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The power law range for the velocity gradient probability density function in forced Burgers

turbulence has been an issue of intense discussion recently. It is shown in [chao-dyn/9901006] that

the negative exponent in the assumed power law range has to be strictly larger than 3. Here we give

another direct argument for that result, working with �nite viscosity. At the same time we discuss

viscous corrections to the power law range. This should answer the questions raised by Kraichnan

in [chao-dyn/9901023] regarding the results of [chao-dyn/9901006] .

The main purpose of this note is to clarify and extend

to �nite viscosity the results of our earlier paper [1] con-

cerning the asymptotic behavior of the velocity gradient

probability density function (PDF) for Burgers turbu-

lence with homogeneous, smooth, Gaussian, and white-

in-time forcing. In particular, the present note should

answer the questions raised in [2] regarding [1].

Let Q�(�; t) denote the PDF of � = ux, where u satis-

�es

ut + uux = �uxx + f; (1)

and de�ne

Q(�; t) = lim
�!0

Q�(�; t): (2)

Then the question of interest is the value of �, such that

Q � C�j�j
�� as � ! �1: (3)

We emphasize that the existence of such a range (the

so-called �� range) is not the issue here. The issue is

the value of �. Notice that (3) is a statement about the

inviscid limit. For �xed � > 0, the left tail of Q� decays

much faster due to the presence of the viscous range. In

addition Q� satis�es

Q�

t = �Q� +
�
�2Q�

�
�
+B1Q

�

�� + F � ; (4)

where F � = ��


�xxÆ[� � �(x; t)]

�
�
accounts for the ef-

fect of the viscosity, and B1 =
R1
0

dt hfx(x; t)fx(x; 0)i.
Q satis�es an equation similar to (4) with F � replaced

by F = lim�!0 F
� :

Qt = �Q+
�
�2Q

�
�
+B1Q�� + F: (5)

The expression for F is given explicitly in (13).

One main result of [1] is a statement to the e�ect that

� > 3, expressed as

lim
�!�1

�3Q(�; t) = 0: (6)

We emphasize that there is an important distinction be-

tween the strict inequality � > 3 and the bound � � 3

advanced in [2]: (6) rules out all the predictions in the

literature (including those of [3{5]) except that of [6] with

� = 7=2. As is discussed in [2], � = 3 and � > 3 imply

qualitatively di�erent picture concerning the contribu-

tion of the F � term in (4) in the viscous range.

In [1], (6) was derived from (5). Here we will work di-

rectly with (4). Consider statistical steady state (Q�
t =

0). For � � ��0 (= �B
1=3
1 ), the B1 term in (4) can be

neglected giving

�Q� +
�
�2Q�

�
�
+ F �

� 0; (7)

or, equivalently, �
�3Q�

�
�
� ��F � : (8)

Because of the exponential decay in the viscous range,

we get from (8)

Q�
� j�j�3

Z
�

�1

d�0 �0F �(�0) for � � ��0: (9)

Using the same analysis as in [1], for small � we can

obtain an explicit expression for Q� from (9). The cal-

culation is performed in Appendix A and gives

Q�
�2�j�j�3

Z +1

�

d�0
Z s?

�1

ds �0A(s; � � �0)V (s; �0)

�2��j�j�2
Z +1

�

d�0
Z s?

�1

ds
(� � �0)

A(s; � � �0)
V (s; �0)

for � � ��0; (10)

where

A(s; �) =
�
1
4s

2 + 2��
�1=2

; (11)

� is the number density of shocks, s? = �2(2�(�0��))1=2,
V (s; �) = (V�(s; �)+V+(s; �))=2, V�(s; ��) are the PDFs
of ��(y; t) (gradients at the left and right of the shock in

the inviscid limit) and s(y; t) (shock amplitude, s � 0),

conditional on the property that there is a shock at x = y.
Without further information about V (s; �) it is diÆ-

cult to carry out asymptotics on (10), and we shall not

dwell on this problem (see however (A19)-(A22) in Ap-

pendix A). What is easier and more instructive is to ac-

tually take the limit as � ! 0 for �xed � in (10). Then,

only the �rst term at the right hand-side of (10) survives,

and Q� converges to
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Q(�) � ��3
Z +1

