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A rigorous study is carried out for the randomly forced Burgers equation in the inviscid limit. No

closure approximations are made. Instead the probability density functions of velocity and velocity
gradient are related to the statistics of quantities de�ned along the shocks. This method allows one
to compute the anomalies, as well as asymptotics for the structure functions and the probability

density functions. It is shown that the left tail for the probability density function of the velocity
gradient has to decay faster than j�j�3. A further argument con�rms the prediction of E et al.

[Phys. Rev. Lett. 78, 1904 (1997)] that it should decay as j�j�7=2.

PACS numbers: 47.27.Gs, 05.40.-a, 02.50.Ey

In this Letter, we focus on statistical properties of so-

lutions of the randomly forced Burgers equation

ut + uux = �uxx + f; (1)

where f is a zero-mean, statistically homogeneous, white-

in-time Gaussian process with covariance

hf(x; t)f(y; s)i = 2B(x� y)Æ(t� s); (2)

where B(x) is smooth. We are particularly interested

in the probability density function (pdf) of the velocity

gradient �(x; t) = ux(x; t), since it depends heavily on

the intermittent events created by the shocks. Assuming

statistical homogeneity, and letting Q(�; t) be the pdf of

�(x; t), it can be shown that Q satis�es

Qt = �Q+
�
�
2
Q
�
�
+B1Q�� � �

�
h�xxj�iQ

�
�
; (3)

where B1 = �Bxx(0). h�xxj�i is the ensemble-average of
�xx conditional on �. The explicit form of this term is

unknown, leaving (3) unclosed. There have been several

proposals on how to approximately evaluate the quantity

F (�; t) = � lim
�!0

�
�
h�xxj�iQ

�
�
: (4)

At steady state, they all lead to an asymptotic expression

of the form

Q �

(
C�j�j

�� as � ! �1;

C+�
�e��

3
=(3B1) as � ! +1;

(5)

forQ, but with a variety of values for the exponents � and

� (here the C�'s are numerical constants). By invoking

the operator product expansion, Polyakov [1] suggested

that F = aQ + b�Q, with a = 0 and b = �1=2. This

leads to � = 5=2 and � = 1=2. Boldyrev [2] considered

the same closure with �1 � b � 0, which gives 2 � � � 3

and � = 1 + b. The instanton analysis [3,4] predicts

the right tail of Q without giving a precise value for �,

but has not given any speci�c prediction for the left tail.

E et al. [5] made a geometrical evaluation of the e�ect of

F , based on the observation that large negative gradients

are generated near shock creation. Their analysis gives

a rigorous upper-bound for �: � � 7=2. In [5], it was

claimed that this bound is actually reached, i.e., � = 7=2.

Finally Gotoh and Kraichnan [6] argued that the viscous

term is negligible to leading order for large j�j, i.e. F � 0

for j�j � B
1=3
1 . This approximation leads to � = 3 and

� = 1. For other approaches, see e.g. [7,8]. In this letter

we proceed at an exact evaluation of (4) and we prove

that � has to be strictly larger than 3 (a result which

does not require that steady state be reached). At steady

state, we prove that � = 1 and we give an argument

which supports strongly the prediction of [5], namely,

� = 7=2.

To begin with, let us remark that it is established in

the mathematics literature that the inviscid limit

u
0(x; t) = lim

�!0
u(x; t); (6)

exists for almost all (x; t). Since u0 will in general develop

shocks, say, at x = y, we may have u0x / Æ(x � y), and

one cannot simply drop the viscous term in the Burgers

equation without giving some meaning to u0u0
x
at shocks.

This can be done using BV-calculus [9], which allows one

to write an equation for u0 and gives rules for manipulat-

ing the terms entering this equation and computing the

e�ect of the viscous term in the inviscid limit. An alter-

native, more intuitive, way of accessing the e�ect of the

viscous shock on the velocity pro�le outside the shock

is to carry out an asymptotic analysis near and inside

the shock. Here we will take the second approach and

refer the interested reader to [10] for the �rst approach

with BV-calculus. It is important to remark that the two

approaches lead to the same results.

