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Abstract: This paper discusses three basic issues related to the design of finite

difference schemes for unsteady viscous incompressible flows using vorticity formulations:

the boundary condition for vorticity, efficient time-stepping procedure, and the relation

between these schemes and the ones based on velocity-pressure formulation. We show that

many of the newly developed global vorticity boundary conditions can actually be written

as some local formulas derived earlier. We also show that if we couple a standard centered

difference scheme with 3rd or 4th order explicit Runge-Kutta methods, the resulting schemes

have no cell Reynolds number constraints. For high Reynolds number flows, these schemes

are stable under the CFL condition given by the convective terms. Finally we show that the

classical MAC scheme is the same as Thom’s formula coupled with second order centered

differences in the interior, in the sense that one can define discrete vorticity in a natural way

for the MAC scheme, and get the same values as the ones computed from Thom’s formula.

We use this to derive an efficient 4th order Runge-Kutta time discretization for the MAC

scheme from the one for Thom’s formula. We present numerical results for driven cavity

flow at high Reynolds number (105).

§1. Introduction

In this paper we discuss three basic issues related to the design of finite difference

schemes for unsteady viscous incompressible flows using vorticity formulation: the boundary

condition for vorticity, efficient time-stepping procedure, and the relation between these

schemes and the ones based on velocity-pressure formulation. Our interest will be mainly

in the unsteady and possibly turbulent behavior at intermediate time scales, not the ultra

long time behavior at low Reynolds number. Therefore most of our discussion will not be
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relevant to steady state calculations. Although throughout this paper we will use mostly

forward Euler to illustrate our point, extension to Runge-Kutta schemes is straightforward.

The subject of vorticity boundary condition in the context of finite difference schemes

in vorticity formulation has a long history, going back at least to the 30’s when Thom’s

formula (see(2.4)) was derived [20]. Thom’s formula is generally referred to as being local

since vorticity at the boundary is given by a local relation which does not involve coupling

to other points at the boundary. There was a resurgence of interest in the 60’s and early

70’s when many variants of Thom’s formula were derived (see Section 2 and [18]). But

the application of these formulas in actual computations met with only limited success.

It was not clear for example whether high order formulas such as Pearson’s were actually

better than lower order ones. Since most of the computations at the time were steady state

calculations, these formulas were used in an iterative procedure, and choosing the right

relaxation parameter for the iteration was an issue that caused a great deal of confusion.

The status as of 1974 was summarized in the review article of Orszag and Israeli [12].

The point of view that has been heavily favored in the last decade is that the vorticity

boundary condition has to be global, i.e. one has to solve a system of equations coupling all

points on the boundary together to be able to get the boundary value of vorticity. Several

ways of obtaining such global vorticity boundary conditions were proposed, most notably

the methods of Quartapelle et.al. [15] and Anderson [1]. A comprehensive review of all

these issues can be found in [8].

The main purpose of Section 2 is to show that in the context of finite difference schemes,

many of these newly developed global vorticity boundary conditions can actually be written

as some local formulas such as Thom’s. As examples we will look at Quartapelle’s vorticity

boundary condition and several versions of Anderson’s. We show that the simplest form

of Quartapelle’s vorticity boundary condition is the same as Thom’s formula. The one

given by Anderson in [1] is the same as Fromm’s formula. We also give a general recipe

for converting a discrete form of Anderson’s global vorticity boundary condition into local

ones. This raises serious doubt on the usefulness of these global boundary conditions since
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they are much more complicated than the local ones.

Although in Quartapelle’s method vorticity at the boundary is given by a local formula

in terms of the stream function, the effect is still global since the the viscous term is insisted

to be treated implicitly. Consequently at each time step a coupled system involving vorticity

and stream function has to be solved. Much of the confusion and complexity in this subject

comes from solving this coupled system. We will discuss this briefly in Section 2. For more

details, we refer the reader to the review articles [12, 8] for early work which resulted in a

great deal of confusion, and [8, 15] for the more recent treatment which overcomes these

earlier problems at the expense of introducing complicated methods. It is remarkable that

all these confusions and complications can be avoided entirely by treating the viscous term

explicitly.

In Section 3 we discuss the issue of cell Reynolds number constraint in connection with a

centered difference scheme. It is well-known that for the simple advection equation, centered

difference in space and forward Euler in time result in an unconditionally unstable scheme.

Although a diffusion term stablizes the scheme, the cell Reynolds number has to be less

than 2 to avoid stability constraints even more severe than the diffusive one. This has often

been used as an argument against using centered difference and explicit methods. We show

in Section 3 that these problems can be overcome simply by resorting to 3rd and 4th order

explicit Runge-Kutta methods. This way we avoid all cell Reynolds number constraint

caused by stability. For high Reynolds number flows, these schemes are stable under the

standard CFL condition given by the convection term. Indeed in the calculations presented

in Section 4 and [4]. the cell Reynolds number was as high as 102 and even 103.

In Section 4 we make a few remarks on the relation between the methods discussed

here and the MAC type of schemes using primitive variables. We show that Thom’s for-

mula coupled with standard second order centered difference scheme in the vorticity-stream

function formulation is the same method as the classical MAC scheme in the sense that

there is a natural way to define the discrete vorticity in the MAC scheme, which will have

the same values as the ones computed using this centered scheme coupled with Thom’s
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formula in the absence of rounding error. We explore this equivalence between different

formulations by translating a straightforward Runge-Kutta method in the vorticity-stream

function formulation to an explicit Runge-Kutta procedure for MAC scheme.

Before ending this introduction let us remark that the main obstacles for designing

efficient finite difference methods using the vorticity variable have been the global vorticity

boundary condition and the implicit time-stepping, both introduce complicated coupling at

the boundary. Once these are cleared, we can design very simple and efficient methods for

both 2D and 3D that are high order accurate and have good stability properties. These will

be presented in subsequent papers [4, 5].

§2. Global vs. Local Vorticity Boundary Conditions

2.1. Local Vorticity Boundary Conditions

The 2D Navier-Stokes equation in vorticity-stream function formulation reads: (u =

(u, v))

(2.1)




∂tω + (u·∇)ω = ν∆ω ,

∆ψ = ω ,

u = −∂yψ , v = ∂xψ

with the boundary condition

ψ = 0,
∂ψ

∂n
= 0 .