�

d�0 �0F (�0) for � � ��0; (12)

with

F (�) = lim
�!0

F �(�) = �

Z 0

�1

ds s V (s; �): (13)

At this stage, we use the fact that

A =

Z +1

�1

d� �F =
�

2
(hs��i+ hs�+i) = 0: (14)

This is a steady state consequence of

d

dt
(�hsi) = �

�

2
(hs��i+ hs�+i); (15)

which is proven in Appendix B. As a result of (14), (12)

may be rewriten as

Q(�) � j�j�3
Z

�

�1

d�0 �0F (�0) for � � ��0: (16)

(6) then follows because
R �
�1

d�0�0F (�0)! 0 as � ! �1.

We stress that this argument, and in particular the use of

(15) at steady state, does not imply that Q � Aj�j�3 at

transient states because the whole analysis here rests on

(9) which is only valid at statistical steady state. In fact,

as we will now show, (6) also holds for transient states

[7]. Again in [1] this argument was presented for Q. Here
we reinterpret this using Q� for small �.
Multiplying (4) by � and integrating from �? to +1

(for �xed �? � ��0), we getZ +1

�?

d� �Q�

t
= ��3

?
Q�(�?; t) +

Z +1

�?

d� �F � : (17)

Here we neglected contribution from the B1 term since it

is small compared with the remaining terms. Taking the

limit as � ! 0, we get:Z +1

�?

d� �Qt = ��
3
?
Q(�?; t) +

Z +1

�?

d� �F: (18)

Therefore

lim
�?!�1

�3?Q(�?; t) =

Z +1

�1

d� �F �
d

dt

Z +1

�1

d� �Q: (19)

Notice that even though by homogeneity

h�i� =

Z +1

�1

d� �Q� = 0; (20)

in the limit as � ! 0

h�i =

Z +1

�1

d� �Q = ��hsi 6= 0: (21)

In other words, a �nite amount of � = ux has gone to the
shocks in the limit as � ! 0. Hence, using (21) at the

right hand side of (19), this equation becomes

lim
�?!�1

�3
?
Q(�?; t)=

�

2
(hs��i+ hs�+i)�

d

dt
h�i

=
�

2
(hs��i+ hs�+i) +

d

dt
(�hsi)

=0:

(22)

The last equality follows from (15).

One main message in [2] is the claim that the argument

in [1] which led to the strict bound (6) is insuÆcient. Here

we paraphrase the argument which led to this claim. One

may always write (9) as

j�j3Q�(�) =

Z �M

�1

d�0 �0F �(�0) +

Z �

�M

d�0 �0F �(�0); (23)

where �M is de�ned as the value at which the �� range

is masked by the viscous range. Assuming the latter be-

haves as �Cj�j�1 (see [2] and (A20)) then �M is deter-

mined from solving

C�j�j
�� = �Cj�j�1; (24)

which gives �M = �C0�
�1=(��1) with C0 =

(C=C�)
�1=(��1). In the limit as � ! 0, the second term

at the right-hand of (23) gives

lim
�!0

Z
�

�M

d�0 �0F �(�0) =

Z
�

�1

d�0 �0F (�0); (25)

which goes to 0 as � ! �1. Therefore, whether � > 3

depends on whether

lim
�!0

Z �M

�1

d�0 �0F �(�0) = 0; (26)

holds. Since

�3MQ�(�M ) =

Z �M

�1

d�0 �0F (�0); (27)

an equivalent form of (26) is

lim
�!0

�3
M
Q�(�M ) = 0: (28)

