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x1. Introduction

In this paper we study the following Burgers equation
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�u2
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@x2
+ f(x; t) (1.1)

where f(x; t) = @F
@x

(x; t) is a random forcing function, which is periodic in x with period

1, and white noise in t. The general form for the potentials of such forces is given by:

F (x; t) =

1X
k=1

Fk(x) _Bk(t) (1.2)

where the fBk(t), t 2 (�1;1)g's are independent standard Wiener processes de�ned on

a probability space (
;F; P ) and the Fk's are periodic with period 1. We will assume for

some r � 3,

fk(x) = F 0k(x) 2 Cr(S1); jjfkjjCr �

C

k2
(1.3)

Here we use S
1 to denote the unit circle, and C a generic constant. Without loss of

generality, we can assume that for all k,
R 1
0
Fk(x)dx = 0. We will denote the elements in

the probability space 
 by ! = ( _B1(�); _B2(�); : : : ). Except in Section 8 where we study the

convergence as "! 0, we will restrict our attention to the case when " = 0:

@u

@t
+

@

@x

�u2
2

�
=

@F

@x
(x; t) (1.4)

Besides establishing existence and uniqueness of an invariant measure for the Markov

process corresponding to (1.4), we will also give a detailed description of the structure and

regularity properties for the solutions that live on the support of this measure.

The randomly forced Burgers equation (1.1) is a prototype for a very wide range of

problems in non-equilibrium statistical physics where strong non-linear e�ects are present.

It arises in studies of various one-dimensional systems such as vortex lines in supercon-

ductors [BFGLV], charge density waves [F], directed polymers [KS], etc. (1.1) and its

high-dimensional analog is the di�erentiated version of the well-known KPZ equation de-

scribing, among other things, kinetic roughening of growing surfaces [KS]. Most recently,
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(1.1) has received a great deal of interest as the testing ground for �eld-theoretic tech-

niques in hydrodynamics [CY], [Pol], [GM], [BFKL], [GK2]. In fact, we expect that the

randomly forced Burgers equation will play a no lesser role in the understanding of non-

linear non-equilibrium phenomena than that of the Burgers equation in the understanding

of non-linear waves.

Before proceeding further let us give an indication why an invariant measure is ex-

pected for (1.1) even when " = 0. Since energy is continuously supplied to the system,

a dissipation mechanism has to be present to maintain an invariant distribution. In the

case when " > 0, the viscous term provides the necessary energy dissipation, and the ex-

istence of an invariant measure has already been established in [S1, S2]. When " = 0, it

is well-known that discontinuities are generally present in solutions of (1.4) in the form

of shock waves [La]. These weak solutions are limits of solutions of (1.1) as " ! 0, and

satisfy an additional entropy condition: u(x+; t)�u(x�; t), for all (x; t). It turns out that
this entropy condition enforces su�cient energy dissipation (in the shocks) for maintaining

an invariant measure. We will always restrict our attention to weak solutions of (1.4) that

satisfy the entropy condition.

The starting point of our analysis is the following variational characterization of so-

lutions of (1.4) satisfying the entropy condition [Li]:

For any Lipschitz continuous curve �: [t1; t2]! S
1, de�ne its action

At1;t2(�) =

Z t2

t1

(
1

2
_�(s)2ds+

X
k

Fk(�(s))dBk(s)

)
: (1.5)

Then for t > � , solutions of (1.4) satisfy

u(x; t) =
@

@x
inf

�(t)=x

(
A�;t(�) +

Z �(�)

0

u(z; �)dz

)
(1.6)

where the in�mum is taken over all Lipschitz continuous curves on [�; t] satisfying �(t) = x.

Here and below, we avoid in the notations explicit indication of the dependence on

realization of the random force when there is no danger of confusion. Otherwise we indicate

such dependence by a super- or subscript !. In addition, we will denote by �� the shift

2



operator on 
 with increment � : ��!(t) = !(t+ �), and S�
!w the solution of (1.1) at time

t = � when the realization of the force is ! and the initial data at time t = 0 is w. We will

denote by D the Skorohod space on S
1 (see [B], [Pa]) consisting of functions having only

discontinuities of the �rst kind, i.e. both left and right limits exist at each point, but they

may not be equal.

It is easy to see that the dynamics of (1.4) conserves the quantity
R 1
0
u(x; t)dx. There-

fore to look for unique invariant measure, we must restrict attention to the subspace

Dc = fu 2 D;

Z 1

0

u(x)dx = cg

In this paper we will restrict most of our attention to the case when c = 0 but it is relatively

easy to see that all of our results continue to hold for the case when c 6= 0. We will come

back to this point at the end of this section. At the end of Section 3, we will outline the

necessary changes for the case when c 6= 0.

Our basic strategy for the construction of an invariant measure is to show that the

following \one force, one solution" principle holds for (1.4): For almost all !, there

exists a unique solution of (1.4), u!, de�ned on the time interval (�1;+1). In other

words, the random attractor consists of a single trajectory almost surely. Furthermore, if

we denote the mapping between ! and u! by �:

u! = �(!) (1.7)

then � is invariant in the sense that

�(��!) = S�
!�(!) (1.8)

It is easy to see that if such a map exists, then the distribution of �0 : 
! D:

�0(!)(x) = u!(x; 0)

is an invariant measure for (1.4). Moreover, this invariant measure is necessarily unique.

This approach of constructing the invariant measure has the advantage that many

statistical properties of the forces, such as ergodicity and mixing, carry over automatically
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to the invariant measure. More importantly, it facilitates the study of solutions supported

by the invariant measure, i.e. the associated stationary Markov process. This study will

be carried out in the second half of the present paper.

The construction of u! will be carried out in Section 3. The variational principle (1.6)

allows us to restrict our attention to t = 0.

Our construction of � relies heavily on the notion of one-sided minimizer. A curve �

(�1; 0]! S
1 is called a one-sided minimizer if it minimizes the action (1.5) with respect

to all compact perturbations. More precisely, let us introduce

De�nition 1.1. A piecewise C1-curve f�(t); t� 0g is a one-sided minimizer if for any

Lipschitz continuous ~� de�ned on (�1; 0] such that ~�(0) = �(0) and ~� = � on (�1; � ] for

some � < 0, we have

As;0(�)�As;0(~�)

for all s� � .