Here we used the no-slip boundary condition. Adding inhomogeneous terms to the boundary

condition only amounts to minor changes in what follows. At the grid points, (2.1) is

discretized using standard centered difference formulas:

(2.2)




dω

dt
− D̃yψ D̃xω + D̃xψ D̃yω = ν∆hω ,

∆hψ = ω ,

where D̃x, D̃y are the standard centered differences and ∆h is the standard 5-point Lapla-

cian. We will use i and j to number the grid lines in the x and y directions respectively, with
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i = 0 at the boundary Γy and j = 0 at Γx. The no penetration boundary condition ψ = 0

is imposed on Γ in the solution of the discrete Poisson equation. The no-slip condition is

imposed (say on Γx) via:

(2.3)
ψi,1 − ψi,−1

2�y = 0 .

where (i,−1) refers to the “ghost” grid point outside of the computational domain. Since

ψi,0 = ψi−1,0 = ψi+1,0 = 0, (2.3) implies

(2.4) ωi,0 = (�hψ)i,0 =
ψi+1,0 − 2ψi,0 + ψi−1,0

∆x2 +
ψi,1 − 2ψi,0 + ψi,−1

∆y2 =
2

∆y2ψi,1

which is the well-known Thom’s formula.

Reference ω − ψ formulation MAC scheme

Thom 1933 ω0,j = 2
∆x2ψ1,j v− 1

2
,j = −v 1

2
,j

——————————————
ψ−1,j = ψ1,j

Woods 1954 ω0,j = 3
∆x2ψ1,j − 1

2ω1,j v− 1
2
,j = −5

2v 1
2
,j +

1
2v 3

2
,j

—————————————— − 1
2∆y (u1,j+ 1

2
− u1,j− 1

2
)

Fromm 1963 ω0,j = 1
∆x2ψ1,j v− 1

2
,j = 0

——————————————
ψ−1,j = 0

Wilkes 1963 ω0,j = 1
2∆x2 (8ψ1,j − ψ2,j) v− 1

2
,j = −5

2v 1
2
,j +

1
2v 3

2
,j

——————————————
Pearson 1965 ψ−1,j = 3ψ1,j − 1

2ψ2,j

Orszag-Israeli 1974 ω0,j = 1
3∆x2 (10ψ1,j − ψ2,j) v− 1

2
,j = −2v 1

2
,j +

1
3v 3

2
,j

——————————————
ψ−1,j = 7

3ψ1,j − 1
3ψ2,j

Orszag-Israeli 1974 ω0,j = 1
13∆x2 (35ψ1,j − ψ3,j) v− 1

2
,j = −21

13v 1
2
,j +

1
13v 3

2
,j +

1
13v 5

2
,j

——————————————
ψ−1,j = 22

13ψ1,j − 1
13ψ3,j

Many variants of Thom’s formulas have been proposed. For later reference we summarize

them here in the following table. In the spirit of Section 4, we will list the equivalent

formulas in the velocity variable when MAC scheme is used in the interior. To understand
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how these formulas were derived, we also provide the interpretation of these formulas in

terms of the boundary condition ∂ψ
∂n = 0. The vorticity boundary conditions are obtained

from the Neumann boundary condition for ψ together with the second order formula: ω0,j =

(�hψ)0,j . Woods’ formula appears special in this table since it involves interior values of

vorticity.

High order formulas can also be found in the literature. For example a fourth-order accu-

rate formula can be obtained by using one-sided difference approximation for the Neumann

boundary condition for ψ,

ψ−1,j = 6ψ1,j − 2ψ2,j +
1
3
ψ3,j

together with the one-sided formula

ω0,j = (∂2
xψ)0,j =

1
12∆x2 (11ψ−1,j + 6ψ1,j + 4ψ2,j − ψ3,j) +O(h4).

The combination gives

ω0,j =
1

18∆x2 (108ψ1,j − 27ψ2,j + 4ψ3,j) ,

This formula was derived in Briley (1971) [2].

We implemented these formulas for the unsteady Stokes equation on the domain [−1, 1]×
[0, 2π] with no-slip boundary condition in the x-direction and periodic boundary condition

in the y-direction. An exact solution of this problem is given by [13]:

u(x, y, t) = û(x) eiy+σt, v(x, y, t) = v̂(x) eiy+σt, p(x, y, t) = p̂(x) eiy+σt,

where 


û(x) = cosµx− cosµ
coshx
cosh 1

,

v̂(x) =
µ

i
sinµx+

1
i
cosµ

sinhx
cosh 1

,

p̂(x) = σ cosµ
sinhx
cosh 1

µ = 2.8833556585893, σ = −ν(µ2 + 1). Time step was chosen to be sufficiently small so

that the error in time discretization is negligible. The relative error for v at time t = 1 with
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ν = 0.01,∆x = 0.01 is given in Figures 1 and 2 for Fromm’s, Thom’s, Wilkes-Pearson’s,

and Orszag-Israeli’s (the first of the two) formulas. As expected, Fromm’s formula performs

poorly since it is only first order accurate. The other three give more or less comparable

results. Orszag- Israeli’s formula does slightly better at the boundary.

2.2. Quartapelle’s Vorticity Boundary Condition.

In the spatially continuous form we can state the constraint on vorticity as follows: ω

is such that the over-determined problem

(2.5)




∆ψ = ω ,

ψ|Γ = 0 ,
∂ψ

∂n

∣∣∣∣
Γ
= 0 ,

has a solution. The key idea, due to Quartapelle and Valz-Gris [16], is the following: (2.5)

has a solution if and only if ω is orthogonal (with respect to the standard L2 inner product)

to H, the space of harmonic functions on Ω.

Quartapelle and co-workers have suggested several ways of implementing this idea, with

the viscous term treated implicitly. One attractive feature of this formulation is the flex-

ibility of spatial discretization: finite difference, finite element, and spectral methods can

all be used. In the context of finite difference schemes, the simplest implementation of

Quartapelle’s method amounts to the following:

(2.6)




ωn+1 − ωn
∆t

+ (un · ∇h)ωn = ν∆hω
n+1 , for i, j ≥ 1 ,

∆h ψ
n+1 = ωn+1 , for i, j ≥ 1 ,

ψn+1|Γ = 0 ,

Dnψ
n+1|Γ = 0 .