Although this statement is correct and gives another way

of appreciating the di�erence between � = 3 and � > 3,

it is an unproductive approach of addressing the issue of

whether � = 3, for the simple reason that the validity

of (26) and (28) depends sensitively on the value of �M
which cannot be known prior to knowing �. Unlike what
is claimed in [2], �M cannot be an arbitrary choice that

satis�es �0=�M ! 0, ��M ! 0 as � ! 0. For example if

we choose �M = �N = �C1�
�1=2, from (A20)

lim
�!0

�3NQ
�(�N ) = CC2

1 6= 0; (29)

regardless the value of �. On the other hand, it is easy to
see that if �M = o(��1=2), then (26) and (28) hold. The

important technical point in [1] is to �nd ways to cir-

cumvent this path. That was done by studying directly
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the inviscid limit of Q� . Here we have presented a direct

argument based on the integral expression for Q� . As a

by-product, we have

�M = o(��1=2): (30)

It is also worth stressing that even though (9) and (16)

look similar, they are not equivalent. (9) is meant for the

case of �nite � and is derived using straightforward inte-

gration from (7). (16) is valid for the limiting PDF Q and

its derivation is much more non-trivial. In Appendix C,

we show that (16) can be derived directly from (5) using

the realizability constraint over the whole �-line, as well
as the additional information provided by (15). It shows

that the only realizable steady state solutions of (5) has

the form (16). Other solutions violate non-negativity ei-

ther for � ! �1 or for � ! +1. The argument in [1]

was a global argument, not localized at very large nega-

tive values of �.

The characterization that \the analysis in [1] is done in

terms of a split of u and � into a part exterior to shocks

and a part interior to shocks" [2] also needs more clari�ca-

tion. What was done in [1] was a derivation of an approx-

imation to ��xx (or ��2
x
) using boundary layer analysis

and matched asymptotics in order to evaluate the limit

of F � as � ! 0. The same technique was used here to

evaluate directly the limit of Q� (for large negative �) as
� ! 0. This approximation is uniformly valid except at

shock creation and collision whose contributions to F � is

of lower order. It can also be systematically improved if

additional information is required.

Going back to statistical stationary state, what is the

actual value of �? [6] predicted that � = 7=2 under the

assumption that the main contribution to Q for large

negative values of � comes from neighborhoods of shock

creation points (pre-shocks). This geometric argument

was expanded in [1] in the context of (5) and in par-

ticular the form of F : under the geometric argument

F (�) � Cj�j�5=2 with C < 0 for � � ��0. [2] further ex-
panded the geometric argument and obtained values of �
in (3; 7=2) by considering special singular data. Polyakov
[8] gave an example that gives � = 3. However these are

rather pathological situations that lie outside the regime

of interest here, i.e. the case of smooth forcing. By study-

ing the master equation for the environment of shocks, [9]

veri�es that indeed the main contribution does come from

shock creation points, and thereby con�rms � = 7=2.

In conclusion, we stress that there are many ways to

exclude the possibility of having j�j�3 behavior for the

left tail of Q in the case of smooth Gaussian force. The

discussion in [2] provides yet another way of understand-

ing the di�erent consequences of � = 3 and � > 3, but

it is not the right way to address the issue of whether

� = 3.
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APPENDIX A: EVALUATION OF Q�

In this appendix we perform the computation of Q� to

O(�). We �rst put (9) in a form which is more convenient

for the calculation. Notice that

F �(�; t) = G�

��(�; t); (A1)

where

G�(�; t) = ��


�2
x
(x; t)Æ(� � �(x; t))

�
: (A2)

Thus, from (9),

Q�
� �j�j�3G�

� j�j�2G�

�
for � � ��0: (A3)

We now evaluate G� . For statistically homogeneous situ-

ations, the averages at the right hand-side of (A2) can be

evaluated upon resorting to spatial ergodicity to replace

the ensemble-average by the space-average:

G�(�; t) = �� lim
L!1

1

2L

Z L

�L

dx �2xÆ(� � �(x; t)): (A4)

