
Projection Method I :

Convergence and Numerical Boundary Layers

Weinan E1

School of Mathematics

Institute for Advanced Study

Princeton, NJ 08540

and

Jian-Guo Liu2

Courant Institute of Mathematical Sciences

New York, NY 10012

Abstract: This is the first of a series of papers on the subject of projection methods for viscous

incompressible flow calculations. The purpose of these papers is to provide a thorough understanding

of the numerical phenomena involved in the projection methods, particularly when boundaries are

present, and point to ways of designing more efficient, robust and accurate numerical methods based

on the primitive variable formulation. The present paper contains the following topics:

1. Convergence and optimal error estimates for both velocity and pressure up to the boundary;

2. Explicit characterization of the numerical boundary layers in the pressure approximations

and the intermediate velocity fields;

3. The effect of choosing different numerical boundary conditions at the projection step. We will

show that different choice of boundary conditions gives rise to different boundary layer structures. In

particular, the straightforward Dirichlet boundary condition for the pressure leads to O(1) numerical

boundary layers in the pressure, and deteriorate the accuracy in the interior;

4. Post-processing the numerical solutions to get more accurate approximations for the pressure.

1weinan@math.ias.edu

2jliu@cims.nyu.edu

§1. Introduction

Projection method was introduced years ago by Chorin [4] and independently by Temam

[21] as a way of computing efficiently the solutions of incompressible Navier-Stokes equations

(NSE). It is getting increasingly popular in applications to viscous incompressible flows at

moderate Reynolds number. With periodic boundary conditions, the performance of the

projection method is well-understood from the work of Chorin [5]. However, much less

is known when physical boundary conditions such as the no-slip boundary conditions are

used. It has been a mystery for twenty-five years that the projection method seems to

perform better than expected. There are still controversies with regard to the optimal

choice of boundary conditions at the projection step. Furthermore, although it is clear that

numerical boundary layers must be present, little is known about their structures.

It is the purpose of this series of papers to fully clarify these issues. Besides being able

to answer all these questions, we find that the effect of solid boundaries is not restricted

to creating numerical boundary layers, they can also give rise to high frequency oscilla-

tions in the leading order error term, reducing the order of accuracy even in the interior of

the domain. But when formulated appropriately, projection method is indeed an efficient

numerical procedure for viscous incompressible flow calculations. Before our work, com-

parison of different formulations of projection method was only possible through careful

numerical experiments. These numerical experiments are made difficult by the fact that in

actual computations, the effect of time and space discretizations, as well as the numerical

boundary conditions are all mixed together. Moreover, they usually involve a systematic

study of 2-dimensional problems for which the resolution power of modern computers are

still quite limited. In our work, we have developed procedures of studying separately the

effect of different components of the projection method. In forthcoming papers, we will

also make extensive use of 1-dimensional models which capture much of the computational

difficulties for incompressible flow calculations.

The present paper is devoted to the explicit characterization of the numerical boundary

layers. As a consequence, we also get optimal convergence and error estimates for both

2

velocity and pressure up to the boundary. The boundary layer structure is strongly influ-

enced by the boundary condition for pressure at the projection step. We will study different

choices of the pressure boundary conditions and compare their performance in terms of the

accuracy of the numerical solutions. Our analysis favors strongly the choice of Neumann

boundary conditions.

Roughly speaking, projection method was based on the following philosophy: In incom-

pressible flows, pressure does not carry any thermodynamic meaning and is present only as

a Lagrange multiplier for the incompressibility constraint [4]. This observation motivated a

time-splitting discretization scheme which decouples the computation of velocity and pres-

sure, a key feature of the projection method. In the first step, an intermediate velocity field

is computed using the momentum equation and ignoring the incompressibility constraint.

In the second step, the intermediate velocity is projected to the space of divergence free

vector fields to get the next update of velocity and pressure. This procedure is much more

efficient than solving a coupled system of Stokes equations for velocity and pressure which

would arise from a straightforward time discretization of the NSE (see §2). The price been
paid, as we will see below, is that it introduces a numerical boundary layer on the pressure

approximations and the intermediate velocity fields. This also signifies the main difficulty

in the design and implementation of more efficient projection methods: treatment of the

boundary conditions.

Over the years projection method has played a dominant role in the computation of vis-

cous incompressible flows based on the primitive variable formulation . It has also acquired

other names such as the splitting scheme, fractional step method, etc. Recently there has

been a flourish of interest on the application of projection methods for the direct simula-

tion of viscous incompressible flows at moderate Reynolds numbers [2, 3, 12, 13, 17, 24,

etc]. Notable in these applications are the various spatial discretizations used, including

flux (slope)-limited finite difference methods [2, 3], upwind differencing [17], and spectral-

element methods [12].

The analysis of the projection methods was also initiated by Chorin and Temam. In the

3

case of periodic boundary conditions Chorin proved the convergence of a projection method

which uses backward Euler in time and centered-differencing in space. His analysis can be

easily extended to other methods of a similar nature as long as the periodic boundary con-

dition is retained. Chorin’s analysis was facilitated by the fact that with periodic boundary

conditions, the projection operator and the laplacian commute. This no longer holds for

other types of boundary conditions. As a result, it is much more difficult to study the pro-

jection methods when the boundary condition is changed to more physical ones such as the

no-slip condition, especially when it comes to the issue of accuracy. Indeed a crude analysis

indicates that there is a real danger that the numerical boundary layer in pressure could

pollute the numerical solutions in the interior and significantly reduce the overall accuracy

(even for velocity) [2, 5], although numerical evidence seems to indicate otherwise.

Considerable progress was made in the recent papers of Shen [18, 19]. For no-slip

boundary condition, Shen proved convergence together with some error estimates for various

projection methods. Although the estimates obtained were not able to resolve the mystery

mentioned earlier, Shen did realize that the key is to understand the time-discretization.

One result of the present paper is a proof that the numerical approximation of velocity

indeed has the maximum accuracy. The proof is based on a systematic asymptotic analysis

of the numerical solutions. The numerical method is viewed as a singular perturbation of

the original NSE, and boundary layer analysis is used to construct approximate solutions

which satisfy the numerical scheme to high order accuracy. This, plus the linear stability

of the scheme implies the convergence results. This line of thought is often used in applied

analysis and was first used by Strang [20] in the context of numerical analysis, although

Strang only dealt with a regular perturbation problem. By using similar ideas, Michelson

[14] extended Strang’s argument to initial-boundary value problems for hyperbolic systems.

The advantage of this approach is that the numerical boundary layers are explicitly

characterized. This enables us to propose simple ways of removing the numerical boundary

layer by post-processing the numerical solutions. The disadvantage, however, is that it

requires far more regularity of the exact solutions than necessary. This translates to a

4

Reynolds number dependence of the error estimates that are far from being optimal. This

is an important issue since very often in actual computations, the smallest mesh size is set

by the memory of the machine, and the issue is to resolve flows with the largest possible

Reynolds number. In the second paper of this series, we will give an entirely different proof

based on Godunov-Ryabenki analysis which not only gives the optimal convergence results

with minimum assumptions, but also exhibits clearly the effect of noncommutativity of the

various operators involved.

We add here a few general remarks before ending this introduction. There appears to

be considerable amount of confusion in the subject of physical and numerical boundary

conditions for incompressible flows. Part of this is due to the lack of a well-established

model problem which can be used as a benchmark test problem for the various proposals.

Very often tests are done for a few selected physical problems and conclusions are drawn

from results of these particular runs with a fixed set of numerical and physical parameters

(grid size, CFL number, Reynolds number, etc), instead of the asymptotic limit as these

parameters vary. It is not surprising that these conclusions often contradict each other.

Also responsible to the state of the confusion is some of the crude and sometimes irrele-

vant analysis presented in the literature. Extrapolated conclusions based on crude analysis

may very well contribute more to the confusion rather than understanding. The numerical

phenomena involved in the projection method is sufficiently complex that soft arguments

can hardly touch the heart of the matter, neither does a simple convergence theorem or

crude error estimates.

For convenience, we list here the content of the rest of the paper:

Section 2. Review of the projection methods

Section 3. Summary of results and outline of proofs

Section 4. First order schemes without spatial discretization

Section 5. Effect of numerical boundary conditions

Section 6. Second order schemes without spatial discretization

Section 7. Generalizations

5

Appendix 1. First order schemes with spatial discretization

Appendix 2. Second order schemes with spatial discretization

Appendix 3. Post-processing for the pressure.

§2. Review of the Projection Methods

In primitive variables, NSE takes the following form

(2.1)




∂tu + (u·∇)u +∇p = ∆u ,

∇·u = 0 .

Here u = (u, v) is the velocity, and p is the pressure. For simplicity, we will only consider

the case when the no-slip boundary condition is supplemented to (2.1):

(2.2) u = 0 on ∂Ω

where Ω is an open domain in RI 2 with smooth or piecewise smooth boundary.

§2.1. Time discretization

As a first step toward the construction of an efficient numerical scheme for (2.1)-(2.2),

we discretize (2.1) in time using backward Euler:

(2.3)




un+1 − un

�t
+ (un ·∇)un +∇pn+1 = ∆un+1 ,

∇·un+1 = 0 .

We do not hesitate to use implicit schemes since the NSE is intrinsically implicit anyway. Al-

ternately we can discretize (2.1) using the trapezoidal rule, resulting in the Crank-Nicholson

scheme:

(2.4)




un+1 − un

�t
+ (un+1/2 ·∇)un+1/2 +∇pn+1 = ∆

un+1 + un

2
,

∇·un+1 = 0 .

It is not important at this point to specify the discretization for the convection terms. (2.3)

and (2.4) are solved together with the boundary condition :

(2.5) un+1 = 0 on ∂Ω .

6

However, both schemes are highly inefficient since they require, at each time step, the

solution of (2.3) or (2.4) which are coupled systems of Stokes-like equations for (un+1, pn+1).

This is precisely the reason for proposing the projection method, as a numerical device to

decouple the computation of un+1 and pn+1 [4, 21]. Instead of simultaneously satisfying

the momentum equation and the incompressibility constraint, projection method proceeds

by first ignoring the incompressibility constraint, compute an intermediate velocity field

u∗ using the momentum equation and then project u∗ back to the space of incompressible

vector fields to obtain un+1 and pn+1. The actual realization of this procedure for the first

order scheme can be summarized as :

First order scheme:

Step 1:

(2.6)




u∗ − un

�t
+ (un ·∇)un = ∆u∗ ,

u∗ = 0 , on ∂Ω .

Step 2:

(2.7)




u∗ = un+1 +�t∇pn+1 ,

∇·un+1 = 0 .

The boundary condition for u∗ in (2.6) is rather natural, at least for the first order scheme.

The agonizing decision to be made is the boundary condition for (2.7). If we take the inner

product of (2.1) with the unit normal and tangent vectors at ∂Ω, n and t respectively, we

arrive at

(2.8)
∂p

∂n
= n·∆u ,

∂p

∂t
= t·∆u , on ∂Ω .

So both the Neumann and Dirichlet boundary conditions seem plausible for the pressure

in (2.7). The prevailing point of view for resolving this ambiguity is the following [6]. The

boundary condition in (2.7) is part of the specification of the projection operator. If one

requires that the space of divergence-free vector fields be orthogonal (with respect to the

usual L2 inner project) to the space of irrotational vector fields, then the divergence-free

7

fields has to satisfy the boundary condition :

(2.9) u·n = 0 , on ∂Ω .

Therefore for (2.7) one has

(2.10) un+1 ·n = 0 , or
∂pn+1

∂n
= 0 , on ∂Ω .

In this case (2.7) is none other than the standard Helmholtz decomposition. This boundary

condition is strongly favored in the literature. The question to be addressed then is whether

orthogonality is really important.3

The bottomline is that in most situations, large errors will be introduced at the bound-

ary, either on velocity or on pressure, because of the inconsistency of the boundary condi-

tions. The hope is that these large errors will be restricted to a boundary layer and not

affect the accuracy in the interior. Whether this actually happens is precisely the question

to be addressed here.

To give an indication that the numerical solution contains boundary layers, let us con-

sider the linear case. Without the nonlinear term, (2.6), (2.7) and (2.10) combine to give

(2.11)




(I −∆t∆)∆pn+1 = 0 ,

∂pn+1

∂n
= 0 , on ∂Ω .

In contrast, the linear Stokes equations implies

∆p = 0

without boundary condition on p. Therefore if pn+1(x) has any chance of being close to

p(x, (n+1)∆t), there must be numerical boundary layers in pn+1 with thickness O(∆t1/2).

This is indeed the case as will be seen in §3 and §4.
Second order schemes:

3Here and in the following, the term “projection” should be understood in a more general sense than the

Helmholtz decomposition since more general boundary conditions are allowed.

8

There are at least three different ways to decouple the system (2.4) to get a formally

second order scheme. These are respectively projection methods bases on: (1) accurate

boundary conditions for the intermediate velocity field [13]; (2) accurate pressure boundary

conditions [16]; (3) pressure increment formulation [2, 24]. Below is a summary of these

methods.

(1) Projection method based on accurate boundary conditions for the intermediate ve-

locity field (Kim and Moin’s method [13]):

(2.12)




u∗ − un

�t
+ (un+1/2 ·∇)un+1/2 = ∆

u∗ + un

2
,

u∗ + un = �t∇pn−1/2 , on ∂Ω ,

u∗ = un+1 +�t∇pn+1/2 ,

∇·un+1 = 0 ,

∂pn+1/2

∂n
= 0 , on ∂Ω .

In this formulation, homogeneous Neumann boundary condition for pressure is retained. An

inhomogeneous boundary condition for u∗ is introduced so that the slip velocity of un+1 at

the boundary is of order �t2.

Remark. The nonlinear convection term (un+1/2 ·∇)un+1/2 can be treated in many

ways. In Theorems 2 and 4, we use an explicit Adams-Bashforth formula, 3
2(u

n ·∇)un −
1
2(u

n−1 ·∇)un−1, which is the one used by Kim and Moin.

It is readily seen that the projection step enforces

(2.13)
∂pn+1

∂n
=

∂pn

∂n
= · · · = ∂p0

∂n
= 0 , on ∂Ω

for the numerical solution. In general this is not satisfied by the exact solution of (2.1).

Therefore we expect that ∂pn

∂n has O(1) error at the boundary. As will be seen in §4, this
causes u∗ and pn to have numerical boundary layers.

9

(2) Projection method based on accurate pressure boundary condition [16]:

(2.14)




u∗ − un

�t
+ (un+1/2 ·∇)un+1/2 = ∆

u∗ + un

2
,

u∗ = 0 , on ∂Ω ,

u∗ = un+1 +�t∇pn+1/2 ,

∇·un+1 = 0 ,

∂pn+1/2

∂n
= −n·[∇×(∇×u∗)] , on ∂Ω .

In this formulation, the homogeneous Dirichlet boundary condition for the intermediate

state u∗ is retained. An inhomogeneous Neumann boundary condition for pressure is in-

troduced so that the slip velocity of un+1 at the boundary is of order O(�t2).

The boundary condition for pressure in (2.14) is motivated by the first relation in (2.8).

Notice that imposing (2.8) directing may not be consistent with the Poisson equation for

pressure

(2.15) ∆pn+1 =
1
�t

∇·u∗

which implies

(2.16)
∫

∂Ω

∂pn+1

∂n
ds = 0 .

However, the revised form of the pressure boundary condition is guaranteed to be consistent

with the above relation. For more discussion see the end of §5.
(3) Projection method based on the pressure increment formulation: [2, 3, 24]

(2.17)




u∗ − un

�t
+ (un+1/2 ·∇)un+1/2 +∇pn−1/2 = ∆

u∗ + un

2
,

u∗ = 0 , on ∂Ω ,

u∗ = un+1 +�t(∇pn+1/2 −∇pn−1/2) ,

∇·un+1 = 0 ,

∂pn+1/2

∂n
= 0 , on ∂Ω .

10

Again the spurious slip velocity of un+1 at the boundary is of order �t2, and the numerical

solutions satisfy (2.13). If we let û = u∗ −�t∇pn−1/2 in (2.12), then we have

(2.18)




û − un

�t
+ (un+1/2 ·∇)un+1/2 +∇pn−1/2 = ∆

û+ un

2
+

∆t

2
∆∇pn−1/2 ,

û + un = 0 , on ∂Ω ,

u∗ = un+1 +�t(∇pn+1/2 −∇pn−1/2) ,

∇·un+1 = 0 ,

∂pn+1/2

∂n
= 0 , on ∂Ω .