It is important to emphasize that the curves are viewed on the cylinder R1 � S
1.

Similarly, we de�ne one-sided minimizers on (�1; t], for t 2 R
1 .

The interest of this notion lies in the fact that we are considering an in�nite interval.

It is closely related to the notion of geodesics of type A introduced and studied by Morse

[Mo] and Hedlund [H] and the notion of global minimal orbits in Aubry-Mather theory

[A], [M]. In the geometric context, it has been studied by Bangert (see [Ba]) as geodesic

rays. A somewhat surprising result is that, in the random case, one-sided minimizers are

almost unique. More precisely, we have:

Theorem 1.1. With probability 1, except for a countable set of x values, there exists a

unique one-sided minimizer �, such that �(0) = x.

This theorem states that one-sided minimizers are intrinsic objects to (x; !). It allows

us to construct �0(!) by patching together all one-sided minimizers:

�0f!(�); � < 0g(x) = u!(x; 0) = _�(0) (1.9)
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where � is the unique one-sided minimizer such that �(0) = x. In (1.9) we emphasized

the fact that �0 depends only on the realization of ! in the past � < 0. (1.9) de�nes

u!(�; 0) except on a countable subset of S1. Similarly we construct u!(�; t) for other values
of t 2 R

1 . It is easy to verify that this construction is self-consistent and satis�es the

invariance condition (1.8), as a consequence of the variational principle (1.6).

The existence part of Theorem 1.1 is proved by studying limits of minimizers on �nite

intervals [�k; 0] as k ! +1. The uniqueness part of Theorem 1.1 is proved by studying

the intersection properties of one-sided minimizers. The absence of two intersections of

two di�erent minimizers is a general fact in calculus of variations. However, we will prove

the absence of even one intersection which is a consequence of randomness.

We are now ready to formally de�ne the invariant measure. There are two alternative

approaches. Either we can de�ne the invariant measure on the product space (
�D0;F�
D) with a skew-product structure, or we can de�ne it as an invariant distribution of the

Markov process on (D0;D) de�ned by (1.4), where D is the �-algebra generated by Borel

sets on D0. The skew-product structure is best suited for the exploration of the \one force,

one solution" principle.

De�nition 1.2. A measure �(du; d!) on (
�D0;F�D) is called an invariant measure

if it is preserved under the skew-product transformation F t: 
�D0 ! 
�D0

F t(!; u0) = (�t!; St
!u0) (1.10)

and if its projection to 
 is equal to P .

Alternatively we may consider a homogeneous Markov process on D0 with the tran-

sition probability

Pt(u;A) =

Z



�A(u; !)P (d!) (1.11)

where u 2 D0, A 2 D, and

�A(u; !) =

�
1 if St

!u 2 A

0 otherwise
(1.12)
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De�nition 1.3. An invariant measure �(du) of the Markov process (1.11) is a measure

on (D0;D) satisfying

�(A) =

Z
D0

Pt(u;A)�(du) (1.13)

for any Borel set A 2 D and any t > 0.

Let �!(du) be the atomic measure on (D0;D) concentrated at �0(!) = u!(�; 0), and
let �(du; d!) = �!(du)P (d!), we then have

Theorem 1.2. � is an invariant measure for the skew-product transformation F t. It is

the unique invariant measure on (
�D0; F�D) with the given projection P (d!) on (
;F).

Theorem 1.3. �(du) =
R



�(du; d!) is the unique invariant measure for the Markov pro-

cess (1:11).

The uniqueness result is closely related to the uniqueness of one-sided minimizers and

reects the lack of memory in the dynamics of (1.4): Consider solutions of (1.4) with

initial data u(x;�T ) = u0(x). Then for almost all ! 2 
 and any t 2 R
1 , lim

T!+1
u(�; t)

exists and does not depend on u0. The key step in the proof of uniqueness is to prove a

strengthened version of this statement.

In the second half of this paper, we study in detail the properties of solutions supported

by the invariant measure. The central object is the two-sided minimizer which is de�ned

similarly to the one-sided minimizers but for the interval (�1;+1) = R
1 . Under very

weak non-degeneracy conditions, we prove that almost surely, the two-sided minimizer

exists and is unique. In Section 6, we show that the two-sided minimizer is a hyperbolic

trajectory of the dynamical system corresponding to the characteristics of (1.4)

dx

dt
= u;

du

dt
=

@F

@x
(x; t)

We can therefore consider the stable and unstable manifolds of the two-sided minimizer

using Pesin theory [Pes]. As a consequence, we show
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Theorem 1.4. With probability 1, the graph of �0(!) is a subset of the unstable manifold

(at t = 0) of the two-sided minimizer.

We use this statement to show that, almost surely, u"(�; 0) is piecewise smooth and

has a �nite number of discontinuities. This is done in x7.
Dual to the two-sided minimizer is an object called the main shock which is a contin-

uous shock curve x!: R1 ! S
1 de�ned on the whole line �1 < t < 1. The main shock

is also unique. Roughly speaking, the main shock plays the role of an attractor for the

one-sided minimizers while the two-sided minimizer plays the role of a repeller.

Finally in Section 8, we show that as "! 0, the invariant measures of (1.1) constructed

in [S1, S2] converge to the invariant measure of (1.4).

The results of this paper have been used to analyze the asymptotic behavior of tail

probabilities for the gradients and increments of u (see [EKMS]). It also provides the

starting point for the work in [EV] on statistical theory of the solutions. These results

are of direct interest to physicists since they can be compared with predictions based on

�eld-theoretic methods (see [Pol], [GM], [GK2], [CY]).

Our theory is closely related to the Aubry-Mather theory [A], [M] which is concerned

with special invariant sets of twist maps obtained from minimizing the action

1
2

X
i

(xi � xi�1 � )2 + �
X
i

V (xi) (1.12)

where  is a parameter, V is a periodic function. The continuous version of (1.12) isZ
f1
2
( _�(t)� a)2 + F (�(t); t)gdt (1.13)

where F is a periodic function in x and t [Mo]. The main result of the Aubry-Mather theory

is the existence of invariant sets with arbitrary rotation number, by choosing suitable a.