In the limit of small � only small intervals around the

shocks will contribute to this integral. In these layers,

we use boundary layer analysis to evaluate �(x; t). This
analysis was outlined in [1] (for details see [9]): Let y be

a shock position. Near y, u can be expressed as

u(x; t) = uin(x; t) = v

�
x� y

�
; t

�
; (A5)

and the expression for v(z; t) can be obtained via a series

expansion in �. It yields v = v0 + �v1 +O(�2), with

v0(z; t) = �u�
s

2
tanh

�sz
4

�
: (A6)

v1 is a solution of

v0t + (v0 � �u)v1z + v1v0z = v1zz + f: (A7)

The actual expression of v1 is rather complicated, and the

only information really needed about v1 to evaluate (A4)
is the values of v1z as z ! �1. Let limz!�1 v1z = ��.
Then

�� = �
2�ut

s
�
st

s
�

2f

s
; (A8)

or, equivalently,

st = �
s

2

�
�� + �+

�
; �ut =

s

4

�
�� � �+

�
+ f: (A9)
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In these expressions, the values of s and �u = dy=dt must
be obtained by matching uin(x; t) with the solution of the
Burgers equation outside the shock layer, say, uout(x; t):

this eventually produces an approximation for u(x; t) uni-
formly valid except at shock creation and collision.

Using the results of the boundary layer analysis, to

O(�) (A4) can be estimated as (�in = uin
x
)

G�(�; t)

= �� lim
L!1

N

2L

1

N

X
j

Z
jthlayer

dx (�in
x
)2 Æ(� � �in(x; t));

(A10)

or, picking any particular shock layer, going to the

stretched variable z = (x � y)=�, and taking the limit

as L!1,

G�(�; t) =��

Z
dsd�ud��d�+ T (�u; s; ��; �+; s; t)

�

Z +1

�1

dz �2
z
Æ(� � �(z; t));

(A11)

where we de�ned � = ��1v0z + v1z � ��1v0z + ��. Here
T (�u; s; ��; �+; t) is the PDF of �u, s, ��, �+ conditional

on the existence of a shock at x = y; it arises because
�(z; t) depends parametrically on these (random) vari-

ables. To perform the z integral in (A11), we change

the integration variable to �0 = � � �� for z < 0 and to

�0 = � � �+ for z > 0. Then, using the equation for v0,
(v0 � �u)v0z = v0zz, as well as (A6), we have for z < 0

�z=((v0 � �u)(� � ��))

=
�
1
4s

2 + 2�(� � ��)
�1=2

(� � ��);
(A12)

and for z > 0

�z=((v0 � �u)(� � �+))

=�
�
1
4s

2 + 2�(� � �+)
�1=2

(� � �+):
(A13)

Thus

dz �2
z
=

(
d�0 �0

�
1
4s

2 + 2��0
�1=2

for z < 0;

�d�0 �0
�
1
4s

2 + 2��0
�1=2

for z > 0:
(A14)

Also, �0 2 [�s2=8�; 0] as z 2 [�1; 0] or z 2 [0;+1].

Combining these results gives

�

Z +1

�1

dz �2
z
Æ(� � �(z; t))

=

Z 0

�s2=8�

d�0 �0
�
1
4s

2 + 2��0
�1=2

Æ(� � �0 � ��)

+

Z 0

�s2=8�

d�0 �0
�
1
4s

2 + 2��0
�1=2

Æ(� � �0 � �+)

= (� � ��)
�
1
4s

2 + 2�(� � ��)
�1=2

�

�
H(�� � �)�H(�� � s2=8� � �)

�
+(� � �+)

�
1
4s

2 + 2�(� � �+)
�1=2

�

�
H(�+ � �)�H(�+ � s2=8� � �)

�
;

(A15)

where H(x) is the Heaviside function. Inserting this ex-

pression in (A11) then results in

G�(�; t) =

2�

Z +1

�

d�0
Z s?