Except the last term is the first equation, this is basically the same as (2.17). This suggests

that (2.17) should behavior similarly to (2.12). Surprisingly enough, (2.17) exhibits some

peculiarities not shared by either (2.12) or (2.14). This will be the subject of a subsequent

paper [8].

§2.2. Spatial discretization
The remaining task is to solve the Poisson type equations in (2.6)-(2.7) etc, instead of

the coupled system of Stokes-like equation in (2.3) and (2.4). Any of the popular methods,

such as finite difference, finite element, spectral, or spectral element, can be used for this

purpose. In many cases, fast Poisson solvers or domain decomposition methods can be used

to drastically speed up the calculation. When the Reynolds number is large, the NSE are

effectively convection-dominated. One can then borrow the techniques developed in the

numerical solutions of hyperbolic equations or compressible flows. Such examples can be

found in [2, 3, 17].

As an example of how the fully discrete schemes can be analyzed in the same fashion

as the spatially continuous schemes, we will consider in the Appendices the well-known

spatial discretization scheme: centered difference on a staggered grid (also known as the

MAC mesh), coupled with the time-splitting schemes.

An illustration of the MAC mesh near the boundary is given in Figure 1, following the

presentation of [1]. Here pressure is evaluated at the square points (i, j), the u velocity

at the triangle points (i ± 1/2, j), and the v velocity at the circle points (i, j ± 1/2). The

11

i−1 i i+1

j−1

j

j+1

pi,j ui+1/2,j

vi,j+1/2

✷ ✷ ✷ ✷ ✷

✷ ✷ ✷ ✷ ✷

✷ ✷ ✷ ✷ ✷

� � � �

� � � �

� � � �

© © © © ©

© © © © ©

© © © © ©

Figure 1: The MAC mesh

discrete divergence is computed at the square points:

(2.19) (∇·u)i,j =
ui+1/2,j − ui−1/2,j

�x
+

vi,j+1/2 − vi,j−1/2

�y
.

Other differential operators are discretized as:

(2.20)

(∆u)i+1/2,j =
ui+3/2,j − 2ui+1/2,j + ui−1/2,j

�x 2 +
ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

�y 2 ,

(∆v)i,j+1/2 =
vi+1,j+1/2 − 2ui,j+1/2 + ui−1,j+1/2

�x 2 +
vi,j+3/2 − 2vi,j+1/2 + vi,j−1/2

�y 2 ,

(2.21)

(px)i+1/2,j =
pi+1,j − pi,j

�x
,

(py)i,j+1/2 =
pi,j+1 − pi,j

�y
,

(2.22)
ūi,j+1/2 = 1

4(ui+1/2,j + ui−1/2,j + ui+1/2,j+1 + ui−1/2,j+1) ,

v̄i+1/2,j = 1
4(vi+1,j+1/2 + vi+1,j−1/2 + vi,j+1/2 + vi,j−1/2) .

12

(2.23)

(u·∇a)i+1/2,j = ui+1/2,j

ai+3/2,j − ai−1/2,j

2�x
+ v̄i+1/2,j

ai+1/2,j+1 − ai+1/2,j−1

2�y

(u·∇b)i,j+1/2 = ūi,j+1/2

bi+1,j+1/2 − bi−1,j+1/2

2�x
+ vi,j+1/2

bi,j+3/2 − bi,j−1/2

2�y

(2.24) Nh(u,a) = ((u·∇a)i+1/2,j , (u·∇b)i,j+1/2)

Clearly the truncation errors of these approximations are of second order.

The boundary condition u = 0 is imposed at the vertical physical boundary, whereas

v = 0 is imposed at the “ghost” circle points which are �x/2 to the left or right of the

physical boundary. Similarly the boundary condition v = 0 is imposed at the horizontal

physical boundary, but u = 0 is imposed at the “ghost” triangle points with a distance of

�y/2 away from the physical boundary.

Notations: We will use C to denote generic constants which may depend on the norms

of the exact solutions. Norms will be taken over the entire domain Ω.

§3. Summary of Results and Outline of Proofs

For simplicity of presentation, we will concentrate on the situation when Ω = [−1, 1] ×
[0, 2π] with periodic boundary condition in the y direction and no-slip boundary condition

in the x-direction: u(x, 0, t) = u(x, 2π, t),u(−1, y, t) = 0,u(1, y, t) = 0. We will use ∂
′
Ω

to denote the part of the boundary at x = ±1. We will always assume that �x ∼ �y

and h = min(�x,�y). Extensions to general domains will be discussed in §7. We will

concentrate our discussions on the spatially continuous schemes since the main issue is in

the time-discretization, as we have illustrated above.

The main results of this paper are the following (the constants are independent of �t

and h):

Theorem 1. Let (u, p) be a smooth solution of the Navier-Stokes equation (2.1) with

smooth initial data u0(x) and let (u�t, p�t) be the numerical solution for the semi-discrete

projection method (2.6), (2.7) and (2.10). Then we have

(3.1) ‖u − u�t‖L∞(0,T ;L2) +�t1/2 ‖p− p�t‖L2(0,T ;L2) ≤ C�t ,

13

Furthermore, if u0(x) satisfies the compatibility condition

(3.2) u0(x) = 0 , ∂yp(x, 0) = ∂2
xyp(x, 0) = 0 , on ∂

′
Ω,

then we have

(3.3) ‖u − u�t‖L∞ +�t1/2‖p − p�t‖L∞ ≤ C�t ,

(3.4) ‖p− p�t − pc‖L∞ ≤ C�t

where

pc(x, t) ≡ �t1/2 e

e− 1
e−|x−1|/�t1/2

∂xp�t(x−�t1/2, y, t)

+�t1/2 e

e− 1
e−|x+1|/�t1/2

∂xp�t(x+�t1/2, y, t) .

Remark. It is rather common to require compatibility conditions on the initial data

for the convergence of numerical schemes, although here we require more than necessary.

We refer to the work of Heywood and Rannacher [11], and Okamoto [15] on discussions of

minimum compatibility assumptions.

Theorem 2. Let (u, p) be a smooth solution of the Navier-Stokes equation (2.1) with

smooth initial data u0(x) and let (u�t, p�t) be the numerical solution for the semi-discrete

projection method (2.12). Then we have

(3.5) ‖u − u�t‖L∞(0,T ;L2) +�t‖p− p�t‖L∞(0,T ;L2) ≤ C�t 2 ,

Furthermore, if u0(x) satisfies the compatibility condition

(3.6) ∂α1
x ∂α2

y u0(x) = 0 , on ∂
′
Ω , for α1 + α2 ≤ 6 ,

then we have

(3.7) ‖u − u�t‖L∞ +�t3/2‖p− p�t‖L∞ ≤ C�t 2 ,

(3.8) max
dist(x−∂′Ω)≥�t1/2

|p− p�t| ≤ C�t 2 ,

14

(3.9) ‖p − p�t − pc‖L∞ ≤ C�t ,

where

pc(x, t) ≡
√

�t

2
e
√

2

e
√

2 − 1
e−

√
2|x−1|/�t1/2

∂xp�t(x−�t1/2, y, t)

+

√
�t

2
e
√

2

e
√

2 − 1
e−

√
2|x+1|/�t1/2

∂xp�t(x+�t1/2, y, t).

Remark. Appendix 3 contains a discussion on how to remove the next order boundary

layer errors in the numerical approximations of pressure to get uniform O(�t2) convergence

rate.

Theorem 3. Let (u, p) be a solution of the Navier-Stokes equation (2.1) with smooth initial

data u0(x) satisfying the compatibility condition

(3.10) u0(x) = 0 , ∂yp(x, 0) = ∂2
xyp(x, 0) = 0 , on ∂

′
Ω,

Let (uh, ph) be the numerical solution of the projection method (2.6), (2.7) and (2.10) coupled

with the MAC spatial discretization. Assume that �t << h. Then we have

(3.11) ‖u − uh‖L∞ +�t1/2‖p − ph‖L∞ ≤ C(�t+ h 2) ,

(3.12) ‖p− ph − pc‖L∞ ≤ C(�t+ h 2) ,

where

(3.13)

pc(x, t) ≡ �t1/2 β
eα

eα − 1
e−α|x−1|/�t1/2

Dx
+ph(x−�t1/2, y, t)

+�t1/2 β
eα

eα − 1
e−α|x+1|/�t1/2

Dx
+ph(x+�t1/2, y, t),

α =
�t1/2

�x
arccosh (1 +

�x 2

2�t
) , β =

�x

�t1/2
(1− e−α�x/�t1/2

)−1 .

Theorem 4. Let (u, p) be a smooth solution of the Navier-Stokes equation (2.1) with smooth

initial data u0(x) satisfying the compatibility condition

(3.14) ∂α1
x ∂α2

y u0(x) = 0 , on ∂Ω , for α1 + α2 ≤ 6 ,

15

Let (uh, ph) be the numerical solution of the projection method (2.12) coupled with the MAC

spatial discretization. Assume that �t 2 << h. Then we have

(3.15) ‖u − uh‖L∞ +�t3/2‖p − ph‖L∞ +�t‖p− ph‖L∞(0,T,L2) ≤ C(�t 2 + h 2) .

(3.16) ‖p− ph − pc‖L∞ ≤ C(�t+ h 2) ,

where

(3.17)

pc ≡ �t1/2 β
eα

eα − 1
e−α|x−1|/�t1/2

Dx
+ph(x−�t1/2, y, t)

+�t1/2 β
eα

eα − 1
e−α|x+1|/�t1/2

Dx
+ph(x+�t1/2, y, t),

α =
�t1/2

�x
arccosh (1 +

�x 2

�t
) , β =

�x

�t1/2
(1− e−α�x/�t1/2

)−1 .

Remark. We refer to §7 for extensions to general domains.

There are three major steps in the proofs of these results. Here we illustrate these steps

for the first order scheme (2.6), (2.7) and (2.10).

Steps 1: Using boundary layer analysis, we construct approximate solutions of the

form (tn = n�t):

(3.18)

U∗(x, tn) = u∗
0(x, t

n) +�t1/2 u∗
1(x, (x± 1)/�t1/2, tn) + · · · ,

Un(x, tn) = u0(x, tn) +�t1/2 u1(x, (x± 1)/�t1/2, tn) + · · · ,

Pn(x, tn) = p0(x, tn) +�t1/2 p1(x, (x± 1)/�t1/2, tn) + · · ·

satisfying the numerical scheme to high order accuracy:

(3.19)




U∗ − Un

�t
+ (Un ·∇)Un = ∆U∗ +�tαfn ,

U∗ = 0 , on ∂Ω ,

Un+1 − U∗

�t
+∇Pn = �tαgn ,

∇·Un+1 = 0 ,

Un+1 ·n = 0 , on ∂Ω ,

U0 = u0 +�tαw0

16

where α is a pre-determined number.

Step 2: The L2-stability of these numerical schemes can be proved using energy esti-

mates. Together with (2.6), (2.7), (2.10) and (3.19), we get

(3.20)

‖un − Un‖L2 ≤ C∗ �tα ,

‖u∗ − U∗‖L2 ≤ C∗ �tα ,

‖pn − Pn‖L2 ≤ C∗ �tα−1

where the constant C∗ depends on either

|||un|||L∞ = sup
0≤t≤T

‖un(·, t)‖L∞ ,

or

|||un|||W 1,∞ = sup
0≤t≤T

‖un(·, t)‖W 1,∞ .

Step 3: To complete the proof, we need to:

(1) Establish a priori estimates on |||un|||L∞ or |||un|||W 1,∞ ;

(2) Convert the L2 estimates in (3.20) to L∞ estimates.

The standard way of achieving (1) and (2) in fully-discrete methods is to use the inverse

inequality:

‖uh‖L∞ ≤ h−d/2‖uh‖L2

where h is the spatial mesh size, d is the dimension. This is also the major component of

Strang and Michelson’s analysis. This standard trick is used to prove Theorems 3 and 4 for

the fully-discrete schemes. However, this trick cannot be used to prove Theorems 1 and 2

which deal with the spatially continuous schemes. In this case, we get (1) and (2) directly

by using careful a priori estimates and the regularity theory for elliptic equations.

The actual proofs are quite complicated. In the next section, we provide the detailed

proof of Theorem 1. The proof of Theorem 2 is analogous although some details in estimates

are different. This is done in §6. The fully-discrete schemes and the proofs of Theorems 3

and 4 are left to the Appendices.

17

§4. First Order Schemes Without Spatial Discretization

We will concentrate on the following version of the first order projection method:

(4.1)




u∗ − un

�t
+ (un ·∇)un = ∆u∗ ,

u∗ = 0 , on ∂Ω ,

u∗ = un+1 +�t∇pn ,

∇·un+1 = 0 ,

∂pn

∂n
= 0 , on ∂Ω .

The corresponding fully discrete scheme with the standard MAC spatial discretization

will be studied in Appendix 1. Many variants of (4.1) are possible. Some of them are

discussed in the next section.

§4.1 Asymptotic Analysis of the Numerical Solutions
Denote the solutions of (4.1) as (u�t,u

∗
�t, p�t). Motivated by the discussions in §2, we

make the following ansatz, valid at tn = n�t, n = 1, 2, · · ·

(4.2)




u∗
�t(x, t) = u∗

0(x, t) +
∑
j=1

ε j [u∗
j(x, t) + a∗

j(ξ, y, t)] ,

u�t(x, t) = u0(x, t) +
∑
j=1

ε juj(x, t) ,

p�t(x, t) = p0(x, t) + ϕ0(ξ, y, t) +
∑
j=1

ε j [pj(x, t) + ϕj(ξ, y, t)] .

Here ε = �t1/2, ξ = (x + 1)/ε,u∗
j = (u∗j , v∗j),a∗

j = (a∗j , b∗j),uj = (uj , vj) . We assume

that the ξ-dependent functions decay super-algebraically as ξ → +∞. In doing so, we have

committed our attention to the left boundary at x = −1. Clearly a similar analysis can

be done at the right boundary {x = 1}. Our purpose is to find the coefficients in this

expansion such that the truncated series satisfies (4.1) to high order accuracy. Using the

notation ∇ξ = (∂ξ , 0), ∇y = (0, ∂y), we have

(4.3) ∆u∗
�t = ∆xu∗

0 +
∑
j=1

ε j(∆xu∗
j + ε−2∂ 2

ξ a∗
j + ∂ 2

y a∗
j) ,

18

(4.4) ∇·u�t = ∇x ·u0 +
∑
j=1

ε j∇x ·uj ,

(4.5) ∇p�t = ∇xp0 + ε−1∇ξϕ0 +∇yϕ0 +
∑
j=1

ε j(∇xpj + ε−1∇ξϕj +∇yϕj) ,

(4.6)

un+1(x) = u0(x, tn+1) +
∑
j=1

ε juj(x, tn+1)

=
∑
k=0

1
k!

ε2ku
(k)
0 (x, tn) +

∑
j=1

ε j
∑
k=0

1
k!

ε2ku
(k)
j (x, tn) .

In the following we will omit the subscript x for differential operators with respect to x.

Next we substitute these relations into (4.1) in order to determine the coefficients of ε j

in (4.2). We get hierarchies of equations by collecting equal powers of ε.

The first equation in (4.1) gives:

(4.7) u∗
0 = u0 ,

(4.8) u∗
1 + a∗

1 − u1 = ∂ 2
ξ a∗

1 ,

(4.9) u∗
2 + a∗

2 − u2 + (u0 ·∇)u0 = ∆ 2u∗
0 +∆ 2

ξ a∗
2 .

For j ≥ 1,

(4.10) u∗
j+2 + a∗

j+2 − uj+2 +
j∑

k=0

(uk ·∇)uj−k = ∆u∗
j + ∂ 2

ξ a∗
j+2 + ∂ 2

y a∗
j .

The second equation in (4.1) implies

(4.11) u∗
0 = u0 ,

(4.12) u∗
1 + a∗

1 = u1 +∇ξϕ0 ,

(4.13) u∗
2 + a∗

2 = u2 + ∂tu0 +∇p0 +∇ξϕ1 +∇yϕ0 .

For j = 2$− 1, $ ≥ 1,

(4.14) u∗
j+2 + a∗

j+2 = uj+2 + ∂tuj +∇pj +∇ξϕj+1 +∇yϕj +
�∑

k=2

1
k!

u
(k)
j−2k+2 .