(Dn is a finite difference approximation to ∂
∂n). The key here is that at the time step n+1,

both boundary conditions on ψn+1 are satisfied. Quartapelle et.al. suggested the following

procedure to implement this [15]:

Step 1. Form a system of the form

(2.7) Aωn+1
b = β
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for the boundary values of vorticity at the new time step by requiring that ωn+1 be orthog-

onal to all discrete harmonic functions.

Step 2. Solve (2.7) to obtain the boundary value of ωn+1, ωn+1
b .

Step 3. Solve the first equation in (2.6) to get ωn+1.

This method requires knowing all discrete harmonic functions and/or discrete Green’s

function at all boundary points. These are linear spaces with dimension N equal to the

number of grid points at the boundary. This might not be too bad for 2D but it is pro-

hibitively expensive for 3D. Knowing all discrete harmonic functions, one can construct the

matrix A (which is a full matrix) at the pre-processing stage. Then forming (2.7) at each

time step only requires the computation of β. This is still quite expensive though, since it

requires the evaluation of N volume integrals. For details see [15].

If Dn is approximated by centered difference, then it follows from the derivation pre-

sented in the beginning of this section that

(2.8) ωn+1
i,0 =

2
∆y2ψ

n+1
i,1 , ωn+1

0,j =
2

∆x2ψ
n+1
1,j , i, j ≥ 0 .

which is the same as Thom’s formula.

If on the other hand Dn is approximated by first order one-sided difference: i.e.,

(2.9) (Dnψ)i,0 =
ψi,1 − ψi,0

∆y
on Γx

then a similar derivation gives:

(2.10) ωn+1
i,0 =

1
∆y2ψ

n+1
i,1 , ωn+1

0,j =
1

∆x2ψ
n+1
1,j , i, j ≥ 0 .

which is Fromm’s formula.

Remark: Although (2.8) and (2.10) seem local, they are not truly local since ψn+1

is affected by ωn+1 everywhere, due to the implicit treatment of the viscous term. Since

ψn+1 and ωn+1 are coupled together by the boundary condition, a coupled system (2.6) has

to be solved at each time step. This is where difficulties arise.

The old approach, widely used in the 60’s, is to solve (2.6) using an iterative procedure.
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A simple example is the following: Set ωn+1,0 = ωn, and for m = 0, 1, 2, · · · use

(2.11)




ωn+1,m+1 − ωn
∆t

− D̃yψ
n D̃xω

n + D̃xψ
n D̃yω

n = ν∆hω
n+1,m ,

∆hψ
n+1,m+1 = ωn+1,m+1 ,

ψn+1,m+1|Γ = 0 ,

ωn+1,m+1
i,0 = 2

∆y2ψ
n+1,m+1
i,1 , ωn+1,m+1

0,j = 2
∆x2ψ

n+1,m+1
1,j .

until convergence is reached. As it turns out, this is not such a good method for solving the

coupled system (2.6). It may even diverge [12] and some kind of relaxation is necessary to

get convergence. Furthermore it appears that for higher order formulas such as Pearson’s,

convergence is more difficult to reach. This is the main reason for the difficulties described

in [12].

In the last decade or so, new approaches such as the influence matrix techniques are

developed to solve (2.6). Typically a key step in these new methods is to form and solve

(2.7) for the boundary value of vorticity. While overcoming the difficulties mentioned earlier,

these new nethods are troubled by their complexity, overhead and storage requirement. We

refer to [8, 15] for details of these new methods.

In contrast, if had treated the viscous term explicitly, i.e. replacing (2.6) by

(2.12)




ωn+1 − ωn
∆t

+ (un · ∇h)ωn = ν∆hω
n , for i, j ≥ 1 ,

∆h ψ
n+1 = ωn+1 , for i, j ≥ 1 ,

ψn+1|Γ = 0 ,

Dnψ
n+1|Γ = 0 .

Then the resulting scheme can be realized by a simple three-step marching procedure: Given

{ωni,j}, {ωn+1
i,j } is computed by:

Step 1. Update the vorticity at the interior grid points by

(2.13)
ωn+1 − ωn

∆t
− D̃yψ

n D̃xω
n + D̃xψ

n D̃yω
n = ν∆hω

n .

Step 2. Solve

(2.14) ∆hψ
n+1 = ωn+1 ,

11



with the boundary condition: ψn+1|Γ = 0.

Step 3. Update the vorticity at the boundary using

(2.15) ωn+1
i,0 =

2
∆y2ψ

n+1
i,1 , ωn+1

0,j =
2

∆x2ψ
n+1
1,j .

It is important that (2.14) can be solved without knowing the boundary value of ωn+1.

Hence there is no need to iterate between ψn+1 and the boundary value of ωn+1. At every

time step, only one standard Poisson solve is required.

2.3. Anderson’s Vorticity Boundary Condition.

At the continuous level, Anderson’s method can be formulated as follows: If Dnψ|Γ = 0

at t = 0, then Dnψ|Γ = 0 is equivalent to Dn
∂ψ
∂t |Γ = 0. Since

∂ψ

∂t
= ∆−1

0

∂ω

∂t
= ∆−1

0 (−(u·∇)ω + ν∆ω) .

(the subscript 0 means homogeneous Dirichlet boundary condition is taken), we can write

the boundary condition Dnψ|Γ = 0 as

(2.16) Dn∆−1
0 (−(u·∇)ω + ν∆ω) = 0

When a spatial discretization is taken, this becomes

(2.17) Dn∆−1
h,0(−(u·∇h)ω + ν∆hω) = 0

Writing ω = ωin + ωbd where ωbd vanishes at the interior grid points and ωin vanishes at

boundary grid points, we get

(2.18) Dn∆−1
h,0(−(u·∇h)ωbd + ν∆hωbd) = −Dn∆−1

h,0(−(u·∇h)ωin + ν∆hωin)

This is Anderson’s formulation of vorticity boundary condition.

In the following, we present several examples of implementing (2.18) in a fully discrete

scheme, and show that in all these cases, (2.18) can be written as local formulas.