�1

ds (� � �0)A(s; � � �0)V (s; �0; t);
(A16)

where s?�2(2�(�0� �))1=2, A(s; �) was given in (11) and

we used the consistency constraint

Z
d�ud�� T (�u; s; ��; �+; t) = V�(s; ��; t): (A17)

We also have

G�

�
(�; t) =

2�

Z +1

�

d�0
Z s?

�1

ds A(s; � � �0)V (s; �0; t)

+2��

Z +1

�

d�0
Z

s?

�1

ds
� � �0

A(s; � � �0)
V (s; �0; t):

(A18)

Inserting (A16), (A18) in (A3) gives (10).

Note that if one neglects the O(1) term in the ex-

pansion for �in (an assumption we do not make), then

V (s; �; t) = 2S(s; t)Æ(�), where S(s; t) is the conditional

PDF of s(y; t). At statistical steady state this is V (s; �) =
2S(s)Æ(�) and (10) reduces to

Q�
� 2��j�j�1

Z �2(2�j�j)1=2

�1

ds
S(s)�

1
4s

2 + 2��
�1=2 : (A19)

This is the expression obtained by Gotoh and Kraich-

nan [5] for Q� in the viscous range. (A19) is hard to

justify since it amounts to assessing the accuracy of the

approximation V (s; �; t) � 2S(s; t)Æ(�) for large negative
�. Granting (A19), Q� can be further simpli�ed if one

assumes that the �rst inverse moment of the shock am-

plitude s is �nite, i.e. hjsj�1i = �

R 0
�1

dsS(s)=s < +1.

Then, for � = o(��1), (A19) reduces to

Q�
� �Cj�j�1; (A20)

C = 4�


jsj�1

�
: (A21)

(A20) describes the well-known j�j�1 viscous range (the

�1 range). This expression can be combined with (16)

to give

Q�
� C�j�j

�� + �Cj�j�1; (A22)

on the range � = o(��1), � � ��0. Here C�j�j
�� =

j�j�3
R �
�1

d�0 �0F (�0).
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APPENDIX B: DERIVATION OF (14)

To get (15) we need to evaluate the time derivative of

(using ergodicity)

�hsi = lim
L!1

N

2L

1

N

NX
j=1

s(yj ; t); (B1)

where N is the number of shocks in [�L;L] and the yj 's
are their locations. Using (A9), clearly the time deriva-

tive of (B1) will give (15) if the time dependence of N
does not make any contribution. N varies due to shock

creation or shock collision. Consider the creation �rst,

and assume a shock is created at position y1 at time t1.
Then one has in (B1) a term like (disregarding the factor

1=2L)

T1 = s(y1; t)H(t� t1); (B2)

where H(x) is the Heaviside function. Time di�erentia-

tion of (B2) gives

dT1

dt
=

d

dt
s(y1; t)H(t� t1) + s(y1; t)Æ(t� t1): (B3)

The second term accounts for the time dependence of

N . Since the shock amplitude is zero at creation,

s(y1; t)Æ(t � t1) = s(y1; t1)Æ(t � t1) = 0. This means

that the term dN=dt makes no contribution to the time

derivative of (B1) at shock creation. Consider now the

merging events. Assume the shocks located at position

y2 and y3 merge into one shock located at position y1 at
time t1. By de�nition y1(t1) = y2(t1) = y3(t1). Such an

event contributes in (B1) by a term like

T2 = s(y1; t)H(t� t1) +
�
s(y2; t) + s(y3; t)

�
H(t1 � t):

(B4)

Time di�erentiation of (B4) gives

dT2

dt
=
d

dt
s(y1; t)H(t� t1)

+
d

dt

�
s(y2; t) + s(y3; t)

�
H(t1 � t)

+s(y1; t)Æ(t� t1)�
�
s(y2; t) + s(y3; t)

�
Æ(t� t1):

(B5)

Since shock amplitudes add up at collision:

lim
t!0+

s(y1(t1 + t); t1 + t)

= lim
t!0+

�
s(y2(t1 � t); t1 � t) + s(y3(t1 � t); t1 � t)

�
:

(B6)

Thus the terms in (B5) involving Æ-functions vanish. This
means that the term dN=dt makes no contribution to the

time derivative of (B1) at shock collision. Hence (15).