19

For j = 2$, $ ≥ 1,

(4.15) u∗
j+2+a∗

j+2 = uj+2+∂tuj+∇pj+∇ξϕj+1+∇yϕj+
1

($+ 1)!
u

(�+1)
0 +

�∑
k=2

1
k!

u
(k)
j−2k+2 .

From the third equation in (4.1), we obtain

(4.16) ∇·uj = 0 , j = 0, 1, · · · .

The boundary conditions become

(4.17) u∗
0 = 0, ∂ξϕ0 = 0, at x = −1, ξ = 0 ,

(4.18) u∗
j + a∗

j = 0 , ∂xpj−1 + ∂ξϕj = 0 , at x = −1, ξ = 0 ,

for j > 0.

Our next task is to analyze these equations to see whether they are solvable. We begin

by noticing that (4.8) and (4.12) imply

(4.19) u∗
1 = u1 ,

(4.20) a∗
1 = ∂ 2

ξ a∗
1 = ∇ξϕ0

since u∗
1 and u1 do not depend on ξ. From (4.17), we get

(4.21) a∗
1 = 0 , ϕ0 = 0 .

Next we collect the ξ-independent part of (4.9), (4.13) and (4.16) to obtain

(4.22)




∂tu0 +∇p0 + (u0 ·∇)u0 = ∆u0 ,

∇·u0 = 0

The remaining part of the these equations give

(4.23) a∗
2 = ∂ 2

ξ a∗
2 ,

(4.24) a∗
2 = ∇ξϕ1 +∇yϕ0 .

20

Not surprisingly, the leading order terms in (4.2) satisfy the original NSE (4.22), with the

boundary condition: u0 = 0 on ∂
′
Ω. It is natural to associate (4.22) with the initial

condition: u0(x, 0) = u0(x). It is easy to see that (4.23)-(4.24) are satisfied if we choose

(4.25) b∗2 = 0 , a∗2 = ∂ξϕ1 ,

(4.26) ϕ1 = ∂ 2
ξ ϕ1 .

The boundary condition for (4.26) can be obtained from (4.18) with j = 1:

(4.27) ∂ξϕ1 + ∂xp0 = 0 , at ξ = 0, x = −1 .

(4.26) and (4.27) imply

(4.28) ϕ1(ξ, y, t) = ∂xp0(−1, y, t) e−ξ .

So far we have obtained solutions for u∗
0,u0, p0,a

∗
1, ϕ0,a

∗
2, ϕ1. Let j = 1 in (4.10), j = 3 in

(4.14) and j = 1 in (4.16), we get:

(4.29)




∂tu1 +∇p1 + (u0 ·∇)u1 + (u1 ·∇)u0 = ∆u1 ,

∇·u1 = 0 ,

(4.30)




a∗
3 = ∂ 2

ξ a∗
3 ,

a∗
3 = ∇ξϕ2 +∇yϕ1 .

The boundary condition for (4.29) is u1|∂′Ω = 0. The initial data for (4.29) is u1 |t=0 = 0.

Therefore we have

(4.31) u1 = 0 , p1 = 0 .

From (4.18) and (4.30), we have

(4.32) ∂ξϕ2 = 0 , at x = −1, ξ = 0 .

The solutions of (4.30) and (4.32) are given by:

(4.33) ϕ2 = 0 , b∗3 = ∂yϕ1, a∗3 = 0 .

21

These give us (u∗
1,u1, p1,a

∗
3, ϕ2). Similarly, we have the next set of equations:

(4.34)




∂tu2 +∇p2 + (u0 ·∇)u2 + (u2 ·∇)u0 = ∆u2 +∆(∂tu0 +∇p0)− 1
2∂

2
t u0 ,

∇·u2 = 0 ,

(4.35)




a∗
4 = ∂ 2

ξ a∗
4 + ∂ 2

y a∗
2 ,

a∗
4 = ∇ξϕ3 +∇yϕ2 .

The boundary conditions can be obtained from (4.18) and (4.13):

(4.36) u2 +∇p0 +∇ξϕ1 = 0 , at ξ = 0, x = −1,

(4.37) ∂ξϕ3 + ∂xp2 = 0 , at ξ = 0, x = −1 .

However, choosing the right initial data for (4.34) is a rather subtle issue. We will defer the

discussion to the end of this subsection.

Notice that (4.36) and (4.27) imply that u2 · n = 0 on ∂
′
Ω. In general, (4.14), (4.15)

and (4.18) imply that this is true for all uj.

Solutions of (4.35), (4.37) are given by

(4.38) b∗4 = 0 , a∗4 = ∂ξϕ3 .

(4.39) ϕ3(ξ, y, t) = (∂xp2 +
1
2
∂x∂

2
y p0) |x=−1 e−ξ +

1
2
∂x∂

2
y p0 |x=−1 ξe−ξ .

This set of equations determines (u∗
2,u2, p2,a

∗
4, ϕ3). If we now look at the next equation in

each of the groups (4.10), (4.14) and (4.16), we obtain

(4.40)




∂tu3 +∇p3 + (u0 ·∇)u3 + (u3 ·∇)u0 = ∆u3 +∆∇p2 ,

∇·u3 = 0 ,

(4.41) a∗
5 = ∂ 2

ξ a∗
5 + ∂ 2

y a∗
3 ,

(4.42) a∗5 = ∂ξϕ4, b∗5 = ∂yϕ3 .

22

Usually one would expect that (u3, p3) = 0, since they are the coefficients of �t3/2 terms.

But the boundary layer in p gives rise to a nonzero boundary condition for (4.40). This is

seen from (4.14) which for j = 3 reads:

(4.43) u∗
3 + a∗

3 = u3 + ∂tu1 +∇p1 +∇ξϕ2 +∇yϕ1 = u3 +∇yϕ1 .

Therefore (4.18) implies that

(4.44) u3 +∇yϕ1 = 0 , at x = −1, ξ = 0 .

(4.40) and (4.44), together with a suitable initial condition that matches (4.44) at t = 0,

determine (u3, p3). This in turn determines the boundary condition for ϕ4

(4.45) ∂ξϕ4 = −∂xp3 at ξ = 0, x = −1 .

(4.41) and (4.45) can be solved for ϕ4, etc. This set of equations determines (u∗
3,u3, p3,

a∗
5, ϕ4). Obviously this procedure can be continued and we obtain

(4.46) a∗j = ∂ξϕj−1 , b∗j = ∂yϕj−2 ,

(4.47) ϕj = ∂ 2
ξ ϕj + ∂ 2

y ϕj−2 .

(4.48) ϕj =
[j/2]∑
k=0

Fj,k(y)ξ ke−ξ ,

Now if we let

(4.49)




U∗ = u∗
0 +

2N∑
j=1

ε j(u∗
j + a∗

j) ,

Un = u0 +
2N∑
j=1

ε juj ,

Pn = p0 +
2N∑
j=1

ε j(pj + ϕj) + ε2N+1ϕ2N+1 ,

23

then we have

(4.50)




U∗ − Un

�t
+ (Un ·∇)Un = ∆U∗ +�tN−1/2fN ,

U∗ = 0 , on ∂
′
Ω ,

U∗ = Un+1 +�t∇Pn +�tN+1/2gN ,

∇·Un+1 = 0 ,

∂Pn

∂n
= n·Un+1 = 0 , on ∂

′
Ω

where the coefficients fN and gN are functionals of (u0, p0). They are bounded and smooth

if (u0, p0) are sufficiently smooth.

We now come to the choice of initial conditions. If we do not require extra compatibility

conditions for the initial data u0(x), then to have solutions (u2, p2) that are smooth at t = 0,

we need to choose an initial data for u2 that matches (4.36). While there is no difficulty in

doing this, it restricts the approximation of the initial data to

(4.51) U0(x) = u0(x, 0) +�tw0(x)

where w0 is a bounded function. This is enough for proving the L2 estimate, but not enough

for proving the L∞ estimate.

However, if we assume that the initial data u0(x) for NSE (2.1) satisfies the following

compatibility condition

(4.52) u0(x) = 0 , ∂yp0 = 0 , on ∂
′
Ω ,

then we can choose

(4.53) u2(x, 0) = 0

since

(4.54) u2 |x=−1,t=0 = −∇p0 |x=−1,t=0 −∇ξϕ1 |ξ=0,t=0 = (0,−∂yp0 |x=−1,t=0) = 0 .

Likewise, if we assume

(4.55) ∂x∂yp0 = 0, on ∂
′
Ω

24

then we have

(4.56) u3(x, 0) = 0 .

Hence we have

(4.57) U0(x) = u0(x, 0) +�t 2w0(x)

where w0 is a bounded function.

§4.2. Proof of Theorem 1

Proposition 1. Let un, u∗ and pn be the solution of (4.1). Let Un, U∗, and Pn be the

constructed approximate solution satisfying

(4.58)




U∗ − Un

�t
+ (Un ·∇)Un = ∆U∗ +�tα fn ,

U∗ = 0 , on ∂Ω ,

Un+1 − U∗

�t
+∇Pn = �tαgn ,

∇·Un+1 = 0 ,

∂Pn

∂n
= Un+1 ·n = 0 , on ∂Ω ,

U0 = u0 +�tα w0

and

(4.59) max
0≤n≤

[
T
�t

]
+1

‖Un(·)‖W 1,∞ ≤ C∗ , α > 1/2 .

Then for 0 ≤ t ≤ T we have

(4.60) ‖un − Un‖L2 +�t1/2

(∑
n

‖pn − Pn‖ 2
H1�t

)1/2

≤ C1 �tα

and

(4.61) ‖un − Un‖L∞ +�t ‖pn − Pn‖W 1,∞ ≤ C1 �tα−1/2

where

(4.62) C1 = C ‖w0‖L2 + C(C∗)

(∑
n

�t(‖fn‖ 2
L2 + ‖gn‖ 2

L2 +�t‖gn‖ 2
H2)

)1/2

.

25

Here C and C∗ are constants and n ≤
[

T
�t

]
+ 1.

Proof: Assume a priori that

(4.63) max
0≤tn≤T

‖un‖L∞ ≤ C̃ .

In the following estimates, the constant will sometimes depend on C∗ and C̃. Later on we

will estimate C̃.

Step 1. Basic Energy Estimates. Let

(4.64) en = Un − un , e∗ = U∗ − u∗ , qn = Pn − pn .

Subtracting (4.58) from (4.1) we get the following error equation

(4.65)




e∗ − en

�t
+ (en ·∇)Un + (un ·∇)en = ∆e∗ +�tαfn ,

e∗ = 0 , on ∂Ω ,

en+1 − e∗

�t
+∇qn = �tαgn ,

∇·en+1 = 0 ,

en+1 ·n = 0 , on ∂Ω ,

e0 = �tα w0 .

Taking the scalar product of the first equation of (4.65) with 2e∗ and integrating by parts,

we obtain

(4.66)

‖e∗‖ 2 − ‖en‖ 2 + ‖e∗ − en‖ 2 + 2�t ‖∇e∗‖ 2

≤ �t2α+1‖fn‖ 2 +�t ‖e∗‖ 2 − 2�t

∫
Ω

e∗ ·(en ·∇) Un dx − 2�t

∫
Ω

e∗ ·(un ·∇) en dx

≤ �t2α+1‖fn‖ 2 +�t ‖e∗‖ 2 + C �t ‖e∗‖ ‖en‖+ 2�t

∫
Ω

en ·(un ·∇) e∗ dx

≤ �t2α+1‖fn‖ 2 + C∗�t ‖e∗‖ 2 + (C∗ + C̃2)�t ‖en‖ 2 +�t ‖∇e∗‖ 2 .

Taking the scalar product of the second equation of (4.65) with 2en+1 yields

(4.67) ‖en+1‖ 2 − ‖e∗‖ 2 + ‖en+1 − e∗‖ 2 ≤ �t ‖en+1‖ 2 +�t2α+1‖gn‖ 2 .

26

Combining (4.66) and (4.67), we get

(4.68)
‖en+1‖ 2 − ‖en‖ 2 + ‖e∗ − en‖ 2 + ‖en+1 − e∗‖ 2 +�t ‖∇e∗‖ 2

≤ C �t (‖en+1‖ 2 + ‖en‖ 2) +�t2α+1(‖fn‖ 2 + ‖gn‖ 2) .

Applying the discrete Gronwall lemma to the last inequality, we arrive at

(4.69) ‖en‖+�t1/2 ‖∇e∗‖+
(∑

n

(‖e∗ − en‖ 2 + ‖en+1 − e∗‖ 2)

)1/2

≤ C1�tα .

Hence, from the second equation of (4.65), we have

‖en‖+�t1/2

(∑
n

‖qn‖ 2
H1 �t

)1/2

≤ C1�tα .

We have proved (4.60), assuming that C̃ in (4.63) is bounded independent of �t.

Step 2. L∞-norm Estimates. Taking the divergence of the third equation of (4.65)

we obtain

(4.70)




∆qn =
∇·e∗

�t
−�tα∇·gn ,

∂qn

∂n
= 0 , on ∂Ω .

Without lose of generality, we can normalize the pressure, such that
∫
Ω qn dx = 0. Applying

standard regularity theorems to the above Neumann problem, we arrive at

(4.71) ‖qn‖H2 ≤ C �t−1‖∇e∗‖+ C �tα‖gn‖H1 ≤ C1�tα−3/2 .

From the second equation in (4.65) we also have

(4.72) ‖∇en+1‖ ≤ ‖∇e∗‖+�t ‖qn‖H2 +�tα+1‖gn‖H1 ≤ C1�tα−1/2 .

From the first equation of (4.65) and (4.71), (4.72), we obtain

(4.73) ‖∆e∗‖ ≤ �t−1‖e∗ − en‖+ C (‖en‖+ ‖∇en‖+�tα‖fn‖) ≤ C1�tα−1 .

This implies

(4.74) ‖e∗‖H2 ≤ C1�tα−1 .

27

Using Sobolev inequality, we get

(4.75) ‖e∗‖L∞ ≤ ‖e∗‖1/2 ‖e∗‖1/2
H2 ≤ C1�tα−1/2 .

From (4.70), we have

(4.76) ‖∆qn‖H1 ≤ �t−1‖e∗‖H2 +�tα‖gn‖H2 ≤ C1�tα−2 .

This implies

(4.77) ‖qn‖H3 ≤ C1�tα−2 .

Notice that the second equation of (4.65) gives

(4.78) ‖∇qn‖L2 ≤ �t−1‖en+1 − e∗‖+�tα‖gn‖L2 ≤ C1�tα−1 .

Therefore with Sobolev inequality, Poincare inequality and (4.77) we have

(4.79) ‖∇qn‖L∞ ≤ ‖∇qn‖1/2 ‖∇qn‖1/2
H2 ≤ C1�tα−3/2 .

Using the second equation of (4.65) one more time, we get

(4.80) ‖en+1‖L∞ ≤ ‖e∗‖L∞ +�t ‖∇qn‖L∞ +�tα+1‖gn‖L∞ ≤ C1�tα−1/2 .

Since α > 1
2 , if we choose �t small enough, we will always have

(4.81) ‖en+1‖L∞ ≤ 1 .

Therefore in (4.63) we can choose

(4.82) C̃ = 1 + max
n≤1+

[
T
�t

] ‖Un(·)‖L∞

which depends only on the exact solution (u, p). This proves (4.61) and (4.62).

Proof of Theorem 1: Now, we simple use the above proposition and chose N = 3 in

the expansion (4.49) we have

(4.83) ‖un − Un‖L∞(0,T ;L2) +�t1/2‖pn − Pn‖L2(0,T ;L2) ≤ C�t

28

But the boundary layer terms in Pn can be estimated as

(4.84)

‖p(·, t) − Pn‖L2(0,T ;L2) ≤
(∑

n

‖�t1/2ϕn
1‖ 2�t

)1/2

= �t

(∑
n

‖ϕn
1‖ 2

)1/2

= �t3/4

(∑
n

‖∂xp
n
0‖ 2�t

)1/2

≤ C�t3/4 .

Combining (4.83) and (4.84) we obtain (3.1). Clearly (3.3) is a directly consequence of

Proposition 1.