The first example is the original Anderson’s method presented in [1]. Here ∆h is the

standard 5-point Laplacian. Let ∆h,0 ω be the discrete Laplacian of ω using zero as the

boundary value of ω. Given {ωni,j}i,j≥1, Anderson’s method for computing {ωn+1
i,j }i,j≥1
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consists of the following three steps [1]. The purpose of the first and second step is to

compute the boundary value of ωn, ωnb .

Step 1. Solve ∆h,0ψ
n = ωn, compute un = (−D̃yψ

n, D̃xψ
n) at the interior mesh points,

and then compute F̃ = (un·∇h)ωn−ν∆h,0 ω
n at the interior mesh points. At the boundary

the nonlinear convective term is computed using one-sided difference. Therefore this step

does not involve the boundary value of ωn.

Step 2. Determine the boundary value of ωn by solving

(2.19) Dn∆−1
h,0(ν∆hω

n
b ) = Dn∆−1

h,0F̃ .

Here ωnb is identified as been extended to all interior mesh points with the value zero, Dn is

a finite difference approximation of ∂
∂n on Γ. In [1], Anderson chose the first order one-sided

formula (2.9).

Step 3. Compute

(2.20) ωn+1 = ωn +∆t
(
−(un · ∇h)ωn + ν∆hω

n
)

at all interior mesh points, where the boundary value of ωn is taken as ωnb .

The effect of Steps 1 and 2 is to ensure that

(2.21) Dnψ
n+1 = 0 , ψn+1 = ∆−1

h,0 ω
n+1

when ωn+1 is computed from (2.20). In particular, we have ψn+1 = 0 not only on Γ but

also at the grid points next to Γ. We can write Anderson’s method as

(2.22)




ωn+1 − ωn
∆t

+ (un · ∇)ωn = ν∆hω
n , at interior grid points,

∆h,0ψ
n+1 = ωn+1 ,

Dnψ
n+1 = 0 , at Γx and Γy.

Anderson’s three step formulation can be stated as: Given {ωni,j}i,j≥1, there exists a unique

ωnb = ωn|Γ, namely the solution of (2.19), such that (2.22) has a unique set of solutions

{ωn+1
i,j }i,j≥1, {ψn+1

i,j }i,j≥0. Notice that ωnb is just an auxiliary variable used in order to

obtain {ωn+1
i,j }i,j≥1, {ψn+1

i,j }i,j≥0.
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There is a much simpler way of implementing (2.22), without even thinking about ωnb =

ωn|Γ. In this formulation, it is helpful to think of the lines Γ′
h = {i = 1} ∪ {j = 1} as the

numerical boundary, even though the method is exactly the same as (2.22).

Initialization: Given {ω0
i,j}i,j≥1, define ψ0|Γ = 0 and solve




∆hψ
0 = ω0 , i, j ≥ 2

ψ0|Γ′
h
= 0 .

Modify ω0|Γ′
h
such that

ω0
i,1 =

1
∆y2ψ

0
i,2 , ω0

1,j =
1

∆x2ψ
0
2,j .

This is to ensure that ψ0 is a solution of

(2.23)




∆hψ
0 = ω0 , i, j ≥ 1 ,

ψ0|Γ = 0 .

In other words, the solution of (2.23) actually satisfies ψ0|Γ′
h
= 0, i.e., Dnψ

0|Γ = 0.

Time-stepping procedure. Given {ωni,j}i,j≥1, such that ψn = ∆−1
h,0ω

n also satisfies

Dnψ
n|Γ = 0, i.e., ψn|Γ′

h
= 0.

Step 1. Compute

(2.24)
ωn+1 − ωn

∆t
+ (un · ∇)ωn = ν∆hω

n , for i, j ≥ 2 .

Step 2. Let ψn+1|Γ = 0 and solve



∆hψ
n+1 = ωn+1 , i, j ≥ 2 ,

ψn+1|Γ′
h
= 0 ,

and set

ωn+1
i,1 =

1
∆y2ψ

n+1
i,2 , ωn+1

1,j =
1

∆x2ψ
n+1
2,j , i, j ≥ 1 .

which is Fromm’s formula. This last step has the effect of ensuring that ψn+1 is also a

solution of 


∆hψ
n+1 = ωn+1 , i, j ≥ 1 ,

ψn+1|Γ = 0 ,
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i.e., ψn+1 = ∆−1
h,0 ω

n+1 satisfies both the Dirichlet and Neumann boundary conditions:

ψn+1|Γ = 0 , Dnψ
n+1|Γ = 0 .

The Neumann boundary condition is the same as ψn+1|Γ′
h
= 0.

It is obvious that the numerical solutions obtained through this procedure satisfy (2.22).

Therefore this is exactly the same method as Anderson’s. The global vorticity boundary

condition (2.19) is replaced by Fromm’s formula. In other words, the effect of implementing

Anderson’s global boundary condition on Γ is exactly the same as implementing Fromm’s

formula on Γ′
h. To make the connection more transparent, let us remark that after

obtaining {ωn+1
i,j }i,j≥1, one can find ωnb by requiring that (2.19) also holds for i or j = 1, i.e.

on Γ′
h. This gives the solution of ωnb . However, it is important to realize that the method

can be implemented without using ωnb .

In the method discussed above, it is straightforward to replace the forward Euler by

higher order explicit Runge-Kutta and require that the no-slip boundary condition be sat-

isfied at each stage of the Runge-Kutta method. A second order time discretization was

presented in [17]. The same argument as we presented above can then be applied to each

stage, proving that in this case Anderson’s vorticity boundary condition is still the same as

Fromm’s formula.

If we replace the first order accurate formula (2.9) by a second order one-sided difference:

(2.25) (D̄nψ)i,0 =
4ψi,1 − ψi,2 − 3ψi,0

2∆y

we can still write Anderson’s method as (2.22) with Dn replaced by D̄n. To understand the

connection with local formulas in this case we break

(2.26)




∆h,0ψ
n+1 = ωn+1 ,

D̄nψ
n+1 = 0 at Γx and Γy

into several pieces

1. Set ψn+1
i,0 = 0, ψn+1

0,j = 0, i, j ≥ 0 .
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2. Solve

(2.27)




∆hψ
n+1 = ωn+1 ,

4ψn+1
i,1 − ψn+1

i,2

2∆y
= 0 and

4ψn+1
1,j − ψn+1

2,j

2∆x
= 0

for {ψn+1
i,j }i,j≥1.