Such invariant sets are made from the velocities of the two-sided minimizers de�ned earlier.

It can be proved that such invariant set lies on the graph of the periodic solutions of (1.4)

[E], [JKM], [So]. In this connection, the results of this paper apply to the random version

of (1.13): Z
f1
2
( _�(t)� a)2dt+

X
k

Fk(�(t))dBk(t)g (1.14)

7



Although only a = 0 is considered in this paper, extension to arbitrary a is straightforward

and the results are basically the same for di�erent values of a. This is because that over a

large interval of duration T , the contribution of the kinetic energy is of order T , and the

contribution from the potential is typically of order
p
T for the random case but of order

T for the periodic case. This gives rise to subtle balances between kinetic and potential

energies in the latter case. Consequently the conclusions for the random case become

much simpler. While in the deterministic case, there are usually many di�erent two-sided

minimizers in the invariant set and they are not necessarily hyperbolic, there is only one

two-sided minimizer in the random case and it is always hyperbolic.

The value of a is closed related to the value of c discussed earlier. In the setting of

Aubry-Mather theory, a is the average speed of the global minimizers and is related to

c through the Legendre transform of the homogenized Hamiltonian. In the random case,

a = c for the reason given in the last paragraph.
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x2. Variational Principle

Let us �rst de�ne in the probabilistic context the notion of weak solutions of (1.4)

with an (deterministic) initial data u(x; t0) = u0(x). We will always assume u0 2 L
1(S1).

De�nition 2.1. Let u! be a random �eld parametrized by (x; t) 2 S
1 � [t0;+1) such

that for almost all ! 2 
, u!( �; t) 2 D for all t 2 (t0;1). Then u! is a weak solution of

(1.4) if

(i) for all t > t0, u!( �; t) is measurable with respect to the �-algebra Ft

t0
generated by

all _Bk(s), t0 � s� t.

(ii) u! 2 L
1
loc(S

1� [t0;1)) almost surely.

(iii) with probability 1, the following holds for all ' 2 C
2(S1 � R

1) with compact

support:Z 1

0

u0(x)'(x; t0)dx+

Z
1

t0

Z 1

0

@'

@t
u!(x; t) dx dt+

1

2

Z
1

t0

Z 1

0

@'

@x
u
2
!
(x; t)dx dt =

= �

Z 1

0

X
k

�
Fk(x)

Z
1

t0

@
2
'

@x@t
(x; t)(Bk(t)�Bk(t0))dt

�
dx

u! is an entropy weak solution if, for almost all ! 2 
,

u!(x+; t)�u!(x�; t)

for all (x; t) 2 S
1� (t0;1).

Our analysis is based on a variational principle characterizing entropy weak solutions

of (1.4). To formulate this variational principle, we rede�ne the action in order to avoid

using stochastic integrals. Given ! 2 
, for any Lipschitz continuous curve �: [t1; t2]! S
1,

de�ne

At1;t2
(�) =

Z
t2

t1

�
1
2
_�(s)2 �

X
k

fk(�(s)) _�(s)(Bk(s)�Bk(t1))

�
ds

+
X
k

Fk(�(t2))(Bk(t2)� Bk(t1)) (2.1)

(2.1) can be formally obtained from (1.5) with an integration by parts. It has the advantage

that the integral in (2.1) can be understood in the Lebesgue sense instead of the Ito sense,

for example.
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Lemma 2.1. Let u0(x) 2 D. For almost all ! 2 
, there exists a unique weak solution of

(1.4) satisfying the entropy condition, such that u(x; t0) = u0(x). For t� t0, this solution

is given by:

u(x; t) =
@

@x
inf

�(t)=x

�
At0;t

(�) +

Z
�(t0)

0

u0(z)dz

�
(2.2)

and u( � ; t) 2 D.

This type of result was obtained for the �rst time in [Ho, La] and [Ol] for scalar

conservation laws. The generalization to multi-dimensional Hamilton-Jacobi equations is

given in [Li]. Extension to the random case is straightforward, but requires some additional

arguments which we present in Appendix A.

Any action minimizer  satis�es the following Euler-Lagrange equation

_(s) = v(s); dv(s) =

1X
k=1

fk((s))dBk(s) (2.3)

Under the assumptions in (1.3), the stochastic di�erential equation (2.3) has a unique

solution starting at any point x. It is nothing but the equation of characteristics for

(1.4). Therefore the variational principle (2.2) can be viewed as the generalization of the

method of characteristics to weak solutions. In general characteristics intersect each other

forward in time, resulting in the formation of shocks. Given an initial data at time t0:

u(x; t0) = u0(x), to �nd the solution at (x; t), consider all characteristics  that arrive at

x at time t and choose among them the ones that minimize At0;t
() +

R
(t0)

0
u0(z)dz. If

such a minimizing characteristic is unique, say ( � ), then u(x; t) = _(t). In the case when

there are several such minimizing characteristics, f�( � )g, the solution u( �; t) has a jump

discontinuity at x, with u(x�; t) = sup
�

_�(t) and u(x+; t) = inf
�

_�(t).

This characterization is closely related to the notion of backward characteristics de-

veloped systematically by Dafermos (see [D]).

Our task of �nding the invariant measure for (1.4) is di�erent from what is usually

asked about (1.4). Instead of solving (1.4) with given initial data, we look for a special dis-

tribution of the initial data that has the invariance property. Translated into the language

of the variational principle, we will look for special minimizers or characteristics.
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x3. One-Sided Minimizers

A fundamental object needed for the construction of invariant measures for (1.4) is the

one-sided minimizer. These are curves that minimize the action (2.1) over the semi-in�nite

interval (�1; t].

In the following we will study the existence and intersection properties of one-sided

minimizers. Before doing this, we formulate some basic facts concerning the e�ect on the

action as a result of reconnecting and smoothing of curves.