Recall the expansion

(4.85) p�t(x, t) = p0(x, t) +�t1/2∂xp0(−1, y, t)e−ξ +O(�t)

To get a uniform approximation for the pressure we need to subtract from p�t the second

term in the right hand side. Note that this term involves p0 which is not known. We need

to approximate it by the numerical solution p�t. This can be done using (4.85) evaluated

at x = −1 +�t1/2:

(4.86) |∂xp�t(−1 +�t1/2, y, t)− (1− e−1)∂xp0(−1, y, t)| ≤ �t1/2

Hence we get

(4.87) p�t(x, t) = p0(x, t) +�t1/2 e

e− 1
∂xp�t(−1 +�t1/2, y, t)e−ξ +O(�t)

This proves (3.4).

§5. Effects of Numerical Boundary Conditions

In this section we focus on the issue which is that main source of confusion in the

subject of projection methods: the boundary condition for pressure at the projection step.

We will examine the effect of different boundary conditions on the accuracy of the numerical

approximations using the explicit asymptotic analysis presented in the last section. As we

29

have seen earlier, the Neumann boundary condition for pressure leads to numerical solutions

with the following asymptotic form (t = n�t):

(5.1)

un(x) = u(x, t) +�tu2(x, t) +�t2u4 + · · · ,

u∗(x) = u(x, t) +�t [u∗
2(x, t,�t) + a∗

2((x± 1)/�t1/2, y, t)] + · · · ,

pn(x) = p(x, t) +�t1/2 ϕ1((x± 1)/�t1/2, y, t) +�t p2(x, t) + · · · .

We see that boundary layer terms of the order �t1/2 and �t appear respectively in the

pressure approximation and the intermediate velocity field, whereas the projected velocity

field does not have numerical boundary layers.

Let us now replace the Neumann boundary condition (2.10) by a Dirichlet boundary

condition:

(5.2)
∂pn

∂t
= 0 , on ∂Ω ,

or more specifically

(5.3) pn = 0 , on ∂Ω .

To analyze the boundary layer structure of the resulted scheme, we proceed as in §4.1 and

make the same ansatz as (4.2). Equations (4.7)-(4.16) remain valid. However, the boundary

conditions are changed to

(5.4) u∗
0 = 0 , p0 + ϕ0 = 0 , at x = −1, ξ = 0 ,

(5.5) u∗
j + a∗

j = 0 , pj + ϕj = 0 , at x = −1, ξ = 0 ,

for j ≥ 1.

We still have (4.22), which together with the boundary condition u0 |∂Ω= 0 and initial

condition determines u0 and p0. This in turn gives the boundary condition for ϕ0:

(5.6) ϕ0 |ξ=0 = −p0 |x=−1 .

30

Going back to (4.20), we obtain

(5.7) a∗1 = ∂ξϕ0 , b∗1 = 0 ,

(5.8) ϕ0(ξ, y, t) = −p0(−1, y, t) e−ξ ,

Although (u1, p1) still satisfies the same equations (4.29), u1 no longer vanishes at the

boundary. Instead, we have

(5.9) (u1, v1) |x=−1 = (−∂ξϕ0 |ξ=0, 0) = (−p0(−1, y, t), 0) .

This implies that in general, we will have (u1, p1) �= 0. Therefore the numerical solution

with the boundary condition (5.3) will have the following form (t = n�t):

(5.10)




un(x) = u(x, t) +�t1/2u1(x, t) + · · · ,

u∗(x) = u(x, t) +�t1/2(u∗
1(x, t) + a∗

1(ξ, y, t)) + · · · ,

pn(x) = p(x, t) + ϕ0(ξ, y, t) +�t1/2(p1(x, t) + ϕ0(ξ, y, t)) + · · · .

As a result of using the Dirichlet boundary condition (5.3), not only the accuracy of the

pressure approximation deteriorates to order zero because of the appearance of O(1) nu-

merical boundary layer, the overall accuracy of the velocity approximation is also reduced

to O(�t1/2). Note also that the leading order error term in the velocity is not of boundary

layer type. Clearly the boundary condition (5.3) is a bad choice.

A potentially better choice is suggested by (2.8):

(5.11)
∂pn

∂t
= t·∆un , on ∂Ω .

This may not be consistent since
∮
∂Ω

∂pn

∂t ds = 0, whereas the line integral of t·∆un over ∂Ω

may not be zero. Therefore we replace (5.11) by

(5.12)
∂pn

∂t
= t·∆un − 1

|∂Ω|
∫

∂Ω
(t·∆un) ds , on ∂Ω

whereas |∂Ω| denote the total length of ∂Ω. For the geometry we are considering, this

becomes

(5.13) ϕn(±1, y, t) =
∫ y

0
∆vn(±1, z, t) dz − y

2π

∫ 2π

0
∆vn(±1, z, t) dz .

31

To see the effect of this boundary condition, we follow the same procedure as described

above. Again, (4.7)-(4.16) remain valid whereas (4.17)-(4.18) are changed to

(5.14) u∗
0 = 0 , u∗

j + a∗
j = 0 , at x = −1, ξ = 0 ,

(5.15) (pj + ϕj)(−1, y, t) =
∫ y

0
∆vj(−1, z, t) dz − y

2π

∫ 2π

0
∆vj(−1, z, t) dz ,

for j ≥ 0. The leading order (u0, p0) still satisfies (4.22) which in turn determines the

boundary condition for ϕ0. Notice that at x = −1, (4.22) implies

(5.16) ∂yp0 = ∆v0

Consequently we have (from the periodicity in y)

(5.17)
∫ 2π

0
∆v0(−1, y, t) dy = 0 , p0(−1, y, t) =

∫ y

0
∆v0(−1, z, t) dz .

Hence we obtain

(5.18) ϕ0 = 0 at ξ = 0 .

Going back to (4.20), we get

(5.19) a∗
1 = 0 , ϕ0 = 0 .

We now turn to the next order terms. Obviously we still have

(5.20) u1 = 0 , p1 = 0 .

Hence we get from (4.23), (4.24) and (5.15)

(5.21) ϕ1 = 0 , a∗
2 = 0 .

In general we will have

(5.22) ϕ2 �= 0 , a∗
3 �= 0 ,

so are the higher order terms.

32

We conclude that with the boundary condition (5.12) or (5.13), the numerical solutions

take the following form (t = n�t):

(5.23)




u∗(x) = u0(x, t) +�t u2(x, t) +O(�t3/2) ,

un(x) = u0(x, t) +�t u2(x, t) +O(�t2) ,

pn(x) = p0(x, t) +�t [p2(x, t) + ϕ2(ξ, y, t)) +O(�t3/2] .

We see that the effect of (5.13) is to suppress the leading order boundary layer terms in

(5.1).

To obtain an improved Neumann boundary condition based on the first relation in (2.8),

let us observe that pn satisfies the Poisson equation

(5.24) ∆pn =
1
�t

∇·u∗

which implies

(5.25)
∫

∂Ω

∂pn

∂n
ds = − 1

�t

∫
∂Ω

u∗ ·n ds = 0 .

Direct imposition of

(5.26)
∂pn

∂n
= n·∆u∗ , or n·∆un , on ∂Ω

may not be consistent with (5.25). However, since

(5.27) ∆u = ∇(∇·u)−∇×(∇×u)

and ∇·un = 0, ∇·u∗ ∼ 0, we can use instead

(5.28)
∂pn

∂n
= −n·[∇×(∇×u∗)] , on ∂Ω ,

or

(5.29)
∂pn

∂n
= −n·[∇×(∇× un)] , on ∂Ω .

It is easy to check that both (5.28) and (5.29) are consistent with (5.25) and lead to (5.23).

However, to rigorously justify these asymptotic analysis is still an open question.

33

§6. Second Order Schemes without Spatial Discretization

In this section we carry out the same program as in §4 for Kim and Moin’s method,

(2.12). Again, we will concentrate on the time-discretized version and leave the fully dis-

crete scheme to Appendix 2. The second order projection method with pressure increment

formulation will be dealt with in a subsequent paper [8]. Analysis for the improved pressure

boundary conditions still remains open.

§6.1. Asymptotic Analysis of Kim and Moin’s Method

Here we will leave out the nonlinear term since it does not affect the major steps but

complicates substantially the presentation. The reader can readily fill in the missing terms

when any standard second order approximation of the nonlinear term is added in.

We begin with the following ansatz:

(6.1)




u∗(x) = u∗
0(x, t

n) +
∑
j=1

ε j [u∗
j (x, t

n) + a∗
j (ξ, y, t

n)] ,

un(x) = u0(x, tn) +
∑
j=1

ε juj(x, tn) ,

pn−1/2(x) = p0(x, tn−1/2) +
∑
j=1

ε j [pj(x, tn−1/2) + ϕj(ξ, y, tn−1/2)] .

Here again we set ε = �t1/2, ξ = (x+ 1)/ε, tn = n�t, tn−1/2 = (n − 1/2)�t, n = 1, 2, · · ·.
Substituting (6.1) into (2.12) and collecting equal powers of ε, we get the following equations:

From the first equation in (2.12), we get

(6.2) u∗
0 = u0 ,

(6.3) u∗
1 + a∗

1 − u1 =
1
2
∂ 2

ξ a∗
1 ,

(6.4) u∗
2 + a∗

2 − u2 =
1
2
(∆u∗

0 + ∂ 2
ξ a∗

2 +∆u0) .

For j ≥ 1,

(6.5) u∗
j+2 + a∗

j+2 − uj+2 =
1
2
(∆u∗

j + ∂ 2
ξ a∗

j+2 + ∂ 2
y a∗

j +∆uj) .

34

From the third equation in (2.12), we get

(6.6) u∗
1 + a∗

1 = u1 ,

(6.7) u∗
2 + a∗

2 = u2 + ∂tu0 +∇p0 +∇ξϕ1 ,

(6.8) u∗
3 + a∗

3 = u3 + ∂tu1 +∇p1 +∇ξϕ2 +∇yϕ1 .

For j = 2$, $ ≥ 1,

(6.9)

u∗
j+2 + a∗

j+2 = uj+2 + ∂tuj +∇pj +∇ξϕj+1 +∇yϕj

+
1

($+ 1)!
u

(�+1)
0 +

�∑
k=2

1
k!

u
(k)
j−2k+2 +

1
2�$!

∇p
(�)
0 +

�−1∑
k=1

1
2kk!

∇p
(k)
j−2k

+
�∑

k=1

1
2kk!

(∇ξϕ
(k)
j−2k+1 +∇yϕ

(k)
j−2k) .

For j = 2$+ 1, $ ≥ 1,

(6.10)

u∗
j+2 + a∗

j+2 = uj+2 + ∂tuj +∇pj +∇ξϕj+1 +∇yϕj

+
�+1∑
k=2

1
k!

u
(k)
j−2k+2 +

�∑
k=1

1
2kk!

(∇p
(k)
j−2k +∇ξϕ

(k)
j−2k+1 +∇yϕ

(k)
j−2k) .

From the incompressibility condition, we get

(6.11) ∇·u j = 0 , for j ≥ 0 .

The boundary conditions imply that for x = −1, ξ = 0,

(6.12) u0 + u∗
0 = 0 ,

(6.13) u1 + u∗
1 + a∗

1 = 0 ,

(6.14) u2 + u∗
2 + a∗

2 = ∇p0 +∇ξϕ1 .

35

(6.15) u3 + u∗
3 + a∗

3 = ∇p1 +∇ξϕ2 +∇yϕ1 ;

for j = 2$, $ ≥ 2

(6.16)

uj + u∗
j + a∗

j = ∇pj−2 +∇ξϕj−1 +∇yϕj−2 +
(−1)�−1

2�−1

1
($− 1)!

∇p
(�−1)
0

+
�−2∑
k=1

(−1)k
2kk!

∇p
(k)
j−2k−2 +

�−1∑
k=1

(−1)k
2kk!

(∇ξϕ
(k)
j−2k−1 +∇yϕ

(k)
j−2k−2);

for j = 2$+ 1, $ ≥ 2

(6.17)

uj + u∗
j + a∗

j = ∇pj−2 +∇ξϕj−1 +∇yϕj−2

+
�−1∑
k=1

(−1)k
2kk!

(∇p
(k)
j−2k−2 +∇ξϕ

(k)
j−2k−1 +∇yϕ

(k)
j−2k−2);

and for j ≥ 0

(6.18) ∂xpj + ∂ξϕj+1 = 0 .

Next we go through all these equations, order by order, to see if they are solvable. Since

this is very similar to what we did in §4.1, we will only give a summary of results.

The coefficients in the expansions (6.1) can be obtained successively in the following

order:

(6.19) u∗
0(x, t) = u0(x, t) ,

(6.20) u∗
1(x, t) = u1(x, t) ,

(6.21) a∗
1 ≡ 0 ,

(6.22)




∂tu0 +∇p0 = ∆u0 ,

∇·u0 = 0 ,

u0 = 0 , on ∂
′
Ω ,

36

(6.23) u∗
2 = u2 + ∂tu0 +∇p0 ,

(6.24)




ϕ1 = 1
2∂

2
ξ ϕ1 ,

∂ξϕ1 |ξ=0 = −∂xp0 |x=−1 ,

(6.25) ϕ1 =
1√
2
∂xp0 |x=−1 e−

√
2ξ ,

(6.26) a∗2 = ∂ξϕ1, b∗2 = 0 ,

(6.27)




∂tu1 +∇p1 = ∆u1 ,

∇·u1 = 0 ,

u1 |∂′Ω = 0 , u1(x, 0) = 0 .

This implies

(6.28) u1 = 0 , p1 = 0 .

We next have:

(6.29) u∗
3 = u3 ,

(6.30) ϕ2 = 0 , a∗3 = 0 , b∗3 = ∂yϕ1 ,

(6.31)




∂tu2 +∇p2 = ∆u2 + 1
2∆(∂tu0 +∇p0)− 1

2∂
2
t u0 − 1

2∂t∇p0 ,

∇·u2 = 0 ,

u2 |∂′Ω = 0 , u2(x, 0) = 0 .

This also implies

(6.32) u2 = 0 , p2 = 0 ,

(6.33)




ϕ3 = 1
2(∂

2
ξ ϕ3 + ∂ 2

y ϕ1) ,

∂ξϕ3 |ξ=0 = 0 ,

37

(6.34) ϕ3(ξ, y, t) =
1
2
∂xyyp0 |x=−1 (

1√
2
+ ξ) e−

√
2ξ ,

(6.35) a∗4 = ∂ξϕ3 +
1
2
∂ξϕ

(1)
1 , b∗4 = 0 ,

(6.36) u∗
4 = u4 +

1
2
u

(2)
0 +

1
2
∇p

(1)
0 ,

(6.37) u3 = 0 , p3 = 0 ,

(6.38) ϕ4 = 0 , a∗5 = 0 , b∗5 = ∂yϕ3 +
1
2
∂yϕ

(1)
1 ,

(6.39) u∗
5 = u5 ,

(6.40)




∂tu4 +∇p4 = ∆u4 + 1
4∆(u(2)

0 +∇p
(1)
0)− 1

6u
(3)
0 − 1

8∇p
(2)
0 ,

∇·u4 = 0 ,

u4 |x=−1 = −1
2∂t(∇p0 + 1

2∇ξϕ1) |x=−1,ξ=0 .

In the last equation, there is a similar boundary condition at x = 1. With a suitable initial

data, (6.40) has a smooth solution. Again we will defer the discussions on choosing the

initial data until the end of this subsection.

Continue in this fashion, we obtain

(6.41)




ϕ5 = 1
2(∂

2
ξ ϕ5 + ∂ 2

y ϕ3) ,

∂ξϕ5 |ξ=0 = −∂xp4 |x=−1 ,

(6.42) a∗6 = ∂ξϕ5 +
1
2
∂ξ∂tϕ3 , b∗6 = 0 ,

(6.43) u∗
6 = u6 + u

(1)
4 +

1
6
u

(3)
0 +∇p4 +

1
8
∇p

(2)
0 ,

(6.44)




∂tu5 +∇p5 = ∆u5 ,

∇·u5 = 0 ,

u5 |x=−1 = −1
2∂t∇yϕ1 |x=−1,ξ=0 .

38

Notice that as in the case of the first order scheme, we generally have (u5, p5) �= 0, because

of the contributions from the boundary.

