1

18h2

∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1

(
66ψ̃i,1 − 19h2(D2

yψ̃)i,1 + 4h2(D2
yψ̃)i,2

)

=
11
3h2

∑
i

(
|ψ̃i,1|2 +

h2

6
ψ̃i,1D

2
xψ̃i,1 +

h4

72
|D2

xψ̃i,1|2
)

−19
18

∑
i

ψ̃i,1
(
1 +

h2

6
D2
x +

h4

72
D4
x

)
(D2

yψ̃)i,1 +
2
9

∑
i

ψ̃i,1
(
1 +

h2

6
D2
x +

h4

72
D4
x

)
(D2

yψ̃)i,2 .
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We also have

|ψ̃i,1|2 +
h2

6
ψ̃i,1D

2
xψ̃i,1 +

h4

72
|D2

xψ̃i,1|2

≥ |ψ̃i,1|2 − 1
2
|ψ̃i,1|2 − h4

72
|D2

xψ̃i,1|2 +
h4

72
|D2

xψ̃i,1|2 ≥ 1
2
|ψ̃i,1|2 ,

−19
18
ψ̃i,1

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
(D2

yψ̃)i,1

≥ − 1
2h2

192

182
|ψ̃i,1|2 − 1

2

∣∣∣∣(1 +
h2

6
D2
x +

h4

72
D4
x

)
(D2

yψ̃)i,1
∣∣∣∣2h2

and
2
9

∑
i

ψ̃i,1
(
1 +

h2

6
D2
x +

h4

72
D4
x

)
(D2

yψ̃)i,2

≥ − 1
2h2

22

92
|ψ̃i,1|2 − 1

2

∣∣∣∣(1 +
h2

6
D2
x +

h4

72
D4
x

)
(D2

yψ̃)i,2
∣∣∣∣2h2 .

Since 11
6 − 1

2(
192

182 + 4
81) ≥ 0, we have

1
18h2

∑
i

(
1 +

h2

6
D2
x +

h4

72
D4
x

)
ψ̃i,1

(
108ψ̃i,1 − 27ψ̃i,2 + 4ψ̃i,3

)

≥ −1
2

∑
i

∑
j=1,2

∣∣∣∣(1 +
h2

6
D2
x +

h4

72
D4
x

)
D2
yψ̃i,j

∣∣∣∣2h2 .

The treatment of the second term at the left hand side of (4.39) is exactly the same. Now

using (4.34) we get

left hand side of (4.39) ≥ −1
2

∑
i

∑
j=1,2,N−2,N−1

∣∣∣∣(1 +
h2

6
D2
x +

h4

72
D4
x

)
D2
yψ̃i,j

∣∣∣∣2h2

≥ −1
2

∑
i,j

∣∣∣∣(1 +
h2

6
D2
x +

h4

72
D4
x

)
D2
yψ̃i,j

∣∣∣∣2h2 ≥ −1
2
‖D2

yψ̃i,j‖2 .

This completes the proof of the lemma.

Lemma 4.5. (Estimate of the Linearized Convection Term) Assume that the numerical

solution satisfies a uniform bound

(4.40) max
0≤t≤T,i,j

|ui,j(t)| ≤ C0 ,
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then we have

(4.41)
〈(

1 +
h2

12
∆h

)
ψ̃ , D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉
≤ Cν‖ũ‖2 +

ν

12
‖ω̃‖2 ,

(4.42)
〈(

1 +
h2

12
∆h

)
ψ̃ , D̃y

(
1 +

h2

6
D2
x

)
(ṽΩ + vω̃)

〉
≤ Cν‖ũ‖2 +

ν

12
‖ω̃‖2 ,

(4.43) −h
2

12

〈(
1 +

h2

12
∆h

)
ψ̃ , ∆h

(
uD̃xω̃ + vD̃xω̃

)〉
≤ Cν‖ũ‖2 +

ν

12
‖ω̃‖2 ,

and

(4.44) −h
2

12

〈(
1 +

h2

12
∆h

)
ψ̃ , ∆h

(
ũD̃xΩ + ṽD̃xΩ

)〉
≤ Cν‖ũ‖2 +

ν

12
‖ω̃‖2

where ũ = (ũ, ṽ) and Cν depends on C0 and ν.

Proof : We first prove (4.41). Summing by parts, we have〈(
1 +

h2

12
∆h

)
ψ̃ , D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉

=
h2

12

〈
∆hψ̃ , D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉
−

〈
D̃xψ̃ ,

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉
.

Notice that
h2

12

〈
∆hψ̃ , D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉

≤ 1
12

‖h∆hψ̃‖
∥∥∥∥hD̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

∥∥∥∥
≤ C‖∇hψ̃‖

∥∥∥∥(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

∥∥∥∥
≤ C‖D̃xψ̃‖

(
‖ũ‖ + ‖ω̃‖

)
.