Fact 1: Let �1, �2 be two C
1-curves on [t1; t2] with values in S1. Then one can �nd

a reconnection of the two curves, �r, such that �r(t1) = �1(t1); �r(t2) = �2(t2) and

jA!

t1;t2
(�1)�A

!

t1;t2
(�r)j; jA!

t1;t2
(�2)�A

!

t1;t2
(�r)j

�Cf!(�); � 2 [t1; t2]gk�1(t)� �2(t)kC1(1 + jt2 � t1j)
�
1 + max

t2[t1;t2]
(j _�1(t)j; j _�2(t)j)

�
(3.1)

Here and in the following we will use norms such as k � kC1 for functions that take values

on S
1. These will always be understood as the norms of a particular represention of the

functions on R
1 . The choice of the representation will either be immaterial or obvious

from the context.

Fact 2: If � is a curve containing corners, i.e. jump discontinuities of _�, smoothing

out a corner in a su�ciently small neighborhood strictly decreases the action.

Both facts are classical and are more or less obvious.

The following lemma provides a bound on the velocities of minimizers over a large

enough time interval.

Lemma 3.1. For almost all ! 2 
 and any t 2 (�1;1) there exist random constants

T (!; t) and C(!; t) such that if  minimizes A!

t1;t
(�) and t1 < t� T (!; t), then

j _(t)j�C(!; t) (3.2)

Proof. Denote

C1(!; t) =
1
4
+ max

t�1� s� t

1X
k=1

kFk(x)kC2 jBk(s)� Bk(t)j (3.3)

11



and set C(!; t) = 20C1(!; t), T (!; t) = (4C1(!; t))
�1. Clearly T (!; t) < 1. If j _(t)j�16C1

then (3.2) is true with C = 16C1.

If j _(t)j > 16C1, we �rst show that the velocity _(s) cannot be too large inside the

interval [t� T; t]. Denote

v0 = j _(t)j and v = max
t�T�s� t

j _(s)j : (3.4)

Integrating by parts from (2.3), one gets for s 2 [t� T; t]

j _(s)j =
��� _(t)� Z t

s

1X
k=1

fk((r))dBk(r)
���

� v0 +
��� 1X
k=1

fk((s))(Bk(s)� Bk(t))
���+ ���Z t

s

_(r)

1X
k=1

f
0

k
((r))(Bk(r)�Bk(t))dr

���
� v0 + C1 + C1vT

= v0 + C1 +
1

4
v : (3.5)

Hence

v � v0 + C1 +
v

4
(3.6)

implying

v �
4

3
(v0 + C1)�

3

2
v0 (3.7)

since v0 > 16C1.

Next we check that j _(s)j remains of order v0, i.e. su�ciently large, for s 2 [t� T; t].

As before, we have

j _(s)� _(t)j =
���Z t

s

1X
k=1

fk((r))dBk(r)
���

�C1 + C1vT

�C1 +
3

8
v0

�
1
2
v0 : (3.8)

The last step is to show that (3.8) contradicts the minimization property of (s) if v0 >

20C1. Consider a straight line 1(s) joining (t) and (t�T ). Clearly j(t)� (t�T )j�1

12



since (t); (t� T ) 2 S
1. Then

A
!

t�T;t
(1)�

1

2

�
(t)� (t� T )

T

�2

T + C1 + C1

����(t)� (t� T )

T

����T �

1

2T
+ 2C1 (3.9)

while

A
!

t�T;t
()�

1

2

�
v0

2

�2
T � C1 �

3

2
v0C1T : (3.10)

It is easy to see that 1
2

v
2
0

4
T � 3

2
v0C1T >

1
2T

+ 3C1 for v0 > 20C1, i.e.

A
!

t�T;t
(1) < A

!

t�T;t
() : (3.11)

This contradicts the minimization property of . Hence v0 � 20C1. �

Now we are ready to prove the existence of one-sided minimizers that arrive at any

given point x 2 S
1.

Theorem 3.1. With probablity 1, the following holds. For any (x; t) 2 S
1 � R

1 , there

exists at least one one-sided minimizer  2 C
1(�1; t], such that (t) = x.

Proof. Given ! 2 
, �x (x; t) 2 S
1 � R

1 . Consider a family of minimizers f�g for

� < t � T (!; t), where � minimizes A!

�;t
(�) subject to the constraint that �(t) = x,

�(�) 2 S
1. From Lemma 3.1, we know that f _� (t)g is uniformly bounded in � . Therefore,

there exists a subsequence f�jg, �j ! �1, and v 2 R
1 , such that

lim
�j!�1

_�j (t) = v

Furthermore, if we de�ne  to be a solution of (2.3) on (�1; t] such that (t) = x, _(t) = v,

then �j converges to  uniformly, together with their derivatives, on compact subsets of

(�1; t]. We will show that  is a one-sided minimizer.

Assume that there exists a compact perturbation 1 2 C
1(�1; t], of  such that

1(t) = x, support (1 � ) � [t2; t3], and

A
!

t2;t3
()�A!

t2;t3
(1) = " > 0

13



Let j be su�ciently large such that �j � t2 and

jA!

t2;t
()�A!

t2;t
(�j )j�

"

3
(3.12)

and

k(s)� �j (s)kC1[t2�1;t2] � � (3.13)

� will be chosen later. De�ne a new curve 2 by

2(s) =

8><
>:

�j (s); for s 2 [�j; t2 � 1];

r(s); for s 2 [t2 � 1; t2];

1(s); for s 2 [t2; t]

(3.14)

where r is the reconnecting curve described in Fact 1, we have

A
!

�j;t
(�j )�A

!

�j ;t
(2) = A

!

t2;t
(�j )�A

!

t2;t
()

+A!

t2;t
()�A!

t2;t
(1)

+A!

t2�1;t2
(�j )�A

!

t2�1;t2
(2)

� �
"

3
+ "� C�

�

"

3
; (3.15)

if � is small enough. Here the constant C depends only on ! and 1. This contradicts the

minimization property of �j (s). �

Now we study the intersection properties of one-sided minimizers. We use C1
x
(�1; t]

to denote the set of C1 curves  on (�1; t] such that (t) = x. We start with a general

fact for minimizers (see [A], [M]).