(6.45)




ϕ6 = 1
2(∂

2
ξ ϕ6 + ∂ 2

y ϕ4) ,

∂ξϕ6 |ξ=0 = −∂xp5 |x=−1 ,

(6.46) a∗7 = ∂ξϕ6 , b∗7 = ∂yϕ5 +
1
2
∂yϕ

(1)
3 ,

(6.47) u∗
7 = u7 + ∂tu5 +∇p5 ,

(6.48)




∂tu6 +∇p6 = ∆u6 + 1
2∆(∂tu4 +∇p4 + 1

6u
(3)
0 + 1

8∇p
(2)
0)

− 1
4!

u
(4)
0 − 1

2
u

(2)
4 − 1

233!
∇p

(3)
0 −∇p

(1)
4

∇·u6 = 0 ,

u6 |x=−1 = 1
4∇p

(2)
0 |x=−1 −1

8∇ξϕ
(2)
1 |ξ=0 .

(6.49)




ϕ7 = 1
2(∂

2
ξ ϕ7 + ∂ 2

y ϕ5) ,

∂ξϕ7 |ξ=0 = −∂xp6 |x=−1 ,

(6.50) a∗8 =
3∑

k=0

1
2kk!

∂ξϕ
(k)
j−2k , b∗8 = ∂yϕ6 ,

(6.51) u∗
8 = u8 + u

(1)
6 +

1
2
u

(2)
4 +

1
4!

u
(4)
0 +∇p6 +

1
2
∇p

(1)
4 +

1
48

∇p
(3)
0 ,

(6.52)




∂tu7 +∇p7 = ∆u7 + 1
2∆(∂tu5 +∇p5)− 1

2u
(2)
5 − 1

2∇p
(1)
5 ,

∇·u7 = 0 ,

u7 |x=−1 = −1
2∇y(ϕ5 − ϕ

(1)
3 + 5

8ϕ
(2)
1) |x=−1,ξ=0 .

In general, if we let

(6.53) ψj =
[j/2]∑
k=0

1
2kk!

ϕ
(k)
j−2k = ϕj +

1
2
∂tϕj−2 +

1
8
∂ 2

t ϕj−4 + · · ·

39

such that {ψj}j≥4 satisfies

(6.54)




ϕj = 1
2 (∂

2
ξ ϕj + ∂ 2

y ϕj−2) ,

∂ξϕj |ξ=0 = −∂xpj−1 |x=−1

and ϕj decays exponentially as ξ → +∞. Then we have

(6.55) a∗j = ∂ξψj−1 , b∗j = ∂yψj−2 .

Clearly a∗
j also decays exponentially as ξ → +∞. On the hand (uj, pj) solves a system of

linear Stokes equations with source terms.

Now if we let

(6.56)




U∗ = u0 +
2N∑
j=1

ε j(u∗
j + a∗

j) ,

Un = u0 +
2N∑
j=1

ε juj ,

Pn−1/2 = p0 +
2N∑
j=1

ε j(pj + ϕj) + ε2N+1ϕ2N+1 ,

then we have

(6.57)




U∗ − Un

�t
= ∆

U∗ + Un

2
+�tN−1/2fN ,

U∗ + Un = �t∇Pn−1/2 , on ∂Ω ,

U∗ = Un+1 +�t∇Pn+1/2 +�tN+1/2gN ,

∇·Un+1 = 0 ,

∂Pn+1/2

∂n
= n·Un+1 = 0 , on ∂Ω

where fN , gN are bounded and smooth if (u0, p0) is sufficiently smooth.

As in §4.1, if we do not assume any compatibility condition for u0, then the smoothness

of (u4, p4) at t = 0 requires us to choose initial data for (6.40) such that it matches the

boundary condition in (6.40). This restricts the approximation at t = 0 to

(6.58) U0(x) = u0(x) +�t 2w0(x)

40

where w0 is a bounded function.

However, it is straightforward to check that under the compatibility conditions stated

in Theorem 2, we can choose

(6.59) u4(x, 0) = u5(x, 0) = u6(x, 0) = u7(x, 0) = 0.

Consequently, we have

(6.60) U0(x) = u0(x) +�t 4w0(x)

where w0 is a bounded function.

§6.2. Proof of Theorem 2

As in the proof of Theorem 1, Theorem 2 is a direct consequence of the following result,

together with (6.56) with N = 5.

Proposition 2. Let un, u∗ and pn be the solution of (2.12) with initial data u0. Let Un,

U∗, and Pn be the constructed approximate solution satisfying

(6.61)




U∗ − Un

�t
= ∆

U∗ + Un

2
− 3

2
(Un ·∇) Un +

1
2
(Un−1 ·∇) Un−1 +�tαfn ,

U∗ + Un = �t ∇Pn−1/2 , on ∂Ω ,

Un+1 − U∗

�t
+∇Pn+1/2 = �tαgn ,

∇·Un+1 = 0 ,

Un+1 ·n = 0 , on ∂Ω ,

U0 = u0 +�tαw0

and

(6.62) max
0≤n≤

[
T
�t

]
+1

‖Un(·)‖W 1,∞ ≤ C∗ , α > 7/4 .

Then we have

(6.63) ‖un − Un‖L2 +�t ‖pn − Pn‖H1 ≤ C1�tα

41

and

(6.64) ‖un − Un‖L∞ +�t ‖pn − Pn‖W 1,∞ ≤ C1�tα−7/4

where C1 is same in Proposition 1.

Proof: As in the proof of Proposition 1, we assume a priori that

(6.65) ‖un‖L∞ ≤ C̃

for n ≤
[

T
�t

]
+ 1.

Step 1. Equation for Error Functions. We first reformulated the Kim and Moin’s

scheme (2.12) by introducing the following new intermediate variables

(6.66)
u∗ + un −�t ∇pn−1/2 → 2û∗ ,

U∗ + Un −�t ∇Pn−1/2 → 2Û∗ .

(2.12) becomes

(6.67)




2(û∗ − un)
�t

+∇
(
pn−1/2 − 1

2
�t ∆pn−1/2

)

= ∆û∗ − 3
2
(un ·∇) un +

1
2
(un−1 ·∇) un−1 ,

û∗ = 0 , on ∂Ω ,

un+1 + un − 2û∗

�t
+∇(pn+1/2 − pn−1/2) = 0 ,

∇·un+1 = 0 ,

un+1 ·n = 0 , on ∂Ω .

The approximation solution (6.57) changes similarly. Let functions

(6.68) en = Un − un , e∗ = Û∗ − û∗ , qn = Pn−1/2 − pn−1/2 .

Subtracting the reformulated form of (6.57) from (6.67), we get an equation for the error

42

functions:

(6.69)




2(e∗ − en)
�t

+∇
(
qn − 1

2
�t ∆qn

)
= ∆e∗ +

1
2
(en−1 ·∇) Un−1

+
1
2
(un−1 ·∇) en−1 − 3

2
(en ·∇) Un − 3

2
(un ·∇) en +�tαfn ,

e∗ = 0 , on ∂Ω ,

en+1 + en − 2e∗

�t
+∇(qn+1 − qn) = �tαgn ,

∇·en+1 = 0 ,

en+1 ·n = 0 , on ∂Ω ,

e0 = �tαw0 .

Step 2. Basic Energy Estimate. Taking the scalar product of the first equation of

(6.69) with e∗ and integrating by parts, we get

(6.70)

‖e∗‖ 2 − ‖en‖ 2 + ‖e∗ − en‖ 2 +�t ‖∇e∗‖ 2

≤ −�t

∫
Ω

e∗ ·∇(qn − 1
2
�t∆qn) dx + C �t2α+1‖fn‖ 2

+C�t (‖en‖ 2 + ‖en−1‖ 2 + ‖e∗‖ 2) + 1
2�t ‖∇e∗‖ 2 .

Taking the scalar product of the second equation of (6.69) with en+1, we obtain

(6.71)
‖en+1‖ 2 − ‖e∗‖ 2 + ‖en+1 − e∗‖ 2 − 1

2(‖en+1‖ 2 − ‖en‖ 2)− 1
2‖en+1 − en‖ 2

≤ C �t2α+1‖gn‖ 2 +C �t ‖en+1‖ 2 .

Combining the these two estimates we obtain

(6.72)

1
2
(‖en+1‖ 2 − ‖en‖ 2) + ‖e∗ − en‖ 2 + ‖en+1 − e∗‖ 2

−1
2‖en+1 − en‖ 2 + 1

2�t ‖∇e∗‖ 2

≤ −�t

∫
Ω

e∗ ·∇(qn − 1
2
�t∆qn) dx + C�t2α+1(‖fn‖ 2 + ‖gn‖ 2)

+C�t (‖en‖ 2 + ‖en−1‖ 2 + ‖e∗‖ 2 + ‖en+1‖ 2) .

Since

(6.73) 2‖e∗ − en‖ 2 + 2‖en+1 − e∗‖ 2 = ‖en+1 − en‖ 2 + ‖en+1 + en − 2e∗‖ 2 ,

43

we get

(6.74)

‖en+1‖ 2 − ‖en‖ 2 + ‖en+1 + en − 2e∗‖ 2 +�t ‖∇e∗‖ 2

≤ −2�t

∫
Ω

e∗ ·∇(qn − 1
2
�t∆qn) dx + C �t (‖en‖ 2 + ‖en−1‖ 2 + ‖en+1‖ 2)

+C�t2α+1(‖fn‖ 2 + ‖gn‖ 2) .

To estimate the first term on the right hand of (6.74), we let

(6.75)

I ≡ −2�t

∫
Ω

e∗ ·∇(qn − 1
2
�t ∆qn) dx

= −2�t

∫
Ω

e∗ ·∇qn dx −�t 2
∫
Ω
(∇·e∗)∆qn dx ≡ I1 + I2 .

Using the second equation and integrating by parts, we can write the first term as

(6.76)

I1 = −2�t

∫
Ω

e∗ ·∇qn dx

= −�t 2
∫
Ω
∇(qn+1 − qn)∇qn dx −�tα+2

∫
Ω

gn ·∇qn dx

= −1
2
�t 2(‖∇qn+1‖ 2 − ‖∇qn‖ 2)

+
1
2
�t 2‖∇(qn+1 − qn)‖ 2 −�tα+2

∫
Ω

gn ·∇qn dx .

Since

(6.77)

1
2
�t 2‖∇(qn+1 − qn)‖ 2 =

1
2
‖en+1 + en − 2e∗‖ 2

+
1
2
�t2α+2‖gn‖ 2 +�tα+1

∫
Ω

gn ·(en+1 + en − 2e∗) dx .

We have

(6.78)

I1 = −1
2�t 2(‖∇qn+1‖ 2 − ‖∇qn‖ 2) + 1

2‖en+1 + en − 2e∗‖ 2

+
1
2
�t2α+2‖gn‖ 2 +�tα+1

∫
Ω

gn ·(en+1 + en − 2e∗) dx −�tα+2
∫
Ω

gn ·∇qn dx .

44

Next we rewrite the second term as

(6.79)

I2 = −�t 2
∫
Ω
(∇·e∗)∆qn dx

= −1
2
�t3

∫
Ω
∆(qn+1 − qn)∆qn dx − 1

2
�tα+3

∫
Ω
(∇·gn)∆qn dx

= −1
4
�t3(‖∆qn+1‖ 2 − ‖∆qn‖ 2) +

1
4
�t3‖∆(qn+1 − qn)‖ 2

−1
2
�tα+3

∫
Ω
(∇·gn)∆qn dx

= −1
4
�t3(‖∆qn+1‖ 2 − ‖∆qn‖ 2) +�t ‖∇·e∗‖ 2 +

1
4
�t2α+3‖∇·gn‖ 2

−�tα+2
∫
Ω
(∇·gn)(∇·e∗) dx − 1

2
�tα+3

∫
Ω
(∇·gn)∆qn dx .

Combining these two terms we arrive at

(6.80)

I = −1
2
�t 2(‖∇qn+1‖ 2 − ‖∇qn‖ 2)− 1

4
�t3(‖∆qn+1‖ 2 − ‖∆qn‖ 2)

+
1
2
‖en+1 + en − 2e∗‖ 2 +�t ‖∇·e∗‖ 2 +�tα+1

∫
Ω

gn ·(en+1 + en − 2e∗) dx

−�tα+2
∫
Ω

gn ·∇qn dx −�tα+2
∫
Ω
(∇·gn)(∇·e∗) dx

−1
2
�tα+3

∫
Ω
(∇·gn)∆qn dx +

1
4
�t2α+3‖∇·gn‖ 2 +

1
2
‖�tα+1gn‖ 2 .

This gives

(6.81)

I ≤ −1
2�t 2(‖∇qn+1‖ 2 − ‖∇qn‖ 2)− 1

4�t3(‖∆qn+1‖ 2 − ‖∆qn‖ 2)

+1
2‖en+1 + en − 2e∗‖ 2 +�t ‖∇e∗‖ 2 +�t‖en+1 + en − 2e∗‖ 2

+2�t3‖∇qn‖ 2 + 2�t4‖∆qn‖ 2 + 2�t2α+1(‖gn‖ 2 +�t‖gn‖ 2
H1) .

Going back to (6.74) we obtain

(6.82)

‖en+1‖ 2 − ‖en‖ 2 + 1
2‖en+1 + en − 2e∗‖ 2 +�t ‖∇e∗‖ 2

+1
2�t 2(‖∇qn+1‖ 2 − ‖∇qn‖ 2) + 1

4�t3(‖∆qn+1‖ 2 − ‖∆qn‖ 2)

≤ �t3‖∇qn‖ 2 +�t4‖∆qn‖ 2 + C �t (‖en‖ 2 + ‖en−1‖ 2 + ‖en+1‖ 2)

+C�t2α+1(‖fn‖ 2 +�t‖gn‖ 2
H1) .

45

Gronwall lemma gives

(6.83) ‖en‖+ ‖e∗‖+�t ‖∇qn‖+�t3/2 ‖∆qn‖+�t1/2‖∇e∗‖ ≤ C1�tα .

Step 3. L∞-norm Estimate. Taking the divergence to the second equation of (6.69),

we obtain

(6.84)




∆(qn+1 − qn) = 2
∇·e∗

�t
+�tα∇·gn ,

∂(qn+1 − qn)
∂n

= 0 , on ∂
′
Ω .

We can always normalize pressure such that
∫
Ω(q

n+1 − qn) dx = 0. Applying standard

regularity theorem to (6.84) and using (6.83), we have

(6.85) ‖qn+1 − qn‖H2 ≤ C ‖∆(qn+1 − qn)‖ ≤ C�tα−3/2 .

The second equation of (6.69) implies directly

(6.86)
‖∇(en+1 + en)‖ ≤ 2‖∇e∗‖+�t‖qn+1 − qn‖H2 +�tα+1‖gn‖H1

≤ C �tα−1/2(C1 +�t3/2‖gn‖H1) .

Obviously, we have

(6.87) ‖∇en‖ ≤
n∑

k=0

‖∇(ek + ek−1)‖ ≤ C1 �tα−3/2 .

From the first equation of (6.69) we obtain can derive

(6.88)
‖∆e∗‖ ≤ �t−1‖e∗ − en‖+ C ‖en‖+ ‖∇en‖+ C�tα‖fn‖

≤ C1�tα−3/2 .

Consequently, we have

(6.89) ‖e∗‖H2 ≤ C1�tα−3/2 , ‖e∗‖L∞ ≤ C1�tα−3/4 .

From the second equation of (6.69), we have

(6.90) ‖∇(qn+1 − qn)‖ ≤ C1�tα−1

46

and

(6.91)
‖∆(qn+1 − qn)‖H1 ≤ �t−1‖e∗‖H2 +�tα‖gn‖H2

≤ C �tα−5/2(C1 +�t 2‖gn‖H2) .

Hence, we have

(6.92) ‖qn+1 − qn‖H3 ≤ C1�tα−5/2

and

(6.93) ‖∇(qn+1 − qn)‖L∞ ≤ C1�tα−7/4 .

Using the second equation of (6.69) once more, we get

(6.94)
‖en+1 + en‖L∞ ≤ ‖e∗‖L∞ +�t ‖∇(qn+1 − qn)‖L∞ +�tα+1‖gn‖L∞

≤ C1�tα−3/4 .

Hence we have

(6.95) ‖en‖L∞ ≤ C1�tα−7/4 .