3. Compute

(2.28) ωn+1
i,1 = (∆hψ

n+1)i,1 , ωn+1
1,j = (∆hψ

n+1)1,j .

As before, this is just a different way of implementing (2.26). Using (2.27) and (2.28), we

get

(2.29)

ωn+1
i,1 = (∆hψ

n+1)i,1 = 1
h2 (ψn+1

i,2 + ψn+1
i+1,1 + ψ

n+1
i−1,1 − 4ψn+1

i,1 )

= 1
4h2 (ψn+1

i+1,2 + ψ
n+1
i−1,2)

= 1
4ω

n+1
i,2 + 15

16h2ψ
n+1
i,2 − 1

4h2ψ
n+1
i,3 .

This can be viewed as the following formula:

(2.30) ωi,0 =
1
4
ωi,1 +

15
16h2

ψi,1 − 1
4h2

ψi,2

imposed on Γ′. (2.30) is analogous to Woods’ formula but is slightly more complicated.

This can be formulated as a general recipe for converting Anderson’s vorticity boundary

condition into local formulas. To explain this, let us take the example of a fourth order

spatial discretization in which ∂2

∂x2 is approximated by the standard five point 4th order

formulaD2
x(1− h2

12D
2
x), and the boundary condition Dnψ|Γ = 0 is used twice at the boundary

with one-sided 4th order approximation for Dn. In [17], a 4th order implementation of

Anderson’s method was outlined but no details were given. The above strategy is the

closest we can think of to fit the outline. Again we will use forward Euler as an illustration

since extension to high order explicit Runge-Kutta is straightforward.

Because of the wide stencil used, vorticity boundary conditions are needed at two rows

of grid points near the boundary. Written in terms of ω = ωin + ωbd, Anderson’s vorticity
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boundary conditions are

(2.31) D̄n(∆̃−1
h,0ω

n+1) = 0 D̃n(∆̃−1
h,0ω

n+1) = 0

where D̄n and D̃n are two one-sided (4th order) approximations toDn, ∆̃h = D2
x(1−h2

12D
2
x)+

D2
y(1− h2

12D
2
y) except at i, or j = 1 where it has to be modified to make it slightly one-sided.

To obtain the equivalent local formulas, we can proceed as follows. For concreteness we

concentrate on Γx:

We split (2.31) into several pieces:

(1). Set ψn+1
i,0 ≡ 0.

(2). Solve

∆̃hψ
n+1 = ωn+1 for i ≥ 3

using D̃nψ
n+1|Γ = 0, D̄nψ

n+1|Γ = 0 as boundary conditions for {ψn+1
i,1 , ψn+1

i,2 }.
(3). Define

(2.32) ωn+1
i,1 = (∆̃hψ

n+1)i,1 , ωn+1
i,2 = (∆̃hψ

n+1)i,2

(1)-(3) is equivalent to



∆̃h,0ψ
n+1 = ωn+1

D̄nψ
n+1|Γ = 0 , D̃nψ

n+1|Γ = 0

which is the same as (2.31).

(2.32) is the local formula we are looking for. This seems to be far more complicated

than Briley’s formula mentioned earlier which is also 4th order accurate.

§3. Cell Reynolds Number Constraint and High Order Runge-Kutta Meth-

ods

It is well-known that if we use second order centered difference in space and forward

Euler in time for the simple advection equation

(3.1) ut + aux = 0
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the resulting scheme is unconditionally unstable. This has the consequence that for the

advection-diffusion equation

(3.2) ut + aux = νuxx

this scheme is stable only under the constraint

(3.3) ∆t

(
a2

2ν
+

2ν
∆x2

)
< 1

Therefore we must have

(3.4) ν
∆t
∆x2 <

1
2
, and ∆t <

2ν
a2

The first condition in (3.4) is the standard diffusive constraint on time steps. The second

one reflects the fact that the scheme is unstable if ν = 0.

We can rewrite this second condition as

(3.5)
a∆t
L

<
2
Re

where L is the size of the computational domain, and Re = La
ν is the Reynolds number.

The spatial resolution should be chosen to resolve the smallest active scale in the flow.

This means that at high Reynolds number we should take ∆x
L = O(Re−1/2) for 2D, and

∆x
L = O(Re−3/4) for 3D. Consequently we have from (3.5)

(3.6)
a∆t
∆x

< O(Re−1/2),
a∆t
∆x

< O(Re−1/4)

for 2D and 3D respectively. This is a severe constraint, since ideally we want a∆t
∆x = O(1)

for Re >> 1.

From a slightly different point of view, if we demand the second condition in (3.4) to be

less restrictive than the standard diffusive condition, we should take

(3.7)
2ν
a2
>

∆x2

2ν
, i.e. Rc =

a∆x
ν

< 2

Rc is called the cell Reynolds number. (3.3) and this stability caused cell Reynolds number

constraint has often been used as an argument against using centered differencing for the

convection term at high Reynolds number.
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It is important to realize that these constraints still remain even if we discretize the

diffusion term implicitly, keeping the advection term explicit. Since the problem comes

from the advection term, at high Reynolds number the diffusion term is of very little help.

Although such constraints do disappear if we discretize the advection term implicitly also,

this is far too expensive. As we show below, there is a much simpler solution to this problem.

What causes this instability and the subsequent cell Reynolds number constraint is the

fact that the stability region of the forward Euler method does not contain any part of

the imaginary axis. Same is true for the second order explicit Runge-Kutta methods, but

not for 3rd and 4th order ones. The Fourier symbol for the centered difference operator

−aD̃x + νD2
x is C(ξ) = iasinξ∆x − 4ν

∆x2 sin2 ξ
2 . Therefore if we use 4th order Runge-Kutta in

time, the two stability conditions are

(3.8)
a∆t
∆x

≤ C1, 4ν
∆t
∆x2 ≤ C2

where C1 and C2 are some constants (for example, they can be taken as 1.5). There is

no cell Reynolds number constraint imposed by stability considerations. Same conclusions

can be drawn for the 3rd order Runge-Kutta method. From the point of view of accuracy,

for Re >> 1, Rc = Re∆x
L = O(Re1/2) for 2D and O(Re1/4) for 3D. This does not present

a constraint on the cell Reynolds number either. Indeed in the calculations presented in

Section 4 and [4], the cell Reynolds number was as high as 102 and even 103. In particular

for Rc = a∆x
ν > C1

4C2
, the size of ∆t is controlled only by the CFL condition coming from

the convection terms.