Lemma 3.2. Two di�erent one-sided minimizers 1 2 C
1(�1; t1] and 2 2 C

1(�1; t2]

cannot intersect each other more than once.

In other words, if two one-sided minimizers intersect more than once, they must

coincide on their common interval of de�nition.

14



Proof. Suppose that 1 and 2 intersect each other twice at times t3 and t4, with t4 > t3.

Assume without loss of generality

A
!

t3;t4
(1)�A

!

t3;t4
(2) : (3.16)

Then for the curve

3(s) =

�
2(s); for s 2 (�1; t3] [ [t4; t2];

1(s); for s 2 [t3; t4];
(3.17)

one has

A
!

t3;t4
(3)�A

!

t3;t4
(2) : (3.18)

3 has two corners at t3 and t4. Smoothing out these corners, we end up with a curve


� 2 C

1(�1; t2] for which

A
!

t3��;t2
(�)�A!

t3��;t2
(2) < 0 (3.19)

for some � > 0. This contradicts the assumption that 2(s) is a one-sided minimizer. �

Exploiting the random origin of the force f , we can prove a result which is much

stronger than Lemma 3.2.

Theorem 3.2. The following holds for almost all !. Let 1, 2 be two distinct one-sided

minimizers on the intervals (�1; t1] and (�1; t2], respectively. Assume that they intersect

at the point (x; t). Then t1 = t2 = t, and 1(t1) = 2(t2) = x.

In other words, two one-sided minimizers do not intersect except for the following

situation: they both come to the point (x; t), having no intersections before and they both

are terminated at that point as minimizers. Of course they can be continued beyond time

t as the solution of SDE (2.3) but they are no longer one-sided minimizers.

The proof of Theorem 3.2 resembles that of Lemma 3.2 with an additional observation

that, because of the randomness of f , two minimizers always have an \e�ective intersection

at t = �1". The precise formulation of this statement is given by:

15



Lemma 3.3. With probability 1, for any " > 0 and any two one-sided minimizers 1 2

C
1(�1; t1] and 2 2 C

1(�1; t2], there exist a constant T = T (") and an in�nite sequence

tn(!; ")! �1 such that

jA!

tn�T;tn
(1)�A

!

tn�T;tn
(1;2)j; jA!

tn�T;tn
(2)�A

!

tn�T;tn
(1;2)j;

jA!

tn�T;tn
(1)�A

!

tn�T;tn
(2;1)j; jA!

tn�T;tn
(2)�A

!

tn�T;tn
(2;1)j < " ; (3.20)

where 1;2 is the reconnecting curve de�ned in Fact 1 with 1;2(tn�T ) = 1(tn�T ); 1;2(tn)

= 2(tn); and 2;1 is the reconnecting curve satisfying 2;1(tn�T ) = 2(tn�T ); 2;1(tn) =

1(tn)

Proof. Fix T su�ciently large. With probability 1, there exists a sequence tn(!; ")! �1

such that

max
s2
S
n[tn�T;tn]

1X
k=1

kFk(x)kC2 jBk(s)� Bk(tn)j�C1 =
1

4T
: (3.21)

Repeating the proof of Lemma 3.1, one can check that for any n

max
tn�T � s� tn

(j _1(s)j; j _2(s)j) �
4

3
(20C1 + C1) =

7

T
: (3.22)

Using (3.22), we can choose 1;2; 2;1 such that

max
tn�T � s� tn

(j _1;2(s)j; j _2;1(s)j) �
7

T
+

1

T
=

8

T
: (3.23)
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We then have

jA!

tn�T;tn
(1)�A

!

tn�T;tn
(1;2)j�

����
1X
k=1

(Fk(1(tn))� Fk(1;2(tn))) (Bk(tn)� Bk(tn � T ))

����
+

Z
tn

tn�T

�����12 _1(t)
2 �

1

2
_1;2(t)

2
�

�

1X
k=1

(Bk(t)� Bk(tn � T ))
�
fk(1(t))( _1(t)� _1;2(t))

+ (fk(1(t))� fk(1;2(t))) _1;2(t)
�����dt

�

1

4T
+ T

 
1

2

�
7

T

�2

+
1

2

�
8

T

�2

+ C1

�
7

T
+

8

T

�
+ C1

8

T

!

=
125

2T

� "; (3.24)

if T �
125
2"

. Similarly, one proves other inequalities in (3.20). �

Proof of Theorem 3.2. We will use � to denote a su�ciently large negative number. Sup-

pose that 1 and 2 intersect each other at time t < max(t1; t2) and for de�niteness let

t1 > t. Then the curve

3(s) =

�
2(s); for s 2 (�1; t];

1(s); for s 2 [t; t1];
(3.25)

has a corner at time t. This corner can be smoothed out according to Fact 2, and the

resulting curve � 2 C
1(�1; t1] satis�es

A
!

�;t1
(3)�A

!

�;t1
(�) = � > 0 : (3.26)

Set " = �=4. Choose su�ciently negative tn(!; ") de�ned in Lemma 3.3 such that �(s) =

2(s) for s 2 (�1; tn].

Assume that

A
!

tn;t
(2)�A

!

tn;t
(1) > 2" : (3.27)

Then in view of Lemma 3.3

4(s) =

8><
>:

2(s); for s 2 (�1; tn � T ];

2;1(s); for s 2 [tn � T; tn];

1(s); for s 2 [tn; t];

(3.28)
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is a local perturbation of 2 2 C
1(�1; t] with

A
!

�;t
(2)�A

!

�;t
(4) = A

!

tn�T;tn
(2)�A

!

tn�T;tn
(2;1)

+A!

tn;t
(2)�A

!

tn;t
(1)

> �"+ 2"

= " : (3.29)

This contradicts the assumption that 2 is a one-sided minimizer. Thus

A
!

tn;t
(1)�A

!

tn;t
(2)� � 2" ; (3.30)

and

5(s) =

8><
>:

1(s); for s 2 (�1; tn � T ];

1;2(s); for s 2 [tn � T; tn];


�(s); for s 2 [tn; t1];

(3.31)

is a local perturbation of 1 2 C
1(�1; t1] with

A
!