As in §4.2, if we chose �t small enough, we have ‖en‖L∞ ≤ 1. Hence in (6.65) we can

choose

C̃ = 1 + max
n≤
[

T
�t

]
+1

‖Un(·)‖L∞

which depends only on the exact solution (u, p). Combining (6.66), (6.68) and (6.95), we

get

(6.96) ‖un − Un‖L∞ + ‖u∗ − U∗‖L∞ +�t‖pn − Pn‖W 1,∞ ≤ C1�tα−7/4 .

This completes the proof of the proposition.

47

§7. Generalizations

Our goal is not to prove the most general theorems possible, but rather to elucidate

the numerical phenomena involved. Nevertheless, we will mention here briefly some pos-

sibilities of generalizing the main results. The proofs of these statements are more or less

straightforward, following the ideas presented above, although the actual details can be very

tedious.

(1). There is no difficulty in generalizing Theorems 1-4 to three dimensional problems.

Only obvious changes are required for the statement of the results and their proofs. This

also marks an advantage of the projection method: In going from two to three dimensions,

the formulation basically remains the same.

(2). More general spatial discretizations can be considered, such as the spectral

method, finite element method, or more general finite difference method. However, one

has to be careful in the projection step since it is in the mixed formulation:

(7.1)




un+1 +�t∇pn+1 = u∗

∇ · un+1 = 0

∂pn+1

∂n
|∂Ω = 0

The basic stability criteria for mixed problems such as the inf-sup condition has to be

satisfied. In other words, the null space of the discrete Laplacian for pressure may contain

functions other than the constant functions. These so-called “parasitic modes” have to be

subtracted to obtain the pressure approximation (see [1]).

(3). More interesting is the generalization to general domains. Obviously the stability

and a priori estimates in §4.2 and §6.2 require no change. The changes required for the

asymptotic analysis are described below.

Let x = R(s) + ερn, where R(s) is a point at ∂Ω, s is the arclength of ∂Ω from a

reference point to R(s), n is the inward normal of ∂Ω at R(s). We will use (s, ρ) as our

coordinates for the boundary layer terms, and denote by es and eρ the unit coordinate

vectors. This is a well-defined coordinate system near the boundary. It is an orthogonal

48

system. The scaling factors h1 and h2 are given by

(7.2) h1 = (
∂x

∂s
· ∂x

∂s
)1/2 = 1 + ερκ(s) , h2 = (

∂x

∂ρ
· ∂x

∂ρ
)1/2 = ε

where κ is the curvature of ∂Ω at R(s), positive for a convex curve. In this coordinate

system, the differential operators take the following form:

(7.3) �u(s, ρ) =
1

ε(1 + ερκ)
[
∂

∂s
(

ε

1 + ερκ

∂u

∂s
) +

∂

∂ρ
(
1 + ερκ

ε

∂u

∂ρ
)]

(7.4) ∇p =
1

1 + ερκ

∂p

∂s
es +

1
ε

∂p

∂ρ
eρ

(7.5) ∇ · (ues + veρ) =
1

ε(1 + ερκ)
{ε∂u

∂s
+

∂

∂ρ
[(1 + ερκ)v]}

Now we can repeat the analysis in §4.1 and §6.1 using these formulas. Here we will only

outline the necessary changes for the first order scheme analyzed in §4. The interested

reader can fill in the details for the other cases.

The ansatz remains the same as (4.2), with ξ replaced by ρ, y replaced by s in the

boundary layer terms. We should keep in mind that (4.2) is only valid near the boundary

and the vectors are decomposed using the basis {es,eρ}. In the interior of the domain, the

numerical solution admits a regular perturbation expansion.

It is easy to see that u∗
j , uj, pj , j = 0, 1, 2, · · · still satisfy the same equations as in §4,

whereas the equations for the boundary layer terms are changed as follows:

(7.6) a∗
1 = 0

(7.7) a∗
2 =

∂2a∗
2

∂ρ2
, a∗

2 =
∂ϕ1

∂ρ
eρ

(7.8)
∂ϕ1

∂ρ
|ρ=0= −∂p0

∂n
|∂Ω

Therefore we have

(7.9) ϕ1(ρ, s) =
∂p0

∂n
|∂Ω e−ρ.

49

For a∗
3 and ϕ2 we have

(7.10) a∗
3 =

∂ϕ2

∂ρ
eρ +

∂ϕ1

∂s
es , a∗

3 =
∂∂2a∗

3

∂∂ρ2
+ κ

∂a∗
2

∂ρ,

(7.11)
∂ϕ2

∂ρ
|ρ=0= 0.

From (7.10) and (7.11), we get

(7.12) ϕ2(ρ, s) =
1
2
u(s)

∂p0

∂n
|∂Ω (1 + ρ)e−ρ.

We next have

(7.13) a∗
4 =

∂ϕ3

∂ρ
eρ + (

∂ϕ2

∂s
− ρκ

∂ϕ1

∂s
)es

(7.14) a∗
4 =

∂2a∗
4

∂ρ2
+ κ

∂a∗
3

∂ρ
− ρκ2 ∂a∗

2

∂ρ
+

∂2a∗
2

∂s2

(7.15)
∂ϕ3

∂ρ
|ρ=0= −∂p2

∂n
|∂Ω

In a priori, it is not clear whether (7.13) and (7.14) are consistent (which means that we

might have to introduce boundary layer terms in un). But if we write a∗
4 = a∗4eρ + b∗4es,

and use the fact that ∂es
∂s = κeρ,

∂eρ

∂s = −κes, we see that (7.14) is equivalent to:

(7.16) a∗4 =
∂2a∗4
∂ρ2

+ κ
∂2ϕ2

∂ρ2
− ρκ2 ∂

2ϕ1

∂ρ2
+

∂3ϕ1

∂ρ∂s2
− κ2∂ϕ1

∂ρ

(7.17) b∗4 =
∂2b∗4
∂ρ2

+ 2κ
∂2ϕ1

∂ρ∂s
+

∂

∂s
(κ

∂ϕ1

∂ρ
)

(7.16) serves as the equation for ϕ3, together with the boundary condition (7.15). (7.17) is

satisfied by b∗4 =
∂ϕ2

∂s − ρκ∂ϕ1

∂s . This procedure can obviously be continued to as high order

as we wish.

In summary, we obtain the following extension of Theorem 1.

Theorem 5. Let (u, p) be a smooth solution of the Navier-Stokes equation (2.1) with

smooth initial data u0(x) and let (u�t, p�t) be the numerical solution for the semi-discrete

projection method (2.6), (2.7) and (2.10). Then we have

(7.18) ‖u − u�t‖L∞(0,T ;L2) +�t1/2 ‖p− p�t‖L2(0,T ;L2) ≤ C�t ,

50

Furthermore, if u0(x) satisfies the compatibility condition

(7.19) u0(x) = 0 ,
∂p

∂n
(x, 0) = 0 on ∂Ω.

then we have

(7.20) ‖u − u�t‖L∞ +�t1/2 ‖p− p�t‖L∞ + ‖p− p�t − pc‖L∞ ≤ C�t .

where

pc(x, t) = �t1/2 e

e− 1
e−ρ∂p�t

∂n
(s, ρ+�t1/2, t).

The required change for the extension of Theorem 2 to general domains is more or less

the same.

(4). One can also consider the generalization to other type of boundary conditions,

including inhomogeneous ones. These generalizations are more or less standard. Of course

if the boundary condition is too exotic, then the analysis becomes nearly impossible.

Acknowledgment. We are very grateful to Alexandre Chorin for bringing this prob-

lem to our attention and for numerous stimulating discussions. We also want to thank Tom

Beale for communicating to us other related work. W.E was supported in part by NSF

Grant DMS-86-10730. J.-G.L. was supported in part by NSF Grant DMS-9114456 and

DOE Grant DE-FG02-88ER25053.

Appendix 1. First Order Schemes with Spatial Discretization

We will concentrate on the following version of the first order projection method with

the standard MAC spatial discretization:

(8.1)




u∗ − un

�t
+Nh(un,un) = ∆hu∗ ,

u∗ = 0 , on ∂
′
Ω ,

u∗ = un+1 +�t∇hp
n ,

∇h ·un+1 = 0 ,

n·un+1 = 0 , on ∂
′
Ω

51

where notationsNh,∆h,∇h,∇h·is defined in (2.19-24) and the means of u∗ |∂′Ω = n·un+1 |∂′Ω

= 0 is also defined in §2.2.
For a = (a, b), c = (c, d),u = (u, v), we define the following discrete inner products on

the grid:

(8.2)

((a, c)) = �x�y
N−1∑
i=1

N∑
j=1

ai+1/2,jci+1/2,j +�x�y
N∑

i=1

N∑
j=1

bi,j+1/2di,j+1/2

((u,∇hp)) = �y
N−1∑
i=1

N∑
j=1

ui+1/2,j(pi+1,j − pi,j) +�x
N∑

i=1

N∑
j=1

vi,j+1/2(pi,j+1 − pi,j)

((∇h ·u, p)) = �y
N−1∑
i=1

N∑
j=1

(ui+1/2,j − ui−1/2,j)pi,j +�x
N∑

i=1

N∑
j=1

(vi,j+1/2 − vi,j−1/2)pi,j

and discrete norms

(8.3) ‖u‖ = ((u,u))1/2 , ‖u‖∞ = max
i,j

|ui,j|

Denote h = min(�x,�y).

Lemma 8.1 We have the following

(i) Inverse inequality:

(8.4) ‖f‖∞ ≤ 1
h
‖f‖ ,

(ii) Poincare inequality: suppose f |x=±1 = 0, then

(8.5) ‖f‖ ≤ ‖∇hf‖ ,

(iii) Suppose n·u |x=±1 = 0 ,then we have

(8.6) ((u,∇hp)) = ((∇h ·u, p))

(iv) Suppose u |x=±1 = 0 ,then we have

(8.7) 2((u,∆hu)) ≤ −‖∇hu‖ 2 − ‖∇h ·u‖ 2

52

(v) Suppose a |x=±1 = 0 and c·n |x=±1 = 0, then we have

(8.8) |((a,Nh(u, c)))| ≤ ‖c‖‖∇ha‖‖u‖W 1,∞

Proof : The proof of (i–iii) is standard. We first show (iv). Summation by parts gives

(8.9)

((u,∆hu)) = −‖∇u‖2 +
∑
j

[v0,j+1/2(v1,j+1/2 − v0,j+1/2)− vN,j+1/2(vN+1,j+1/2 − vN,j+1/2)]

Since v |x=±1= 0, we have

(8.10) v1,j+1/2 = −v0,j+1/2 , vN,j+1/2 = −vN+1,j+1/2

Hence

(8.11) ((u,∆hu)) = −‖∇hu‖2 + 2
∑
j

(v 2
0,j+1/2 − v 2

N,j+1/2)

But

(8.12)

‖∇hu‖2 ≥ ‖∇h ·u‖2 +
∑
j

[(v1,j+1/2 − v0,j+1/2)
2 + (vN+1,j+1/2 − vN,j+1/2)

2]

= ‖∇h ·u‖2 + 4
∑

j

[(v0,j+1/2)
2 + (vN+1,j+1/2)

2]

Combination of (8.11) and (8.12) gives (8.7).

To show (v), denote I = ((a,Nh(u, c))). We have

(8.13)

I = �x�y
∑
i,j

ai+1/2,j(ui+1/2,jD
x
0ci+1/2,j + v̄i+1/2,jD

y
0ci+1/2,j)

+�x�y
∑
i,j

bi,j+1/2(ūi,j+1/2D
x
0di,j+1/2 + vi,j+1/2D

y
0di+1/2,j)

53

Summation by parts gives

(8.14)

I = −�x�y
∑
i,j

ci+1/2,j [D
x
0 (ui+1/2,jai+1/2,j) +Dy

0(v̄i+1/2,jai+1/2,j)]

−�x�y
∑
i,j

di,j+1/2[D
x
0 (ūi,j+1/2bi,j+1/2) +Dy

0(vi,j+1/2bi,j+1/2)]

+
1
4
�x�y

∑
j

(ūN+1,j+1/2dN,j+1/2 − ūN,j+1/2dN+1,j+1/2)D
x
−bN+1,j+1/2

−1
4
�x�y

∑
j

(ū1,j+1/2d0,j+1/2 − ū0,j+1/2d1,j+1/2)D
x
+b0,j+1/2

Here we have used the fact that

(8.15) b1,j+1/2 = −b0,j+1/2 , bN,j+1/2 = −bN+1,j+1/2

Now, (8.8) follows directly. This completes the proof of the lemma.

Again we set ε = �t1/2, ξ = (x+1)/ε, xi = −1+ i�x, ξi = i�ξ, �ξ = �x/ε, tn = n�t,

tn−1/2 = (n− 1/2)�t, n = 1, 2, · · ·. Clearly, we have

(8.16)

Dξ
+a(ξi, yj , t) =

a(ξi+1, yj , t)− a(ξi, yj , t)
�ξ

= ε
a(xi+1/ε, yj , t)− a(xi/ε, yj , t)

�x
= εDx

+a(xi/ε, yj , t)

This shows that Dξ
+ = εDx

+. We will use the notation

(8.17) D 2
ξ = Dξ

−D
ξ
+ , D 2

y = Dy
−D

y
+ ,

and

(8.18) ∇ξ = (Dξ
+, 0) , ∇y = (0,Dy

+) ,

Denote the solutions of (8.1) as (uh,u
∗
h, ph). Motivated by the discussions in §4, we

54

make the following ansatz, valid at tn = n�t, n = 1, 2, · · ·

(8.19)




u∗
h(x, t) = u0(x, t) +

∑
j=2

ε j [u∗
j (x, t) + a∗

j (ξ, y, t)] ,

uh(x, t) = u0(x, t) +
∑
j=2

ε juj(x, t) ,

ph(x, t) = p0(x, t) +
∑
j=1

ε j [pj(x, t) + ϕj(ξ, y, t)] .

Note that the functions involved are defined only on the numerical grid. So these formulas

and the following ones should be understood as being valid on the grid. We have

(8.20) ∆hu∗
h = ∆hu0 +

∑
j=2

ε j(∆hu∗
j + ε−2D 2

ξ a∗
j +D 2

y a∗
j) ,

(8.21) ∇h ·uh = ∇h ·u0 +
∑
j=2

ε j∇h ·uj ,

(8.22) ∇hph = ∇hp0 + ε−1∇ξϕ0 +∇yϕ0 +
∑
j=1

ε j(∇hpj + ε−1∇ξϕj +∇yϕj) ,

(8.23)

un+1
h (x) = u0(x, tn+1) +

∑
j=2

ε juj(x, tn+1)

=
∑
k=0

1
k!

ε2ku
(k)
0 (x, tn) +

∑
j=2

ε j
∑
k=0

1
k!

ε2ku
(k)
j (x, tn) .

Next we substitute these relations into (8.1) in order to determine the coefficients of ε j

in (8.19). We get hierarchies of equations by collecting equal powers of ε.

The first equation in (8.1) gives:

(8.24) u∗
2 + a∗

2 − u2 +Nh(u0,u0) = ∆ 2
hu∗

0 +D 2
ξ a∗

2 .

For j ≥ 1,

(8.25) u∗
j+2 + a∗

j+2 − uj+2 +
j∑

k=0

Nh(uk,uj−k) = ∆hu∗
j +D 2

ξ a∗
j+2 +D 2

y a∗
j .

The second equation in (8.1) implies

(8.26) u∗
2 + a∗

2 = u2 + ∂tu0 +∇hp0 +∇ξϕ1 +∇yϕ0 .

55

For j = 2$− 1, $ ≥ 1,

(8.27) u∗
j+2 + a∗

j+2 = uj+2 + ∂tuj +∇hpj +∇ξϕj+1 +∇yϕj +
�∑

k=2

1
k!

u
(k)
j−2k+2 .

For j = 2$, $ ≥ 1,

(8.28) u∗
j+2+a∗

j+2 = uj+2+∂tuj+∇hpj+∇ξϕj+1+∇yϕj+
1

($+ 1)!
u

(�+1)
0 +

�∑
k=2

1
k!

u
(k)
j−2k+2 .

From the third equation in (8.1), we obtain

(8.29) ∇h ·uj = 0 , j = 0, 1, · · · .

The boundary conditions become

(8.30) u∗
j + a∗

j = 0 , Dx
+pj−1 +Dξ

+ϕj = 0 , at x = −1, ξ = 0 ,

for j > 0.

Next we go through all these equations, order by order, to see if they are solvable. Since

this is very similar to what we did in §4.1, we will only give a summary of results.