§4. MAC Scheme and Thom’s Formula

4.1. MAC Scheme.

MAC scheme [14] uses the velocity-pressure formulation of the incompressible Navier-

Stokes equation:

(4.1)



∂tu+ (u·∇)u+∇p = ν∆u ,

∇·u = 0
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u = (u, v). A special feature of the MAC scheme is the use of staggered grid (Figure 3).

One such grid is displayed in Figure 3 where the pressure variable p is defined at “✷” points,

the first and second component of the velocity u and v are defined at “�” and “©” points

respectively. Define

D̃xu(x, y) =
u(x+∆x, y)− u(x−∆x, y)

2∆x
, Dxu(x, y) =

u(x+∆x/2, y)− u(x−∆x/2, y)
∆x

,

Ẽxu(x, y) =
u(x+∆x, y) + u(x−∆x, y)

2
, Exu(x, y) =

u(x+∆x/2, y) + u(x−∆x/2, y)
2

,

and similarly for D̃yu, Ẽyu, Dyu, Eyu; and

∆hu = (D2
x +D

2
y)u ,

we can write the MAC scheme as

(4.2)




du

dt
+ u D̃xu+ ExEyv D̃yu+Dxp = ν∆hu , at “�” points,

dv

dt
+ ExEyu D̃xv + vD̃yv +Dyp = ν∆hv , at “©” points,

Dxu+Dyv = 0 , at “✷” points.

The simplest way of treating the boundary is to use the reflection technique. On the

segment Γx (see Figure 3), the boundary condition v = 0 is imposed exactly at the “©”

points: vi−1/2,0 = 0, the boundary condition u = 0 is imposed approximately at the “•”
points by letting

(4.3) ui,−1/2 = −ui,1/2.

Similarly on Γy, we have

v−1/2,j = −v1/2,j , u0,j−1/2 = 0.

Some doubts on the consistency of the reflection technique near the boundary were expressed

in [14]. We show in Appendix 2 that while a naive truncation error analysis does seem to

suggest that (4.3) leads to inconsistency near the boundary, a more careful analysis showes

that there is still overall second order accuracy, even at the boundary.
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The fully discrete MAC scheme, with viscous term treated explicitly, is given by

(4.4)




un+1 − un
∆t

+ un D̃xu
n + ExEyvn D̃yu

n +Dxp
n = ν∆hu

n , at “�” points,

vn+1 − vn
∆t

+ ExEyun D̃xv
n + vnD̃yv

n +Dyp
n = ν∆hv

n , at “©” points,

Dxu
n+1 +Dyv

n+1 = 0 , at “✷” points.

Applying the discrete divergence operator on the momentum equations, we obtain an equa-

tion for pn in the form:

(4.5) ∆hp
n = terms involve un.

The boundary condition is already included in (4.5). We denote the solution of this equation

by pn = F(un).
4.2. The MAC scheme and Thom’s formula.

Let us first examine the MAC scheme in the linear case and return to the mesh in Figure

3. Define the discrete vorticity at “•” points as

(4.6) ωi,j = (∇h × u)i,j = −ui,j+1/2 − ui,j−1/2

∆y
+
vi+1/2,j − vi−1/2,j

∆x
.

Applying the discrete curl operator to (4.2) (dropping the nonlinear terms), we get

dω

dt
= ν∆hω , at “•” points.

On Γx, we have

(4.7) ωi,0 = − 2
∆y
ui,1/2 .

On the other hand, if we define ψ at the “•” points by

(4.8) ψi,0 = 0 , ui,j−1/2 = −ψi,j − ψi,j−1

∆y
, j ≥ 1 ,

then from (4.2), we have

(4.9) vi−1/2,j =
ψi,j − ψi−1,j

∆x
, ψ0,j = 0 ,
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and

∆hψ = ω , at “•” points.

Going back to (4.7), we get

ωi,0 =
2

∆y2ψi,1

which is Thom’s formula. This shows that for the unsteady Stokes equation, MAC scheme

and Thom’s formula coupled with standard centered difference for the stream function-

vorticity formulation are the same method. The same is true for the fully discrete schemes.

There are other ways of treating the boundary for the MAC scheme. For convenience,

we summarized these in the table in Section 2 and listed the equivalent vorticity boundary

conditions. In particular, we note that the improved formula of Peyret and Taylor ([14]

(6.2.20a)) corresponds to the first formula of Orszag and Israeli.

When the nonlinear terms are taken into account, (2.2) and (4.2) are not exactly the

same any longer. They differ by a quantity of O(∆x2+∆y2). However, a tedious calculation

shows that (4.2) is the same as

(4.10)




dω

dt
− 1
2
[D̃yψ D̃xω + D̃x(D̃yψ ω)] +

1
2
[D̃xψ D̃yω + D̃y(D̃xψ ω)] = ν∆hω ,

∆hψ = ω

at the “•” points. The details of that calculation is presented in Appendix 1. There is also

an obvious analogous statement for the fully discrete schemes.