�;t1
(1)�A

!

�;t1
(5) = A

!

tn�T;tn
(1)�A

!

tn�T;tn
(1;2)

+A!

tn;t
(1)�A

!

tn;t
(2)

+A!

�;t1
(3)�A

!

�;t1
(�)

� � "� 2"+ �

= " > 0 : (3.32)

This contradicts the assumption that 1 is a one-sided minimizer and proves the theo-

rem. �

Theorem 3.2 implies the following remarkable properties of one-sided minimizers.

Given ! and t, denote by J(!; t) the set of points x 2 S
1 with more than one one-sided

minimizer coming to (x; t).

18



Lemma 3.4. The following holds with probability 1. For any t, the set J(!; t) is at most

countable.

Proof. Any x 2 J(!; t) corresponds to a segment [�(t� 1); +(t� 1)], where � and +

are two di�erent one-sided minimizers coming to (x; t) and +(s) > �(s), for s < t. In

view of Theorem 3.2, these segments are mutually disjoint. This implies the lemma. �

Lemma 3.5. Given ! and t, consider a sequence of one-sided minimizers n(s) de�ned

on (�1; t] such that n(t) ! x and _n(t) ! v as n ! 1. Let  be the solution of the

SDE (2.3) on (�1; t] with the initial data (t) = x and _(t) = v. Then  is a one-sided

minimizer.

Proof. Suppose that � 2 C
1(�1; t] coincides with  outside an interval [t1; t2] � (�1; t]

and A!

t1;t2
() � A!

t1;t2
(�) = " > 0. It is clear that by taking su�ciently large n one

can make k(s) � n(s)kC1[t1�1;t] arbitrarily small. Let 1 be the reconnecting curve on

[t1 � 1; t1] between n(t1 � 1) and (t1), and for some � > 0, let 2 be the reconnecting

curve on [t� �; t] between (t� �) and n(t). Then the curve


��(s) =

8>>>>><
>>>>>:

n(s); for s 2 (�1; t1 � 1];

1(s); for s 2 [t1 � 1; t1];


�(s); for s 2 [t1; t2];

(s); for s 2 [t2; t� �];

2(s); for s 2 [t� �; t];

(3.33)

satis�es A!

�1;t
(n) � A

!

�1;t
(��) > 0 if � and k(s)� n(s)kC1[t1�1;t] are small enough.

This contradicts the assumption that n is a one-sided minimizer since 
�� is a local

perturbation of n. Note that (3.33) cannot be used if t2 = t. In this case in the segment

[t� �; t] one can directly reconnect n and 
� and it is not hard to check that for � small

enough jA!

t��;t
(�)�A!

t��;t
(��)j can be made arbitrarily small. �

Lemma 3.6. With probability one, the following holds. Fix an arbitrary sequence tn !

�1 and a sequence of functions fvng, vn 2 D0,
R 1
0
vn(z)dz = 0. Consider (1.4) on the

time interval [tn; t] with the initial condition u(x; tn) = vn(x). Take any x 2 S
1 and a

sequence of characteristics n 2 C
1[tn; t], n(t) = x minimizing A!

tn;t
(�) +

R
�(tn)

0
vn(z)dz.
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Suppose that v is a limiting point of the set f _n(t)g. Then the solution  of SDE (2.3)

with initial data (t) = x and _(t) = v is a one-sided minimizer on (�1; t].

Proof. The proof of this lemma is the same as the �nal part of the proof of Theorem

3.1. �

Next we study the measurability issues. Fix a time t and consider all integer times

�n� t. Introduce

A
!

�n;t
(x) = min

�2C
1[�n;t]

�(t)=x

A
!

�n;t
(�) : (3.34)

Lemma 3.7. The following statement holds with probability 1. Suppose that  2 C
1
x
(�1;

t] is a one-sided minimizer. Then for any " > 0 there exist an in�nite number of integer

times �n� t such that

jA!

�n;t
()� A

!

�n;t
(x)j� " : (3.35)

Conversely, if a curve � 2 C
1
x
(�1; t] has the property that for any " > 0 there exist an

in�nite number of integer times �n� t such that

jA!

�n;t
(�)� A

!

�n;t
(x)j� " ; (3.36)

then � is a one-sided minimizer.

Proof. Suppose that for some " > 0 and n0

jA!

�n;t
()�A

!

�n;t
(x)j > " (3.37)

for all �n� � n0. Consider the curves ��n 2 C
1
x
[�n; t] such that A!

�n;t
(��n) = A

!

�n;t
(x).

Then, according to Lemma 3.3, there exists an interval [�n1;�n2] � (�1;�n0] and a

reconnecting curve r with r(�n1) = (�n1); r(�n2) = ��n1(�n2), such that

jA!

�n1;�n2
(�n1)�A

!

�n1;�n2
(r)j�

"

2
: (3.38)

Then

1(s) =

8><
>:

(s); for s 2 (�1;�n1];

r(s); for s 2 [�n1;�n2];

��n1(s); for s 2 [�n2; t];

(3.39)
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is a local perturbation of  which lowers the action by at least "=2. This contradicts the

assumption that  is a one-sided minimizer.

Note that formally Lemma 3.3 cannot be applied here since ��n1 is not a one-sided

minimizer but Lemma 3.1 remains valid for all ��n with su�ciently negative �n. Thus

the same argument in the proof of Lemma 3.3 proves (3.38).

To prove the second statement, observe that if �1 is a local perturbation of � lowering

A
!

�n;t
(�) by some " > 0, then A!

�n;t
(�)�A!

�n;t
(x)+ " for all su�ciently negative �n. This

contradicts (3.36). �

Now we are ready to de�ne the main object of this paper. We will denote by fx;t;�(s)g

the family of all one-sided minimizers coming to (x; t) indexed by �.

De�nition 3.2.

u
!

+(x; t) = inf
�

_x;t;�(t) ; (3.40)

u
!

�
(x; t) = sup

�

_x;t;�(t) : (3.41)

It is clear that u!+(x; t) = u
!

�
(x; t) for x =2 J(!; t).