Before considering velocity gradient, it is helpful to

study the statistics of velocity itself. Let R(u; t) be the

pdf of u(x; t). Assuming statistical homogeneity, R sat-

is�es

Rt = B0Ruu � �
�
huxxjuiR

�
u
; (7)

where B0 = B(0). To compute ��
�
huxxjuiR

�
u
, let us

note that for � � 1, the solutions of (1) consist of smooth
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pieces where the viscous e�ect is negligible, separated by

thin shock layers inside which the viscous e�ect is im-

portant. Let uout(x; t) be the solution of the Burgers

equation outside the viscous shock layer; uout can be ob-

tained as a series expansion in �. To leading order in �,

uout satis�es Riemann's equation, ut+uux = f . In order

to deal with the shock layer, say at x = y, de�ne

uin(x; t) = v

�
x� y

�
; t

�
; (8)

and write v = v0 + �v1 + O(�2). To leading order,

v0(z; t) satis�es (v0 � �u)v0z = v0zz, yielding v0(z; t) =

�u � (s=2) tanh(sz=4) where �u = dy=dt and s � 0 is the

jump across the shock. Consequently we have the follow-

ing generic velocity pro�le inside the shock layer:

uin(x; t) = �u�
s

2
tanh

�
s(x� y)

4�

�
+O(�): (9)

The actual values of �u and s are obtained from the match-

ing conditions between uin and uout. In terms of v and

the stretched variable z, they are

lim
z!�1

v0 = lim
x�y!0�

uout = �u�
s

2
: (10)

We will use (9) to evaluate the viscous term in (7). By

de�nition [11],

�huxxjuiR = � lim
L!1

1

2L

Z L

�L

dx uxx Æ[u� u(x; t)]: (11)

In the limit � ! 0 only small intervals around the shocks

will contribute to the integral. So, we can split the inte-

gral into small pieces involving only the shock layers and

use the generic form of uin in the layers to evaluate these

integrals. To O(�), this gives

�huxxjuiR

= � lim
L!1

N

2L

1

N

X
j

Z
j�th layer

dx uinxx Æ[u� uin(x; t)]

= �

Z
dsd�u T (�u; s; t)

Z +1

�1

dz v0zz Æ[u� v0(z; t)];

(12)

where in the second integral we picked any particu-

lar shock layer and we went to the stretched variable

z = (x � y)=�. Here N denotes the number of shocks

in [�L;L], � = �(t) = limL!1N=2L is the shock den-

sity, and T (�u; s; t) is the probability density of �u(y; t) and

s(y; t) conditional on the property that there is a shock

at position y (T is independent of y because of statistical

homogeneity). The last integral in (12) can of course be

evaluated using the explicit form of v0. Another, more

elegant, way to proceed is to use the equation for v0,

(v0 � �u)v0z = v0zz , and change the integration variable

from z to v0 using dzv0zz = dv0v0zz=v0z = dv0(v0 � �u).

The result is

lim
�!0

�huxxjuiR = ��

Z
ds

Z
u�s=2

u+s=2

d�u (u� �u)T (�u; s; t):

(13)

This equation gives an exact expression for the viscous

contribution in the limit � ! 0 in terms of certain sta-

tistical quantities associated with the shocks. Of course,

using (13) in (7) does not lead to a closed equation since

T remains to be speci�ed. However, information can al-

ready be obtained at this point without resorting to any

closure assumption. For instance, using (13) in (7) and

taking the second moment of the resulting equation yields

hu2it = 2B0 � 2� with

� = lim
�!0

�hu2
x
i =

1

12
�hjsj3i: (14)

In particular, at steady state �hjsj3i = 12B0.

Similar calculations can be carried out for multi-point

pdf's and, in particular, for W (w;x; t), the pdf of the

velocity di�erence w(x; z; t) = u(x + z; t) � u(z; t). It

leads to an equation of the form

Wt =�wWx � 2

Z
w

�1

dw
0
Wx(w

0;x; t)

+2[B0 �B(x)]Www +H(w;x; t);

(15)

where, to O(x), H is given by

H=�
�
wS(w; t) + hsiÆ(w)

�
+2�

Z
w

�1

dw
0
S(w0; t)� 2��(w) +O(x):

(16)

Here �(w) is the Heaviside function and S(s; t) =R
d�uT (�u; s; t) is the conditional pdf of s(y; t). By direct

substitution it may be shown that the solution of (15) is,

to O(x2), [13]

W � (1� �x)
1

x
Q

�
w

x
; t
�
+ �xS(w; t) +O(x2): (17)

The �rst term in this expression contains Q(�; t), the pdf

of the non-singular part of the velocity gradient, to be

considered below (see (20)). This term accounts for those

realizations of the ow where there is no shock in between

z and x + z (an event of probability 1 � �x + O(x2)).