In the last inequality we have used (4.40). Similarly,
〈
D̃xψ̃ ,

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉
≤ C‖D̃xψ̃‖

(
‖ũ‖+ ‖ω̃‖

)
.

Hence 〈(
1 +

h2

12
∆h

)
ψ̃ , D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉

≤ C
(
‖ũ‖2 + ‖ũ‖ ‖ω̃‖

)
≤ Cν‖ũ‖2 +

ν

12
‖ω̃‖2 .
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This gives (4.41). Now we prove (4.43). Clearly

− h4

122

〈
∆hψ̃ , ∆h

(
uD̃xω̃ + vD̃xω̃

)〉
≤ Cν‖ũ‖2 +

ν

12
‖ω̃‖2 ,

Hence,

−h
2

12

〈(
1 +

h2

12
∆h

)
ψ̃ , ∆h

(
uD̃xω̃ + vD̃xω̃

)〉

≤ −h
2

12

〈
ψ̃ , ∆h

(
uD̃xω̃ + vD̃xω̃

)〉
+ Cν‖ũ‖2 +

ν

12
‖ω̃‖2 ,

Since φ̃ = 0 on the boundary, the first term on the right hand side can be summed by parts

to become

−h
2

12

〈
ψ̃ , ∆h

(
uD̃xω̃ + vD̃xω̃

)〉

=
h2

12

〈
D+
x ψ̃ , D

−
x (uD̃xω̃ + vD̃xω̃)

〉
+
h2

12

〈
D+
y ψ̃ , D

−
y (uD̃xω̃ + vD̃xω̃)

〉

≤ Cν‖ũ‖2 +
ν

12
‖ω̃‖2 .

Here D±
x are forward and backward difference operators respectively. This gives (4.43). The

estimate of (4.44) is similar. The lemma is proved.

Now we prove our main theorem.

Proof: We first prove Theorem 1 assuming that (4.40) holds. Multiplying (4.21) by

−(1 + h2

12∆h)ψ̃, and using Lemma 4.5, we have

−
〈(

1 +
h2

12
∆h

)
ψ̃ ,

(
1 +

h2

12
∆h

)
∂tω̃

〉
+ ν

〈(
1 +

h2

12
∆h

)
ψ̃ ,

(
∆h +

h2

6
D2
xD

2
y

)
ω̃

〉

=
〈(

1 +
h2

12
∆h

)
ψ̃ , D̃x

(
1 +

h2

6
D2
y

)
(ũΩ + uω̃)

〉
+

〈(
1 +

h2

12
∆h

)
ψ̃ , D̃y

(
1 +

h2

6
D2
x

)
(ṽΩ + vω̃)

〉

−h
2

12

〈(
1 +

h2

12
∆h

)
ψ̃ , ∆h

(
uD̃xω̃ + vD̃xω̃

)〉
− h2

12

〈(
1 +

h2

12
∆h

)
ψ̃ , ∆h

(
ũD̃xΩ + ṽD̃xΩ

)〉

+
∑
i,j

O(h4)
∣∣∣∣(1 +

h2

12
∆h

)
ψ̃ij

∣∣∣∣h2

≤ Cν‖ũ‖2 +
4ν
12

‖ω̃‖2 +O(h8) + C‖ψ̃‖2

≤ O(h8) + C‖∇hψ̃‖2 +
4ν
12

‖ω̃‖2 .
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Lemmas 4.2-4.4 imply〈(
1 +

h2

12
∆h

)
ψ̃ ,

(
∆h +

h2

6
D2
xD

2
y

)
ω̃

〉

≥
∥∥∥∥(

1 +
h2

12
∆h

)
ω̃

∥∥∥∥2

− 1
2
‖D2

yψ̃‖2 ≥ 1
2

∥∥∥∥(
1 +

h2

12
∆h

)
ω̃

∥∥∥∥2

≥ 5
12

‖ω̃‖2 .

Together with Lemma 4.2, we have

1
2
d

dt

(
‖∇hψ̃‖2 − h2

12
‖∆hψ̃‖2 − h2

6
‖DxDyψ̃‖2 +

h4

72

(
‖DxD

2
yψ̃‖2 + ‖DyD

2
xψ̃‖2

))

≤ O(h8) +C‖∇hψ̃‖2 + 4ν
12‖ω̃‖2 − 5ν

12‖ω̃‖2 ≤ O(h8) + C‖∇hψ̃‖2 .

Integrating in time, we get

‖∇hψ̃‖2 − h2

12
‖∆hψ̃‖2 − h2

6
‖DxDyψ̃‖2 +

h4

72

(
‖DxD

2
yψ̃‖2 + ‖DyD

2
xψ̃‖2

)

≤ O(h8) + C

∫ t

0
‖∇hψ̃‖2 dt .