Lemma 3.8. With probability 1, for every x 2 S
1

lim
y"x

u
!

+(y; t) = u
!

�
(x; t) ; (3.42)

lim
y#x

u
!

+(y; t) = u
!

+(x; t) ; (3.43)

and hence u!+(�; t) 2 D for �xed t.

Proof. We will prove (3.42). The proof of (3.43) is similar. It was shown in Lemma 3.1 that

ju!+(y; t)j�C(!; t). Suppose that there exists a sequence yn " x such that u!+(yn; t)! v 6=

u
!

�
(x; t). Then, according to Lemma 3.5, the solution  of SDE (2.3) with the initial data

(t) = x and _(t) = v is a one-sided minimizer. Theorem 3.2 implies that _(t) > u
!

�
(x; t)

which contradicts the de�nition of u!
�
(x; t). �

It follows immediately from the construction that on any �nite time interval [t1; t2],

u
!

+ is a weak solution of (1.4) with initial data u0(x) = u
!

+(x; t1). Moreover, the following

statement holds:
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Lemma 3.9. Given t, the mapping u!+( � ; t): 
 7! D is measurable.

Proof. Without loss of generality, let t = 0. SinceD is generated by cylinder sets of the type

A(x1; : : : ; xn) with xi from a dense subset of S1, it is enough to show that u!+(x; 0): 
! R
1

are measurable for a dense set of x values. For any positive integer n, denote by u
!

�n;+

the right continuous weak solution of (1.4) on the time interval [�n; 0] with the initial

data u
!

�n;+(x;�n) � 0. For any x 2 S
1 and v 2 R

1 denote by �
!

x;v
(s), s 2 [�n; 0] the

backward solution of (2.3) with the initial data �
!

x;v
(0) = x and _�!

x;v
(0) = v. The action

A
!

�n;0(x; v) = A!

�n;0(�
!

x;v
) is a continuous function on 
 � S

1 � R
1 . Hence the set M =

f(!; x; v): A
!

�n;0(x; v) = A
!

�n;0(x)g is closed. Let M!;x = fv 2 R
1 : (!; x; v) 2 Mg. We

conclude that u!
�n;+(x; 0) = max

v

M!;x is a measurable function on 
�S1 and u
!

�n;+( � ; 0)

is a measurable mapping 
 7! D. As in the proof of Theorem 3.1, it is easy to check that

for

v
!

+(x; 0) = lim sup
n

u
!

�n;+(x; 0) (3.44)

the corresponding curve !
x
= �

!

x;v
!
+
(x;0) is a one-sided minimizer.

For positive integers k and m, introduce measurable subsets of 
� S
1� R

1

Mn(k;m) =
�
(!; x; v) 2 
� S

1� R
1 : jv � u

!

�n;+(x; 0)j�
1

k
; (3.45)

A
!

�n;0(x; v)� A
!

�n;0(x)�
1

m

	
:

Let � be the projection of the measurable set

[k \m (\l [
1

n=l
Mn(k;m)) : (3.46)

on 
�S1. The points (!; x) in � are characterized by the following property. There exists

a backward solution �
!

x;v
di�erent from the one-sided minimizer !

x
such that at in�nitely

many negative integer times �n, the action A!

�n;0(�
!

x;v
) is arbitrarily close to its minimal

value A!

�n;0(x). In view of Lemma 3.7, � is precisely the set (!; x) having at least two

one-sided minimizers coming to (x; 0), i.e.

� = J = f!; x) 2 
� S
1: u!+(x; 0) 6= u

!

�
(x; 0)g : (3.47)
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Consider the sections Jx = f! 2 
: u!+(x; 0) 6= u!
�
(x; 0)g of J and de�ne I = fx 2

S
1: P (Jx) > 0g. Using the measurability of J , Lemma 3.4 and Fubini's theorem, we

conclude that the Lebesgue measure of I is 0.

Fix x 2 S1 n I. Then for almost all ! one has

u!+(x; 0) = lim
n!1

u!
n;+(x; 0) : (3.48)

The functions u!
n;+(x; 0): 
 7! R1 are measurable. Hence u!+(x; 0): 
 7! R1 is also mea-

surable. This proves the lemma, since S1 n I is dense in S
1. �

Before ending this section, we formulate some corollaries of Lemmas 3.1 and 3.6 that

will be useful later.

Lemma 3.10. The following estimate holds:

ku!( � ; t)kL1(S1) �
�C(f!(s); s 2 [t� 1; t)g)

The stationary random variable �C(f!(s); s 2 [t� 1; t]g) has �nite moments of all orders.

This estimate says that ju!(x; t)j can be bounded by a quantity that depends only on

f!(s); s 2 [t� 1; t)g.

Lemma 3.11. Let fvng be a sequence of functions in D0. Let ftng be a sequence such

that tn ! �1, and let un be the solution of (1.4) with initial condition un(x; tn) = vn(x).

Then for almost all !, we have limtn!�1
un( � ; 0) = u!+( �; 0) almost everywhere.

This result follows directly from Lemma 3.6.

So far we restricted our attention to the case when
R 1
0
u(x; t)dx = 0. This is reected

in the variational principle we use in (2.1). In the case when
R 1
0
u(x; t)dx = c 6= 0, the

relevant action is replaced by

At1;t2
(�) =

Z
t2

t1

�
1
2
( _�(s)� c)2 �

X
k

fk(�(s)) _�(s)(Bk(s)�Bk(t1))

�
ds

+
X
k

Fk(�(t2))(Bk(t2)�Bk(t1))
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In this more general case, we can also de�ne one-sided minimizers in an analogous way,

and all the results we obtained so far hold in the general case. Instead of giving all the

details, let us just comment on the most important aspect when c 6= 0. When c = 0,

the one-sided minimizers stay roughly inside one period so that their asymptotic speed

(which is the analog of rotation number is Aubry-Mather theory) is zero when lifted to the

universal cover:

�(c = 0) = lim
t!�1

�(t)

t
= 0

In the general case, we have

�(c) = lim
t!�1

�(t)

t
= c (3.49)

Roughly speaking, this is because that if a curve has di�erent asymptotic speed, the cost

to the action grow linearly in time, whereas the savings from the random potential can

at most grow as O(
p
t). For example, in Lemma 3.3 and Theorem 3.2, we showed that

there are large time intervals on which the one-sided minimizers are almost parallel. These

results are still true except that the minimizers are parallel with an average slope 1=c in

the x � t plane. Similarly, the reconnection used in Lemma 3.1 to prove a bound for the

velocity of minimizers will also have to be done with curves that have an average slope of

1=c.