APPENDIX C: GLOBAL REALIZABILITY

CONSTRAINTS

Here we study (5) at steady state

0 = �Q+
�
�2Q

�
�
+B1Q�� + F: (C1)

We will show that the only non-negative solution of (C1)

is

Qs(�) =
1

B1

Z �

�1

d�0 �0F (�0)�
�e��

B1

Z �

�1

d�0 e�
0

G(�0);

(C2)

where � = �3=3B1 and

G(�) = F (�) +
�

B1

Z
�

�1

d�0 �0F (�0): (C3)

We will also show that for large positive �, F decays in

such a way that

lim
�!+1

��2e�F (�) = 0; (C4)

assuming the limit exists. Note that from (14), the �rst

moment of F exists. Hence �F (�) is integrable at �1.

Before proving (C2) and (C4), let us consider some

simple consequences. For � < 0, integrating by parts in

(C2) gives

Qs(�) = �
�e��

B2
1

Z
�

�1

d�0
e�

0

�02

Z
�
0

�1

d�00 �00F (�00): (C5)

Similarly for � > 0, we have

Qs(�) = C+�e
��
�
�e��

B1

Z +1

�

d�0
e�

0

�02

Z +1

�0

d�00 �00F (�00);

(C6)

with

C+ = �
1

B1

Z +1

�1

d� e�G(�): (C7)

Here we used (14) (steady state of (15)), i.e.

Z +1

�1

d� �F =
�

2
(hs��i+ hs�+i) = 0: (C8)

Note that using (C8) one readily shows that C+ is �nite

if (C4) holds. From (C5) and (C6) it follows that (C2)

behaves asymptotically as

Qs(�) �

8<
: j�j�3

Z
�

�1

d�0�0F (�0) as � ! �1;

C+�e
�� as � ! +1:

(C9)

To prove (C2) and (C4) we �rst note that the general

solution of (C1) is

5



Q(�) = Qs(�) + C1Q1(�) + C2Q2(�); (C10)

where C1 and C2 are constants, Q1 and Q2 are two lin-

early independent solutions of the homogeneous equation

associated with (C1). Two such solutions are

Q1(�) = �e��; (C11)

Q2(�) = 1�
�e��

B1

Z �

�1

d�0 �0e�
0

: (C12)

For � < 0, after integration by part Q2 can be expressed

as

Q2(�) = ��e��
Z �

�1

d�0
e�

0

�02
: (C13)

We now show that the realizability constraint requires

that C1 = C2 = 0. First, one readily check that Q1

grows unbounded as � ! �1, while lim�!�1Q2 =

lim�!�1Q3 = 0. Hence in order that Q be integrable

we must set C1=0 and the general solution of (C1) is

Q(�) = C2Q2(�) +Qs(�): (C14)

For large negative �, this leads to the expansion

Q(�) � C2B1j�j
�3 + j�j�3

Z �

�1

d�0 �0F (�0): (C15)

For large positive �, we must distinguish two cases. If

(C4) does not hold, then (using (C8))

Q(�) � �C2B1�
�3 + ��3

Z +1

�

d�0 �0F (�0): (C16)

In contrast, if (C4) holds, then

Q(�) � �C2B1�
�3 + C+�e

��: (C17)

In (C15)-(C17), if non-zero the C2 term at the right-hand

side will dominate the second term. However, since the

C2 term has opposite sign as � ! �1, it must be zero,

i.e., we must set C2 = 0. This proves that Q = Qs.

Furthermore, since the F term at the right-hand side of

(C16) is negative (recall that from (13), F � 0), this so-

lution must be rejected in order that Q be non-negative.

Thus (C4) must hold.
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