Since

‖∇hψ̃‖2 ≤ 3
(
‖∇hψ̃‖2 − h2

12
‖∆hψ̃‖2 − h2

6
‖DxDyψ̃‖2

)

we get

‖∇hψ̃‖2 ≤ O(h8) + C

∫ t

0
‖∇hψ̃‖2 dt .

By Gronwall inequality, we have

‖∇hψ̃‖2 ≤ O(h8) .

Thus, we have proved

(4.45) sup
0≤t≤T

‖u(·, t) − u(t)‖L2 ≤ Ch4 .

Using the inverse inequality, we have

(4.45) sup
0≤t≤T,i,j

|u(xi, yj, t) − ui,j(t)| ≤ Ch3 .

Now we can resort to a standard trick which asserts that (4.40) will never be violated if h

is small enough. The theorem is proved.
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§5. Concluding Remarks

We presented a new essentially compact 4th order scheme, together with ample numer-

ical evidence of its superiority over the second order scheme. We also presented a complete

theory. The cost of this new 4th order scheme is a little more than two times the cost of the

second order scheme. Since the complexity of the scheme is essentially the same as that of

the second order scheme, it can be used in all cases when the second order scheme can be

used, including cases when the geometry is reasonably complicated. Of course in such cases,

we may not be able to use FFT. But we can still use other fast Poisson solvers developed

for the second order scheme, or more general fast solvers such as the multi-grid method. In

any case, the usually most complicated part of the code, the elliptic solver, is the same as

in the second order method. Even for cases when the geometry itself cannot be specified

to 4th order accuracy, this 4th order method may still have some advantage because of its

small phase error. We also find it very encouraging that EC4 performed much better than

the second order method for the driven cavity flow when ub(x) = 1 where there is a sharp

singularity at the corners.

Perhaps the most exciting development brought about by EC4 is the possibility of ex-

ploring wall-bound flows at higher Reynolds number. Our preliminary study of the driven

cavity flow at Reynolds number 106 has already shown some remarkable small scale struc-

tures. These are now being looked at in more detail.
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Figure Captions

Figure 1. The numerical grid: “ghost points ” are shown in ‘Circ’.

Figure 2.a. Resolution of the boundary layer for the second order scheme. Shown in

the figure are the horizontal cuts of vorticity at y = 0.5. The solid line is the numerically

converged solution computed on a 4002 grid. The dashed line is computed on a 1282 grid

using the second order scheme. Other parameters: ν = 10−4, t = 2.

Figure 2.b. Resolution of the boundary layer for EC4. Shown in the figure are the

horizontal cuts of vorticity at y = 0.5. The solid line is the numerically converged solution

computed on a 4002 grid. The dashed line is computed on a 1282 grid using EC4. Other

parameters: ν = 10−4, t = 2.

Figure 3.a. Vorticity contour of the numerical solution computed on a 1002 grid using

the second order scheme. Numerical oscillations can be clearly seen. Other parameters:

ν = 10−4, t = 2.

Figure 3.b. Vorticity contour of the numerical solution computed on a 1002 grid using

EC4. There are no appreciable amount of numerical oscillations. Other parameters: ν =

10−4, t = 2.

Figure 4.a. Gross features of the flow. Shown in the figure is the contour plot of stream

function for the numerically converged solution computed on a 4002 grid. Other parameters:

ν = 10−4, t = 2.

Figure 4.b. Gross features of the flow. Shown in the figure is the contour plot of stream

function computed on a 962 grid using EC4. The bump on the lower right corner vortex is

clearly reproduced. Other parameters: ν = 10−4, t = 2.

Figure 4.c. Gross features of the flow. Shown in the figure is the contour plot of stream

function computed on a 1282 grid using the second order scheme. The bump on the lower

right corner vortex is missing. Other parameters: ν = 10−4, t = 2.

Figure 5. Contour plot of vorticity at Reynolds number 106 computed using EC4. Other

parameters: n = 1024, t = 2.

Figure 6. Contour plot of vorticity at Reynolds number 105 computed using EC4. Other
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parameters: n = 512, t = 2.

Figure 7. Resolution of the boundary layer for EC4. Shown in the figure is the horizontal

cut of vorticity at y = 0.5. Grid points are shown in “x”. Other parameters: n = 1024, t = 2.

Figure 8.a. Contour plot of vorticity for the case when ub(x) = 1 computed using the

second order scheme. Other parameters: n = 128, t = 400.

Figure 8.b. Contour plot of vorticity for the case when ub(x) = 1 computed using EC4.

Other parameters: n = 128, t = 400.

Figure 8.c. Contour plot of vorticity for the case when ub(x) = 1 computed using the

second order method. Other parameters: n = 256, t = 400.
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