It is instructive to further explore this equivalence between vorticity-stream function and

primitive variable formulations with forward Euler replaced by the classical Runge-Kutta

method. In the vorticity-stream function formulation the resulting method is the following:

Given {ωn, ψn}i,j≥0, compute {ωn+1, ψn+1}i,j≥0 by

ω1 − ωn
1
2∆t

+ (un ·∇h)ωn = ν∆hω
n , ψ1 = ∆−1

h,0ω1

ω2 − ωn
1
2∆t

+ (u1 ·∇h)ω1 = ν∆hω1 , ψ2 = ∆−1
h,0ω2

ω3 − ωn
∆t

+ (u2 ·∇h)ω2 = ν∆hω2 , ψ3 = ∆−1
h,0ω3
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k4 = −∆t((u3 ·∇h)ω3 − ν∆hω3)

ωn+1 =
1
3
(−ωn + ω1 + 2ω2 + ω3) +

1
6
k4 , ψn+1 = ∆−1

h,0ω
n+1

At every stage, the boundary value of vorticity is given by Thom’s formula. The corre-

sponding fully discrete MAC scheme is then

u1 − un

1
2∆t

+ (un ·∇h)un +∇hp
n = ν∆hu

n , p1 = F(u1)

u2 − un

1
2∆t

+ (u1 ·∇h)u1 +∇hp1 = ν∆hu1 , p2 = F(u2)

u3 − un

∆t
+ (u2 ·∇h)u2 +∇hp2 = ν∆hu2 , p3 = F(u3)

k4 = −∆t((u3 ·∇h)u3 +∇hp3 − ν∆hu3)

un+1 =
1
3
(−un + u1 + 2u2 + u3) +

1
6
k4 , pn+1 = F(un+1)

Here we have written the nonlinear terms loosely as (u·∇h)u. The full expression should

be the one in (4.2). Of course, for these two methods to be exactly the same, we have to

use the more complicated discretization for the convection term as in (4.10).

This time-stepping procedure is very similar to the one proposed by Johansson [11].

To illustrate the efficiency of these methods and the importance of the high order Runge-

Kutta procedure, we present some numerical results for a canonical problem: the driven

cavity flow. The flow domain is [0, 1] × [0, 1]. We impose the no-slip condition. The upper

boundary moves with the velocity: ub(x) = 1 or 16x2(1− x2). The initial data is chosen to

be: ψ0(x, y) = (y2 − y3)ub(x).

First in Figure 4 we show the numerical results for the case ub(x) = 1 at Reynolds num-

ber 104, t = 100. This is a standard test problem. There is a vast amount of numerical work

on this. Most of them, however, solves the steady state equation directly [6, 19]. Although

the methods presented above should not be advertized for steady state calculations, they

perform reasonably well for this problem. At t = 100, the flow has all the characteristic

features of the steady state [6]. However at this point, it is not entirely clear whether the

flow eventually reaches steady state in such an unsteady calculation.
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In Figures 5-8 we show our numerical results with the boundary condition ub(x) =

16x2(1− x2) at Reynolds number 105. These were computed on a 10242 grid with viscosity

ν = 10−5. We verified these numerical results using the 4th order scheme designed in [4] on

5122 and 10242 grids. Notice the extremely unsteady turbulent behavior as a result of the

boundary layer separations.

The calculation reported here took approximately two hours on the C-90 machine with

a single processor at Pittsburgh Supercomputing Center. A similar calculation on a smaller

mesh 5122 with a smaller Reynolds number (ν = 3× 10−5) was done on a SPARC-10 work-

station, and that took about three days. Obviously there is a lot of room for improvement.

We will return to this in a separate paper [4].

§5 Conclusions

Let us summarize the issues discussed in this paper.

The first issue we discussed was the local and global vorticity boundary conditions.

We showed that Anderson’s global vorticity boundary condition can always be realized by

local formulas, the simplest case being Fromm’s formula. The non-locality of Quartapelle’s

vorticity boundary condition comes from the fact the viscous term is insisted to be treated

implicitly. Therefore even the seemingly local vorticity boundary condition turns out to be

global.

A majority of the discussions in the literature on global vorticity boundary conditions

resemble Quartapelle’s, so the global nature of the vorticity boundary condition is really a

result of the implicit treatment of the viscous term.

The second issue we discussed is the cell Reynolds number constraint in connection with

the fact that the convection terms are treated using centered differences. We explained that

while there is a severe constraint on the cell Reynolds number given by stability when first

and second order Runge-Kutta methods are used in time, such constraints disappear for

higher order Runge-Kutta methods. This is a significant fact with regard to the efficiency

of centered schemes.
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The third issue we discussed is the relation between MAC scheme and second order cen-

tered difference schemes in the vorticity- stream function formulation coupled with various

local formulas for the vorticity boundary condition. We showed that MAC scheme is the

same as the standard second order centered difference scheme in the vorticity-stream func-

tion formulation, and the local formulas for vorticity boundary condition can be translated

into local formulas for velocity boundary condition and vice versa. In particular, Thom’s

formula translates to the reflection boundary condition for the MAC scheme.

From these discussions we arrive at the following basic design principles. (1). The

viscous term should be treated explicitly for finite difference schemes in the vorticity-stream

function formulation. If one insists on treating the viscous terms implicitly, then it is much

better to use the projection method [3]. (2). One should use at least third order Runge-

Kutta methods in time in connection with centered differences in space for high Reynolds

number flows.

Appendix 1. Nonlinear Terms.

Applying the discrete curl operator to (4.2), we get

dω

dt
+N(u, v) = ν∆hω , at “•” points,

where

N(u, v) = −Dy(uD0
xu+ ExEyvD

0
yu) +Dx(ExEyuD0

xv + vD
0
yv) .

Using

Dx(uv) = DxuExv + ExuDxv ,

we have

N(u, v) = −EyuD̃xDyu− Exv D̃yDyu+ (I − E2
y)Exv D̃yDyu

+Eyu D̃xDxv + Exv D̃yDxv + (E2
x − I)Eyu D̃xDxv

−DyuExEyDxu− ExEyDyv E
2
yDyu+ (I − E2

y)DyuExEyDyv

+ExEyDxuE
2
xDxv +Dxv ExEyDyv + (E2

x − I)Dxv ExEyDxu .
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Since

E2
x − I =

h2

4
D2
x , E2

y − I =
h2

4
D2
y ,

we get

N(u, v) = Eyu D̃xω + Exv D̃yω

+h2

4

(
−D2

yExv D̃yDyu+D2
xEyu D̃xDxv −D2

yDyuExEyDyv +D2
xDxv ExEyDxu

)
.

From (4.6-7) and

D̃xu = DxExu

we have

N(u, v) = −D̃yψ D̃xω + D̃xψ D̃yω

+h2

4

(
D2
yD̃xψ D̃yD

2
yψ −D2

xD̃yψ D̃xD
2
xψ +D4

yψ D̃xD̃yψ −D4
xψ D̃xD̃yψ

)
.