This term also leads to the consistency constraint that

limx!0W = Æ(w) (using limx!0Q(w=x; t)=x = Æ(w)).

The next term in (17), �xS(w; t), accounts for the real-

izations of the ow where there is a shock in between z

and x + z (an event of probability �x + O(x2)). Equa-

tion (17) can be used to compute the structure functions,

hjwjai =
R
dw jwjaW . To leading order this gives

hjwjai �

(
x
ahj�jai+O(x) if 0 � a < 1;

x�hjsjai+O(x1+a) if 1 < a;
(18)

where hj�jai =
R
d� j�jaQ. Using �hjsj3i = 12B0, we get

Kolmogorov's relation for a = 3

hjwj3i � 12xB0: (19)

We now go back to the velocity gradient. Observe �rst

that, in the limit � ! 0, the velocity gradient can be

written as
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ux(x; t) = �(x; t) +
X
j

s(yj)Æ(x � yj); (20)

where the yj 's are the locations of the shocks, � is the

non-singular part of ux. Assuming homogeneity, a direct

consequence of (20) is

huxi = h�i+ �hsi = 0: (21)

Unlike the viscous case where � = ux, hence h�i = 0, we

have in the inviscid limit h�i = ��hsi 6= 0: Note also that

the inviscid limit of the solutions of (3) converge to the

pdf of � only, which is still going to be denoted by Q.

To evaluate F , there are two ways to proceed. One is to

rewrite (15) in terms of the pdf of (u(x+z; t)�u(z; t))=x
and take the limit as x goes to zero. This is the approach

taken in [10]. The other is to evaluate (4) directly. The

two approaches amount to di�erent orders of taking the

limit x ! 0; � ! 0, and give the same result. Hence the

two limiting processes commute. We will take the second

approach and evaluate (4) using the same basic idea as

above. Here, however, we have to proceed more carefully

with the shock layer analysis. Di�erentiation of (9) gives

�in(x; t) = �
s
2

8�
sech2

�
s(x� y)

4�

�
+O(1): (22)

While the next order term in (9) was negligible in the

limit � ! 0, the O(1) contribution to �in(x; t) actually

dominates the O(��1) contribution at the border of the

shock layer because the latter falls exponentially fast as

the outer region is approached, whereas the former tends

to constants, say, ��. In particular, the matching be-

tween �out(x; t) and �in(x; t) involves the O(1) terms. To

see how matching takes place, di�erentiating the expres-

sion for uin, we have �in = �
�1
v0z + v1z + O(�). The

matching condition between �in and �out reads

lim
z!�1

v1z = lim
x�y!0�

�out � ��: (23)

The equation for v1 is

v0t + (v0 � �u)v1z + v1v0z = v1zz + fx; (24)

and, from the above argument, the only information we

really need about v1 is its values at the boundaries z !
�1. Since v0z falls exponentially fast for large jzj, (24)
reduces to

�ut �
st

2
�
s

2
v1z = v1zz + fx; z ! �1; (25)

where we used the asymptotic values of v0. Thus, as

z ! �1,

v1 � �
2�ut

s
z �

st

s
z �

2fx

s
z + c

�

1 + c
�

2 e
�sz=2

: (26)

Notice that the exponential terms are irrelevant in these

expression since s � 0. Equation (26) implies

lim
z!�1

v1z = �
2�ut

s
�
st

s
�

2fx

s
= ��; (27)

where the last equality is just the de�nition of ��. Note

that (27) can be rewritten as

st = �
s

2

�
�� + �+

�
; �ut =

s

4

�
�� � �+

�
+ fx: (28)

In the limit � ! 0 these are the equations of motion

along the shock.

We can now evaluate the viscous contribution using

�h�xxj�iQ = � lim
L!1

1

2L

Z L

�L

dx �xx Æ[� � �(x; t)]: (29)

The calculation is similar to the one for the velocity and

eventually leads to

F (�; t) =
�

2

Z
ds s

�
V�(�; s; t) + V+(�; s; t)

�
; (30)

where V�(�; s; t) are the conditional pdf's of ��(y; t) and

s(y; t). The appearance of �� in (30) is of course a direct

result of the O(1) term in (22).