The coefficients in the expansions (8.19) can be obtained successively in the following

order:

(8.31)




∂tu0 +∇hp0 +Nh(u0,u0) = ∆hu0 ,

∇h ·u0 = 0

u0 = 0 , at x = ±1 ,
u0(·, 0) = u0(·)

Using the following lemma, we know that (8.31) has a smooth solution in the sense that

the divided difference of various orders are bounded. The lemma itself, as well as Lemma

8.3, belongs to the folklore of classical numerical analysis.

Lemma 8.2. Let (u, p) be a solution of the Navier-Stokes equation (2.1) with smooth initial

data u0(x) satisfying some compatibility conditions. Let (u0, p0) be a solution of (8.31).

Then (u0, p0) is smooth in the sense that its discrete derivatives are bounded. Moreover, we

have

(8.32) ‖u − u0‖L∞ + ‖p− p0‖L∞ ≤ Ch 2

56

We next have

(8.33) u∗
2 = u2 + ∂tu0 +∇hp0 ,

(8.34)




ϕ1 = D 2
ξ ϕ1 ,

Dξ
+ϕ1 |ξ=0 = −Dx

+p0 |x=−1 ,

This gives

(8.35) ϕ1(ξ, y, t) = βDx
+p0(−1, y, t) e−αξ .

where

(8.36) α =
1
�ξ

arccosh (1 +�ξ 2/2) , β = �ξ(1− e−α�ξ)−1 .

(8.37) a∗2 = Dξ
+ϕ1, b∗2 = 0 ,

(8.38) u∗
3 = u3 ,

(8.39) ϕ2 = 0 , a∗3 = 0 , b∗3 = Dy
+ϕ1 ,

(8.40)




∂tu2 +∇hp2 +Nh(u0,u2) +Nh(u2,u0)

= ∆hu2 +∆h(∂tu0 +∇hp0)− 1
2∂

2
t u0 ,

∇h ·u2 = 0 ,

u2 |x=−1= −∇hp0 |x=−1 −∇ξϕ1 |ξ=0 , on ∂Ω

With a suitable initial data, we know from the following lemma that (8.40) has a smooth

solution.

Lemma 8.3. Let (u, p) be a solution of the linear ODE

(8.41)




∂tu +∇hp+Nh(u0,u) +Nh(u,u0) = ∆hu + f ,

∇h ·u = 0 ,

u = g , at x = ±1 ,
u(·, 0) = u0(·)

57

where f , g and u0 smooth and satisfies some compatibility conditions. Then (u, p) is smooth

in the sense that its divided differences of various order are bounded.

Continue in this fashion, we get

(8.42)




ϕ3 = D 2
ξ ϕ3 +D 2

y ϕ1 ,

Dξ
+ϕ3 |ξ=0 = −Dx

+p2 |x=−1 ,

The solution for (8.42) is

(8.43) ϕ3(ξ, y, t) = βDx
+p2e

−αξ + β1(ξ + γ)Dx
+D 2

y p0 |x=−1 e−αξ .

where

(8.44) β1 =
1

(1− e−α�ξ)(e−α�ξ − eα�ξ)
, γ = �ξ

e−α�ξ

1− e−α�ξ

(8.45) b∗4 = 0 , a∗4 = Dξ
+ϕ3 .

(8.46)




∂tu3 +∇hp3 +Nh(u0,u3) +Nh(u3,u0) = ∆hu3 +∆h∇hp2 ,

∇h ·u3 = 0 ,

u3 |x=−1= −∇yϕ1 |ξ=0

(8.47)




ϕ4 = D 2
ξ ϕ4 ,

Dξ
+ϕ4 |ξ=0 = −Dx

+p3 |x=−1 ,

(8.48) a∗5 = Dξ
+ϕ4, b∗5 = Dy

+ϕ3 .

Obviously this procedure can be continued and we obtain

(8.49)




ϕj = D 2
ξ ϕj +D 2

y ϕj−2 ,

Dξ
+ϕj |ξ=0 = −Dx

+pj−1 |x=−1 ,

(8.50) ϕj =
[j/2]∑
k=0

Fj,k(y)ξke−αξ ,

58

(8.51) a∗j = Dξ
+ϕj−1 , b∗j = Dy

+ϕj−2 ,

Now if we let

(8.52)




U∗ = u∗
0 +

2N∑
j=1

ε j(u∗
j + a∗

j) ,

Un = u0 +
2N∑
j=1

ε juj ,

Pn = p0 +
2N∑
j=1

ε j(pj + ϕj) + ε2N+1ϕ2N+1 ,

then we have

(8.53)




U∗ − Un

�t
+Nh(Un, Un) = ∆hU

∗ +�tαf ,

U∗ = 0 , at x = ±1 ,
U∗ = Un+1 +�t∇hP

n +�tα+1g ,

∇h ·Un+1 = 0 ,

Dx
+Pn = n·Un+1 = 0 , at x = ±1 ,

where α = N − 1/2, f and g are bounded and smooth if (u0, p0) is sufficiently smooth. It

is easy to see that

(8.54) max
0≤t≤T

‖Un(·)‖W 1,∞ ≤ C∗ .

For the initial data, we have

(8.55) U0(x) = u0(x) +�tw0(x)

where w0 is a bounded function. Furthermore under the compatibility condition (3.10), we

can construct a better approximate initial data

(8.56) U0(x) = u0(x) +�t 2w0(x).

Proof of Theorem 3: Assume a priori that

(8.57) max
0≤tn≤T

‖un‖W 1,∞ ≤ C̃ .

59

In the following estimates, the constant will sometimes depend on C∗ and C̃. Later on we

will estimate C̃. Let

(8.58) en = Un − un , e∗ = U∗ − u∗ , qn = Pn − pn .

Subtracting (8.53) from (8.1) we get the following error equation

(8.59)




e∗ − en

�t
+Nh(en, Un) +Nh(un,en) = ∆he∗ +�tαfn ,

e∗ = 0 , at x = ±1 ,
en+1 − e∗

�t
+∇hq

n = �tαgn ,

∇h ·en+1 = 0 ,

Dx
+qn = en+1 ·n = 0 , at x = ±1 ,

e0 = �tα w0 .

Taking the scalar product of the first equation of (8.59) with 2e∗ and integrating by parts,

we obtain

(8.60)

‖e∗‖ 2 − ‖en‖ 2 + ‖e∗ − en‖ 2 +�t ‖∇he∗‖ 2

≤ �t2α+1‖fn‖ 2 +�t ‖e∗‖ 2 − 2�t ((e∗,Nh(en, Un)))

−2�t ((e∗,Nh(un,en)))

≤ �t2α+1‖fn‖ 2 +C�t(‖e∗‖ 2 + ‖en‖ 2) + 1
2�t ‖∇he∗‖ 2 .

Here we have used Lemma 8.1. Taking the scalar product of the second equation of (8.59)

with 2en+1 yields

(8.61) ‖en+1‖ 2 − ‖e∗‖ 2 + ‖en+1 − e∗‖ 2 ≤ �t ‖en+1‖ 2 +�t2α+1‖gn‖ 2 .

Combining (8.60) and (8.61), we get

(8.62)
‖en+1‖ 2 − ‖en‖ 2 + ‖e∗ − en‖ 2 + ‖en+1 − e∗‖ 2 +�t ‖∇he∗‖ 2

≤ C�t (‖en+1‖ 2 + ‖en‖ 2) +�t2α+1(‖fn‖ 2 + ‖gn‖ 2) .

60

Applying the discrete Gronwall lemma to the last inequality, we arrive at

(8.63) ‖en‖+ ‖e∗ − en‖+ ‖en+1 − e∗‖+�t1/2 ‖∇he∗‖ ≤ C1�tα .

Using the second equation of (8.59) we have

(8.64) ‖en‖+�t‖∇hq
n‖ ≤ C1�tα

Now by inverse inequality (8.4) we have

(8.65) ‖en‖L∞ +�t‖∇hq
n‖L∞ + h‖en‖W 1,∞ ≤ C1

�tα

h
.

Chose N = 3 and �tα << h 2, if we choose �t small enough, we will always have

(8.66) ‖en+1‖W 1,∞ ≤ 1 .

Therefore in (8.57) we can choose

(8.67) C̃ = 1 + max
n≤
[

T
�t

]
+1

‖Un(·)‖W 1,∞

which depends only on the exact solution (u, p). This proves

(8.68) ‖u0 − uh‖L∞ + ‖p0 − ph‖L2 +�t1/2‖p0 − ph‖L∞ + ‖p0 − ph − pc‖L∞ ≤ C�t

But we also have from Lemma 8.2

(8.69) ‖u − u0‖L∞ + ‖p− p0‖L∞ ≤ Ch 2

Thus

(8.70) ‖u − uh‖L∞ + ‖p− ph‖L2 +�t1/2‖p− ph‖L∞ + ‖p − ph − pc‖L∞ ≤ C(�t+ h 2)

This completes the proof of Theorem 3.

61

Appendix 2. Second Order Schemes with Spatial Discretization

In this section we carry out the same program as in §4 for Kim and Moin’s method,

(2.12) with the standard MAC spatial discretization:

(9.1)




u∗ − un

�t
= ∆h

u∗ + un

2
,

u∗ + un = �t∇hp
n−1/2 , at x = ±1 ,

u∗ = un+1 +�t∇hp
n+1/2 ,

∇h ·un+1 = 0 ,

n·un+1 = 0 , at x = ±1 .

Here we leave out the nonlinear term since it does not affect the major steps but complicates

substantially the presentation.

We begin with the following ansatz:

(9.2)




u∗(x) = u0(x, tn) +
∑
j=2

ε j [u∗
j(x, tn) + a∗

j(ξ, y, t
n)] ,

un(x) = u0(x, tn) +
∑
j=4

ε juj(x, tn) ,

pn−1/2(x) = p0(x, tn−1/2) + εϕ1(ξ, y, tn−1/2) + ε3ϕ3(ξ, y, tn−1/2)

+
∑
j=4

ε j [pj(x, tn−1/2) + ϕj(ξ, y, tn−1/2)] .

Here again we set ε = �t1/2, ξ = (x+ 1)/ε, tn = n�t, tn−1/2 = (n − 1/2)�t, n = 1, 2, · · ·.
The formulas are to be understood as being valid at the grid points. Substituting (9.2) into

(9.1) and collecting equal powers of ε, we get the following equations:

From the first equation in (9.1), we get

(9.3) u∗
2 + a∗

2 − u2 =
1
2
(∆hu∗

0 +D 2
ξ a∗

2 +∆hu0) .

For j ≥ 1,

(9.4) u∗
j+2 + a∗

j+2 − uj+2 =
1
2
(∆hu∗

j +D 2
ξ a∗

j+2 +D 2
y a∗

j +∆huj) .

62

From the third equation in (9.1), we get

(9.5) u∗
2 + a∗

2 = u2 + ∂tu0 +∇hp0 +∇ξϕ1 ,

(9.6) u∗
3 + a∗

3 = u3 + ∂tu1 +∇hp1 +∇ξϕ2 +∇yϕ1 .

For j = 2$,

(9.7)

u∗
j+2 + a∗

j+2 = uj+2 + ∂tuj +∇hpj +∇ξϕj+1 +∇yϕj

+
1

($+ 1)!
u

(�+1)
0 +

�∑
k=2

1
k!

u
(k)
j−2k+2 +

1
2�$!

∇hp
(�)
0 +

�−1∑
k=1

1
2kk!

∇hp
(k)
j−2k

+
�∑

k=1

1
2kk!

(∇ξϕ
(k)
j−2k+1 +∇yϕ

(k)
j−2k) .

For j = 2$+ 1,

(9.8)

u∗
j+2 + a∗

j+2 = uj+2 + ∂tuj +∇hpj +∇ξϕj+1 +∇yϕj

+
�+1∑
k=2

1
k!

u
(k)
j−2k+2 +

�∑
k=1

1
2kk!

(∇hp
(k)
j−2k +∇ξϕ

(k)
j−2k+1 +∇yϕ

(k)
j−2k) .

From the incompressibility condition, we get

(9.9) ∇h ·u j = 0 , for j ≥ 0 .

The boundary conditions imply that for x = −1, ξ = 0,

(9.10) u0 = 0 ,

(9.11) u2 + u∗
2 + a∗

2 = ∇hp0 +∇ξϕ1 ,

(9.12) u3 + u∗
3 + a∗

3 = ∇hp1 +∇ξϕ2 +∇yϕ1 ;

63

for j = 2$, $ ≥ 1

(9.13)

uj + u∗
j + a∗

j = ∇hpj−2 +∇ξϕj−1 +∇yϕj−2 +
(−1)�−1

2�−1

1
($− 1)!

∇hp
(�−1)
0

+
�−2∑
k=1

(−1)k
2kk!

∇hp
(k)
j−2k−2 +

�−1∑
k=1

(−1)k
2kk!

(∇ξϕ
(k)
j−2k−1 +∇yϕ

(k)
j−2k−2)

for j = 2$+ 1, $ ≥ 1

(9.14)

uj + u∗
j + a∗

j = ∇hpj−2 +∇ξϕj−1 +∇yϕj−2

+
�−1∑
k=1

(−1)k
2kk!

(∇hp
(k)
j−2k−2 +∇ξϕ

(k)
j−2k−1 +∇yϕ

(k)
j−2k−2);

and for j ≥ 0

(9.15) Dx
+pj +Dξ

+ϕj+1 = 0 .

Next we go through all these equations, order by order, to see if they are solvable. It

can be checked that the coefficients in the expansions (9.2) can be obtained successively in

the following order:

(9.16)




∂tu0 +∇hp0 = ∆hu0 ,

∇h ·u0 = 0 ,

u0 = 0 , at x = ±1 .

(9.17) u∗
2 = u2 + ∂tu0 +∇hp0 ,

(9.18)




ϕ1 = 1
2D

2
ξ ϕ1 ,

Dξ
+ϕ1 |ξ=0 = −Dx

+p0 |x=−1 ,

(9.19) ϕ1 = βDx
+p0 |x=−1 e−αξ ,

where

(9.20) α =
1
�ξ

arccosh (1 +�ξ 2) , β = �ξ(1− e−α�ξ)−1 .

64

(9.21) a∗2 = Dξ
+ϕ1, b∗2 = 0 ,

We next have:

(9.22) u∗
3 = u3 ,

(9.23) ϕ2 = 0 , a∗3 = 0 , b∗3 = Dy
+ϕ1 ,

(9.24)




ϕ3 = 1
2 (D

2
ξ ϕ3 +D 2

y ϕ1) ,

Dξ
+ϕ3 |ξ=0 = 0 ,

The solution for (9.24) is

(9.25) ϕ3(y, ξ, t) = β1(ξ + γ)Dx
+D 2

y p0 |x=−1 e−αξ .

where

(9.26) β1 =
1

2(1 − e−α�ξ)(e−α�ξ − eα�ξ)
, γ = �ξ

e−α�ξ

1− e−α�ξ

(9.27) a∗4 =
1
2
Dξ

+∂tϕ1 +Dξ
+ϕ3 , b∗4 = 0 ,

(9.28) u∗
4 = u4 +

1
2
∂ 2

t u0 +
1
2
∂t∇hp0 ,

(9.29) ϕ4 = 0 , a∗5 = 0 , b∗5 =
1
2
Dy

+∂tϕ1 +Dy
+ϕ3 ,

(9.30) u∗
5 = u5 ,

(9.31)




∂tu4 +∇hp4 = ∆hu4 + 1
4∆h(∂ 2

t u0 + ∂t∇hp0)− 1
6∂

3
t u0 − 1

8∂
2
t ∇hp0 ,

∇h ·u4 = 0 ,

u4 |x=−1 = −1
2(∂t∇hp0 + 1

2∂t∇ξϕ1) |x=−1,ξ=0 .