Direct computation gives us

N(u, v) = −D̃yψ D̃xω + D̃xψ D̃yω

+h2

4

(
D2
yD̃xψ D̃y∆hψ −D2

xD̃yψ D̃x∆hψ +D2
y∆hψ D̃xD̃yψ −D2

x∆hψ D̃xD̃yψ

)

= −D̃yψ D̃xω + D̃xψ D̃yω

+h2

4

(
D2
yD̃xψ D̃yω −D2

xD̃yψ D̃xω +D2
yω D̃xD̃yψ −D2

xω D̃xD̃yψ

)
.

Similarly, using

D̃x(uv) = D̃xu Ẽxv + Ẽxu D̃xv

Ẽx − I = h2

2 D
2
x , Ẽy − I = h2

2 D
2
y ,

we have

−D̃x(D̃yψ ω) + D̃y(D̃xψ ω)

= −D̃yψ D̃xω + D̃xψ D̃yω + (I − Ẽx)D̃yψ D̃xω

+(Ẽy − I)D̃xψ D̃yω + (I − Ẽx)ω D̃xD̃yψ + (Ẽy − I)ω D̃yD̃xψ

= −D̃yψ D̃xω + D̃xψ D̃yω

+h2

2

(
−D2

xD̃yψ D̃xω +D2
yD̃xψ D̃yω −D2

xω D̃xD̃yψ +D2
yω D̃yD̃xψ

)
.
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Therefore

N(u, v) = −D̃yψ D̃xω + D̃xψ D̃yω + 1
2 [D̃yψ D̃xω − D̃x(D̃yψ ω)]− 1

2 [D̃xψ D̃yω − D̃y(D̃xψ ω)]

= −1
2 [D̃yψ D̃xω + D̃x(D̃yψ ω)] + 1

2 [D̃xψ D̃yω + D̃y(D̃xψ ω)] .

Appendix 2. Consistency near the boundary for the reflection technique

If we use the reflection boundary condition ui,− 1
2
+ ui, 1

2
= 0 in the MAC scheme, a

simple truncation error analysis at x 1
2
gives

D2
xu(x 1

2
) =

3
4
u′′(x 1

2
) +

h

8
u′′′(0) +O(h2) .

suggesting that the operator D2
x is not consistent with the Laplacian near the boundary.

This issue has been raised in several places, including [14]. We show here that a more

sophisticated error analysis reveals that the overall scheme still has second order accuracy.

We explain this by a simple example

u′′ = f, u(0) = (1) = 0

with standard centered difference applied to grid points xi+ 1
2
= (i+ 1

2)∆x, i = 0, 1, · · · n− 1

and the boundary condition u− 1
2
+ u 1

2
= 0, un+ 1

2
+ un− 1

2
= 0. Let

ūi+ 1
2
= u(xi+ 1

2
)− h2

8
[u′′(0) + (u′′(1)− u′′(0))xi+1/2] , for i = 0, 1, · · · n− 1

and

ū− 1
2
= −ū 1

2
, ūn+ 1

2
= −ūn− 1

2
.

Clearly

D2
xūi+ 1

2
= u′′(xi+ 1

2
) +O(h2) , for i = 1, . . . , n− 2 .

At x 1
2
,

D2
xū 1

2
=
ū 3

2
− 3ū 3

2

h2
=
u(x 3

2
)− 3u(x 3

2
)

h2
+
1
4
u′′(0)

= 3
4u

′′(x 1
2
) + h

8u
′′′(0)− 1

4u
′′(0) +O(h2) = u′′(x 1

2
) +O(h2) .
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Similarly, we have

D2
xūn− 1

2
=
u(xn− 3

2
)− 3u(xn− 3

2
)

h2
+
1
4
u′′(1) = u′′(xn− 1

2
) +O(h2) .

This gives

u(xi+ 1
2
)− ui+ 1

2
= O(h2) .

The boundary condition mentioned in [14],

u− 1
2
=

1
3
(u 3

2
− 6u 1

2
+ 8uΓ)

corresponds to the first formula of Orszag and Israeli (see the table in Section 2).
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Figure Captions

Figure 1. Relative error in v for the Fromm’s formula (solid line), Thom’s formula

(dashed line), Wilkes-Pearson’s formula (dotted line), and Orszag-Israeli’s formula (dot-

dashed line). Time is discretized using mid-point rule. The errors for Thom’s formula,

Wilkes-Pearson’s formula and Orszag-Israeli’s formula are too small to be seen on this

graph. Parameters: viscosity=0.01, ∆t = 0.001,∆x = 0.01.

Figure 2. Relative error in v for the Thom’s formula (dashed line), Wilkes-Pearson’s

formula (dotted line), and Orszag-Israeli’s formula (solid line). Parameters: viscosity=0.01,

∆t = 0.001, ∆x = 0.01.

Figure 3. Staggered grid in the interior and at the boundary.

Figure 4. Driven cavity flow with ub(x) = 1 at Reynolds number 104, t = 100, computed

with the explicit MAC scheme with 4th order Runge-Kutta in time. Shown here is the

contour plot of stream function. Parameters: viscosity=10−4, CFL = 1.25, ∆x = 1/128.

Figure 5. The driven cavity problem at t = 5 and Reynolds number 105 computed using

the explicit Thom’s formula with 4th order Runge-Kutta in time. Shown here is the contour

plot of vorticity. Vortices are shed at the lower right corner as a result of the boundary

layer separation. Parameters: viscosity=10−5, CFL = 1.25, ∆x = 1/1024.

Figure 6. Same as Figure 5, but for the stream function. At the lower right and upper

left corners, the primary vortex has induced two generations of secondary vortices.

Figure 7. The driven cavity problem at t = 8. Plotted here is the vorticity at the

lower left quadrant. The contour lines are severely stretched. A mushroom-like structure

forms as a result of the collision of vortices. Parameters: viscosity=10−5, CFL = 1.25,

∆x = 1/1024.

Figure 8. The driven cavity problem at t = 10. The flow is now considerably more

turbulent than in Figure 5-6. A lot of small vortices form. Parameters: viscosity=10−5,

CFL = 1.25, ∆x = 1/1024.
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