We now use (30) in (3) and analyze some consequences

of

Qt = �Q+
�
�
2
Q
�
�
+B1Q�� + F (�; t): (31)

Taking the �rst moment of (31) leads to

h�it =
�
�
3
Q
�+1
�1

+
�

2
[hs��i+ hs�+i] ; (32)

where we used
R
d� �F = �[hs��i + hs�+i]=2. On the

other hand, averaging the �rst equation in (28) gives [14]

�
�hsi

�
t
= �

�

2
[hs��i+ hs�+i] : (33)

Since h�it = �(�hsi)t from (21), the comparison between

(32) and (33) tells us that the boundary term in (32) must

be zero. Since Q � 0, �3Q has di�erent sign for large

positive and large negative values of �. Therefore we must

have lim�!+1 �
3
Q = 0 and lim�!�1 �

3
Q = 0. This

proves that Q goes to zero faster than j�j�3 as � ! �1
and � ! +1.

The analysis can be carried out one step further for

the stationary case (Qt = 0). In this case, treating (31)

as an inhomogeneous second order ordinary di�erential

equation, we can write its general solution asQ = C1Q1+

C2Q2+Q3, where C1 and C2 are constants,Q1 andQ2 are

two linearly independent solutions of the homogeneous

equation associated with (31), and Q3 is some particular

solution of this equation. One such particular solution is

Q3 =

Z
�

�1

d�
0
�
0
F (�0)

B1
�
�e��

B1

Z
�

�1

d�
0 e�

0

G(�0); (34)

where � = �
3
=(3B1) and

G(�) = F (�) + �

Z �

�1

d�
0
�
0
F (�0)

B1
: (35)

With this particular solution, it can be shown (see [10] for

details) that the realizability constraints imply that C1 =

3



C2 = 0, i.e. the only non-negative, integrable solution is

Q = Q3. Furthermore, in order that Q actually be non-

negative, F must satisfy

0 � F � C�
2e��

3
=(3B1) as � ! +1; (36)

for some constant C < 0. Substituting into (34), we get

Q �

(
C�j�j

�3
R
�

�1
d�
0
�
0
F (�0) as � ! �1;

C+�e
��

3
=(3B1) as � ! +1;

(37)

which con�rms the result Q � C�j�j
�� with � > 3 as

� ! �1, and gives � = 1.

The actual value of the exponent � depends on the

asymptotic behavior of F . The latter can be obtained

from further considerations on the dynamics of the shock

(28). This is rather involved and will be left to [10]. The

result gives � = 7=2 which con�rms the prediction of

[5]. Here we will restrict ourselves to an interpretation of

the current approach in terms of the geometric picture.

Observe that the largest values of �� are achieved just

after the shock formation. Assume that a shock is created

at time t = 0, position x = 0, and with velocity u = 0.

Then, locally

x = ut� au
3 + � � � : (38)

It follows that for t � 1 the solutions of 0 = ut � au
3,

u�, behave as

u� = �

r
t

a
) s = �2

r
t

a
; (39)

and ��, solutions of 1 = �t� 3au2�, behave as

�� = �
1

2t
: (40)

Assuming that these give the dominant contribution to

F (�) for large negative values of �, the asymptotic form

of F is

F � C

Z
1

0

dt s(t)
�
Æ[� � ��(t)] + Æ[� � �+(t)]

	
; (41)

where C is some constant related to the statistics of the

shock life-time and a, and s(t), ��(t) are given by (39),

(40). The evaluation of (41) gives F � Cj�j�5=2, and,
hence,

Q � C�j�j
�7=2 as � ! �1: (42)

Even though this argument gives only a lower bound for

F at large negative values of �, further arguments pre-

sented in [10] indicate that this lower bound is actually

sharp.

We conclude that the approximations given in [1,2,6]

are too simplistic, and the geometric picture presented in

[5] is actually sharp for the forced Burgers turbulence. In

view of the elegance of the argument presented in [6], one

is naturally interested in the implications of neglecting

all together the viscous term in (3). This issue is dealt

with in [12], and it is concluded there that the resulting

equation describes the evolution of the signed probability

density function for multi-valued solutions of Riemann's

equation: ut + uux = f .
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