Now if we let

(9.32)




U∗ = u∗
0 +

2N∑
j=1

ε j(u∗
j + a∗

j) ,

Un = u0 +
2N∑
j=1

ε juj ,

Pn−1/2 = p0 +
∑2N

j=1 ε
j(pj + ϕj) + ε2N+1ϕ2N+1 ,

65

then we have

(9.33)




U∗ − Un

�t
= ∆h

U∗ + Un

2
+�tαf ,

U∗ + Un = �t∇hP
n−1/2 , at x = ±1 ,

U∗ = Un+1 +�t∇hP
n+1/2 +�tα+1g ,

∇h ·Un+1 = 0 ,

Dx
+Pn+1/2 = n·Un+1 = 0 , at x = ±1 ,

where α = N − 1/2, f and g are bounded and smooth if (u0, p0) is sufficiently smooth. It

is easy to see that

(9.34) max
0≤t≤T

‖Un(·)‖W 1,∞ ≤ C∗ ,

For the initial approximation, we have

(9.35) U0(x) = u0(x) +�t 2w0(x)

without the extra compatibility condition, and

(9.36) U0(x) = u0(x) +�t 4w0(x)

with the compatibility condition (3.14).

Proof of Theorem 4. Assume a priori that

(9.37) max
0≤tn≤T

‖un‖W 1,∞ ≤ C̃ .

As in the proof of Theorem 2, we let

(9.38) en = Un − un , e∗ = Û∗ − û∗ , qn = Pn−1/2 − pn−1/2 .

where

(9.39)
2û∗ = u∗ + un −�t ∇hp

n−1/2 ,

2Û∗ = U∗ + Un −�t ∇hP
n−1/2 .

66

From (9.1) and (9.33), we get

(9.40)




2(e∗ − en)
�t

+∇h

(
qn − 1

2
�t ∆hq

n
)
= ∆he∗ +

1
2
Nh(en−1, Un−1)

+
1
2
Nh(un−1,en−1)− 3

2
Nh(en, Un)− 3

2
Nh(un,en) +�tαfn ,

e∗ = 0 , at x = ±1 ,
en+1 + en − 2e∗

�t
+∇h(qn+1 − qn) = �tαgn ,

∇h ·en+1 = 0 ,

Dx
+qn+1/2 = en+1 ·n = 0 , at x = ±1 ,

e0 = �tαw0 .

Taking the scalar product of the first equation of (9.40) with e∗ and integrating by parts,

we get

(9.41)

‖e∗‖ 2 − ‖en‖ 2 + ‖e∗ − en‖ 2 +
1
2
�t ‖∇e∗‖ 2 +

1
2
�t ‖∇·e∗‖ 2

≤ −�t

∫
Ω

e∗ ·∇(qn − 1
2
�t∆qn) dx + C�t2α+1‖fn‖ 2

+C�t (‖en‖ 2 + ‖en−1‖ 2 + ‖e∗‖ 2) + 1
2�t ‖∇e∗‖ 2 .

Taking the scalar product of the second equation of (9.40) with en+1, we obtain

(9.42)
‖en+1‖ 2 − ‖e∗‖ 2 + ‖en+1 − e∗‖ 2 − 1

2(‖en+1‖ 2 − ‖en‖ 2)− 1
2‖en+1 − en‖ 2

≤ C �t2α+1‖gn‖ 2 +C �t ‖en+1‖ 2 .

Combining the these two estimates, we get

(9.43)

‖en+1‖ 2 − ‖en‖ 2 + ‖en+1 + en − 2e∗‖ 2 +�t ‖∇he∗‖ 2 +�t ‖∇h ·e∗‖ 2

≤ −2�t ((e∗,∇h(qn − 1
2
�t∆hq

n))) + C �t (‖en‖ 2 + ‖en−1‖ 2 + ‖en+1‖ 2)

+C�t2α+1(‖fn‖ 2 + ‖gn‖ 2) .

To estimate the first term on the right hand of (9.43), we let

(9.44)

I ≡ −2�t((e∗,∇h(qn − 1
2
�t ∆hq

n)))

= −2�t((e∗,∇hq
n))−�t 2((∇h ·e∗,∆hq

n)) ≡ I1 + I2 .

67

Using the second equation and integrating by parts, we can write the first term as

(9.45)

I1 = −2�t((e∗,∇hq
n))

= −�t 2((∇h(qn+1 − qn),∇hq
n))−�tα+2((gn,∇hq

n))

= −1
2
�t 2(‖∇hq

n+1‖ 2 − ‖∇hq
n‖ 2)

+
1
2
�t 2‖∇h(qn+1 − qn)‖ 2 −�tα+2((gn,∇hq

n)) .

Since

(9.46)

1
2
�t 2‖∇h(qn+1 − qn)‖ 2 =

1
2
‖en+1 + en − 2e∗‖ 2

+
1
2
‖�tα+1gn‖ 2 +�tα+1((gn,en+1 + en − 2e∗)) .

We have

(9.47)

I1 = −1
2�t 2(‖∇hq

n+1‖ 2 − ‖∇hq
n‖ 2) + 1

2‖en+1 + en − 2e∗‖ 2

+
1
2
‖�tα+1gn‖ 2 +�tα+1((gn,en+1 + en − 2e∗))−�tα+2((gn,∇hq

n)) .

Next we rewrite the second term as

(9.48)

I2 = −�t 2((∇h ·e∗,∆hq
n))

= −1
2
�t3((∆h(qn+1 − qn),∆hq

n))− 1
2
�tα+3((∇h ·gn,∆hq

n))

= −1
4
�t3(‖∆hq

n+1‖ 2 − ‖∆hq
n‖ 2) +

1
4
�t3‖∆h(qn+1 − qn)‖ 2

−1
2
�tα+3((∇h ·gn,∆hq

n))

= −1
4
�t3(‖∆hq

n+1‖ 2 − ‖∆hq
n‖ 2) +�t ‖∇h ·e∗‖ 2 +

1
4
�t2α+3‖∇h ·gn‖ 2

−�tα+2((∇h ·gn,∇h ·e∗))− 1
2
�tα+3((∇h ·gn,∆hq

n)) .

68

Combining these two terms we arrive at

(9.49)

I = −1
2
�t 2(‖∇hq

n+1‖ 2 − ‖∇hq
n‖ 2)− 1

4
�t3(‖∆hq

n+1‖ 2 − ‖∆hq
n‖ 2)

+
1
2
‖en+1 + en − 2e∗‖ 2 +�t ‖∇h ·e∗‖ 2 +�tα+1((gn,en+1 + en − 2e∗))

−�tα+2((gn,∇hq
n))−�tα+2((∇h ·gn,∇h ·e∗))

−1
2
�tα+3((∇h ·gn,∆hq

n)) +
1
4
�t2α+3‖∇h ·gn‖ 2 +

1
2
‖�tα+1gn‖ 2 .

This gives

(9.50)

I ≤ −1
2�t 2(‖∇hq

n+1‖ 2 − ‖∇hq
n‖ 2)− 1

4�t3(‖∆hq
n+1‖ 2 − ‖∆hq

n‖ 2)

+1
2‖en+1 + en − 2e∗‖ 2 +�t ‖∇h ·e∗‖ 2 +�t ‖en+1 + en − 2e∗‖ 2

+2�t3‖∇hq
n‖ 2 + 2�t4‖∆hq

n‖ 2 + 2�t2α+1(‖gn‖ 2 +�t‖gn‖ 2
H1) .

Going back to (9.43) we obtain

(9.51)

‖en+1‖ 2 − ‖en‖ 2 + 1
2‖en+1 + en − 2e∗‖ 2 +�t ‖∇he∗‖ 2

+1
2�t 2(‖∇hq

n+1‖ 2 − ‖∇hq
n‖ 2) + 1

4�t3(‖∆hq
n+1‖ 2 − ‖∆hq

n‖ 2)

≤ �t3‖∇hq
n‖ 2 +�t4‖∆hq

n‖ 2 + C�t (‖en‖ 2 + ‖en−1‖ 2 + ‖en+1‖ 2)

+C �t2α+1(‖fn‖ 2 +�t‖gn‖ 2
H1) .

Gronwall lemma gives

(9.52) ‖en‖+ ‖e∗‖+�t ‖∇hq
n‖+�t3/2 ‖∆hq

n‖+�t1/2‖∇he∗‖ ≤ C1�tα .

Now by inverse inequality (8.4) we have

(9.53) ‖en‖L∞ + h‖en‖W 1,∞ +�t‖∇hq
n‖L∞ ≤ C1

�tα

h
.

Chose N = 5 and �tα << h 2, if we choose �t small enough, we will always have

(9.54) ‖en+1‖L∞ ≤ 1 .

69

Therefore in (9.37) we can choose

(9.55) C̃ = 1 + max
n≤
[

T
�t

] ‖Un(·)‖W 1,∞

which depends only on the exact solution (u, p). This proves

(9.56) ‖u0 − uh‖L∞ + ‖p0 − ph‖L2 +�t1/2‖p0 − ph‖L∞ + ‖p0 − ph − pc‖L∞ ≤ C�t 2

From Lemma 8.2, we have

(9.57) ‖u − uh‖L∞ + ‖p − ph‖L2 +�t1/2‖p − ph‖L∞ + ‖p− ph − pc‖L∞ ≤ C(�t 2 + h 2)

This completes the proof of Theorem 4.

Appendix 3. Post-processing for the Pressure

Theorem 2 tells us how to correct the leading order boundary layer error in the numerical

approximations of pressure. Here we will show how the next order boundary layer terms

can also be corrected. The asymptotic analysis in §6.2 gives

(10.1) p�t = p0 + εφ1 + ε3φ3 +O(�t2)

where

(10.2) φ1 =
1√
2
e−

√
2ξ ∂xp0 |x=−1

(10.3) φ3 =
1
2
(
1√
2
+ ξ)e−

√
2ξ ∂xyyp0 |x=−1

All these and the following formulas are evaluated at (n− 1/2)�t. From (10.1) we have

(10.4)

∂xp�t |x=−1+�t1/2 = ∂xp0 |x=−1+�t1/2 −e−
√

2∂xp0 |x=−1

−�t√
2
e−

√
2∂xyyp0 |x=−1 +O(�t3/2)

Hence we have

(10.5) ∂xyyp0 |x=−1 =
e
√

2

e
√

2 − 1
∂xyyp�t |x=−1+�t1/2 +O(�t1/2)

70

Taylor expansion gives

(10.6)

∂xp0 |x=−1+�t1/2 = ∂xp0 |x=−1 −ε∂2
xp0 |x=−1+�t1/2

−ε2

2
∂3

xp0 |x=−1+�t1/2 +O(�t3/2)

Again from (10.1) we have

(10.7)

ε∂2
xp�t = ε∂2

xp0 + ∂2
ξφ1 + ε2∂2

ξφ3 +O(�t3/2)

= ε∂2
xp0 +

√
2e−

√
2ξ ∂xp0 |x=−1 +ε2(ξ − 1√

2
)e−

√
2ξ ∂xyyp0 |x=−1 +O(�t3/2)

(10.8)
ε2

2 ∂3
xp�t =

ε2

2
∂3

xp0 +
1
2
∂3

ξφ1 +
ε2

2
∂3

ξφ3 +O(�t3/2)

=
ε2

2
∂3

xp0 − e−
√

2ξ ∂xp0 |x=−1 +ε2(1− ξ√
2
)e−

√
2ξ ∂xyyp0 |x=−1 +O(�t3/2)

Evaluating these expressions at x = −1 +�t1/2, we get

(10.9)

ε∂2
xp�t |x=−1+�t1/2 = ε∂2

xp0 |x=−1+�t1/2 +
√
2e−

√
2∂xp0 |x=−1

+ε2(1− 1√
2
)e−

√
2∂xyyp0 |x=−1 +O(�t3/2)

(10.10)

ε2

2 ∂3
xp�t |x=−1+�t1/2 =

ε2

2
∂3

xp0 |x=−1+�t1/2 −e−
√

2 ∂xp0 |x=−1

+ε2(1− 1√
2
)e−

√
2 ∂xyyp0 |x=−1 +O(�t3/2)

Combining (10.4), (10.6), (10.9) and (10.10), we obtain

(10.11)

(∂x + ε∂2
x +

ε2

2
∂3

x)p�t |x=−1+�t1/2 = [1− (2−
√
2)e−

√
2]∂xp0 |x=−1

+�t
2
√
2− 3√
2

e−
√

2 ∂xyyp0 |x=−1 +O(�t3/2)

71

Or

(10.12)

∂xp0 |x=−1 =
e
√

2

e
√

2 − 2 +
√
2
(∂x + ε∂2

x +
ε2

2
∂3

x)p�t |x=−1+�t1/2

−�t
2
√
2− 3√

2e
√

2 + 2− 3
√
2 + 2(

√
2− 1)e−

√
2
∂xyyp�t |x=−1+�t1/2 +O(�t3/2)

Finally, using (10.5) and (10.12) in (10.1), (10.2) and (10.3), we get

(10.13) p�t = p0 − pc +O(�t2)

where

(10.14)

pc = α�t1/2e−
√

2ξ (∂x +�t1/2∂2
x +

�t

2
∂3

x)p�t |x=−1+�t1/2

+(β + γξ)�t3/2e−
√

2ξ ∂xyyp�t |x=−1+�t1/2

where

(10.15)

α =
e
√

2

2− 2
√
2 +

√
2e

√
2

β =
1

2
√
2

e
√

2

2e
√

2 − 2
− 2

√
2− 3√

2e
√

2 + 2− 3
√
2 + 2(

√
2− 1)e−

√
2

γ =
e
√

2

2e
√

2 − 2

References

[1] C.R. Anderson, Derivation and solution of the discrete pressure equations for the in-

compressible Navier-Stokes equations, preprint.

[2] J.B. Bell, P. Colella, and H.M. Glaz, A second-order projection method for the incom-

pressible Navier Stokes equations, J. Comput. Phys. 85 (1989), 257–283.

[3] J.B. Bell and D. Marcus, A second-order projection method for variable-density flows,

preprint, to appear in J. Comput. Phys..

72

[4] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22

(1968), 745-762.

[5] A.J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equa-

tions, Math. Comp. 23 (1969), 341–353.

[6] A.J. Chorin, Computational Fluid Mechanics, selected papers, Academic Press, 1989.

[7] Weinan E and J.-G. Liu, Projection method II: rigorous Godunov-Ryabenki analysis,

in preparation.

[8] Weinan E and J.-G. Liu, Projection method III: pressure increment schemes, in prepa-

ration.

[9] P.M. Gresho, Incompressible fluid dynamics: some fundamental formulation issues,

Rev. Fluid Mech. 23 (1991), 413–453.

[10] P.M. Gresho, Some interesting issues in incompressible fluid dynamics, both in the

continuum and in numerical simulation, Adv. in Appl. Mechanics 28 (1992), 45–139.

[11] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary

Navier-Stokes problem, part III. Smoothing property and higher order error estimates

for spatial discretization, SIAM J. Numer. Anal., 25, 490-512, 1988.

[12] G. Karniadakis, M. Israeli and S. A. Orszag, High-order splitting methods for the in-

compressible Navier-Stokes Equations, J. Comput. Phys., 97, No. 2, 414-443, 1991.

[13] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-

Stokes equations, J. Comp. Phys. 59 (1985), 308–323.

[14] D. Michelson, Convergence theorems for finite difference approximations for hyperbolic

quasilinear initial-boundary value problems, Math. Comp. 49 (1987), 445–459.

[15] H. Okamoto, On the semi-discrete finite element approximation for the nonstationary

Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 612–652.

73

[16] S.A. Orszag, M. Israel, and M.O. Deville, Boundary conditions for incompressible flows,

J. Scientific Computing 1 (1986), 75–111.

[17] M. M. Rai and P. Moin, Direct simulation of turbulent flow using finite-difference

schemes, J. Comput. Phys., 96, 15-53, 1991.

[18] Jie Shen, On error estimates of projection methods for Navier-Stokes equations: first

order schemes, SIAM J. Numer. Anal. 29 1992, 57–77.

[19] Jie Shen, On error estimates of some higher order projection and penalty-projection

methods for Navier-Stokes equations, Numer. Math. 62 (1992), 49–73.

[20] G. Strang, Accurate partial differential methods II. non-linear problems, Numerische

Mathematik 6 (1964), 37–46.

[21] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes par la

méthode des fractionnarires II , Arch. Rational Mech. Anal. 33 (1969), 377–385.

[22] R. Temam, Navier Stokes Equations, North Holland, New York, 1977.

[23] R. Temam, Remark on the pressure Boundary condition for the projection method,

Theoretical and Computational Fluid Dynamics 3 (1991), 181–184.

[24] J. van Kan , A second-order accurate pressure-correction scheme for viscous incom-

pressible flow, SIAM J. Sci. Stat. Comp. 7 (1986), 870–891.

74