(3.49) is in sharp contrast with the case of periodic (in x and t) potential studied in

Aubry-Mather theory. There the function � is usually a very complicated function of c

with Cantor-like structures.
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x4. Construction and Uniqueness of the Invariant Measure

In this section we prove Theorems 1.2 and 1.3 stated in Section 1. Let �!(du) be the

atomic measure on (D0;D) concentrated at u!+(�; 0).

Theorem 4.1. The measure

�(d!; du) = �!(du)P (d!) ; (4.1)

is an invariant measure for the skew-product transformation F t (see De�nition 1.2) and

the measure �(du) =
R


�(d!; du) is a stationary distributiion for the Markov process

corresponding to (1.4).

Proof. The second statement of the theorem trivially follows from the �rst one since the

�!(du)'s are measurable with respect to the �-algebra F0
�1

. It is a general fact that

any measure which satis�es the measurability property and which is invariant under F t

generates a stationary distribution for the Markov process (1.4). The �rst statement is

an immediate consequence of the construction of u!+(x; t). Indeed, u�
t
!

+ (x; 0) = u!+(x; t)

by construction. Hence St
!
�! = ��

t
!. This is exactly the condition for the invariance of

�. �

The \one force, one solution" principle not only gives the existence of an invariant

measure, it also implies uniqueness.

Theorem 4.2. The measure �(d!; du) is the unique invariant measure on (
�D0;F�D)
with given projection P (d!) on (
;F). The measure �(du) =

R


�(d!; du) is the unique

stationary distribution for the Markov process (1.4).

Proof:. Assume � is another invariant measure on 
�D0. Write � as

�(d!; du) =

Z



�!(du)P (d!)

For t < 0, let H!

t
be the operator which maps the solution of (1.4) at time t to the solution

at time 0 when the realization of the force is !. By de�nition, the invariance of � implies
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that

(H!

t
)���t!(du) = �!(du)

for t < 0, where (H!

t
)� is the push forward action on the spaces of measures. This means

that there exists a subset B of D0 of full measure with respect to �!(du), such that for

every u 2 B and n 2 N , there exists a vn such that

H!

�n
vn = u

From Lemma 3.6, if a solution of (1.4) can be extended backwards to arbitrary negative

times, that solution must coincide with u!+ at t = 0, for all x 2 S1 n J(!; 0). In particular,

we have

u(x) = u!+(x; 0)

for x 2 S1 n J(!; 0). Hence �!(du) = �u!
+
(du) and � = �.

To prove the second statement suppose that �(du) 6= �(du) is another stationary

distribution for the Markov process (1.4). Let A = fu: (u(x1); : : : ; u(xk)) 2 C � R
kg be

an arbitrary cylindrical set based on the points x1; : : : ; xk 2 Ic. By de�nition

�(A) =

Z
D0

Pn(u�n; A)�(du�n)

=

Z
D0

�Z



�A(u�n; !)P (d!)

�
�(du�n)

=

Z



�Z
D0

�A(u�n; !)�(du�n)

�
P (d!) : (4.4)

Denote by �A(!) the indicator function of the event that u!+ 2 A. Then for �n(!) =R
D0

�A(u�n; !)�(du�n) one has

lim
n!1

�n(!) = �A(!) (4.5)

implying �(A) =
R


�A(!)P (d!) = �(A).

Indeed, in view of the uniqueness of one-sided minimizers, coming to each of the points

(x1; 0); : : : ; (xk; 0), one observes that

lim
n!1

�n(!) =

�
1 for (A n @A) 3 (u!+(x1; 0); : : : ; u

!

+(xk; 0));

0 for (Ac n @A) 3 (u!+(x1; 0); : : : ; u
!

+(xk; 0)) :
(4.6)

Thus to obtain (4.5) one needs only to show that Pf!: (u!+(x1; 0); : : : ; u!+(xk; 0)) 2 @Ag =
0. Clearly it is enough to check that
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Lemma 4.1. For any v 2 R
1 and for any x 2 X, one has

Pf!: u!+(x; 0) = vg = 0 : (4.7)

Proof. For �xed x and v the backward solution (for t� 0) of the SDE (2.3) with the initial

data (0) = x and _(0) = v is a random process with variance Var _(t) that grows like jtj
as t! �1. Thus with probability 1 this solution cannot be a one-sided minimizer. This

completes the proof of Theorem 4.2. �
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x5. Two-sided Minimizer and the Main Shock

Sections 5-7 wil be devoted to the study of the structure of the solution u!. In this

section, we will de�ne the two basic objects needed for this study, the two-sided minimizer

and the main shock.

Let (x; t) be a point of shock, i.e., x 2 J(!; t). Denote by �x;t(t1), t1 < t an open

interval at time t1 generated by the shock at (x; t):

�x;t(t1) = (�
x;t
(t1); 

+
x;t
(t1)) (5.1)

where we use �
x;t

and +
x;t

to denote respectively the left-most and right-most one-sided

minimizers starting at (x; t). Roughly speaking, �x;t(t1) is the set of points at time t1 that

merge into the shock at x before time t, i.e. the one-sided minimizer that passes through

(y; t1); y 2 �x;t(t1) intersects the past history of the shock at (x; t) before time t.

Lemma 5.1. For almost all ! the following statements hold for any �xed t1 and t such

that t1 < t.

(a) For arbitrary x1 2 S1, either there exists a unique one-sided minimizer at time t

which passes through (x1; t1) or there exists a unique shock at (x; t) for some x 2 S
1,

such that (x1; t1) 2 �x;t(t1). In the second case we will say that (x1; t1) is covered

by the shock at (x; t). In particular, if (x1; t1) is a point of shock, i.e., x1 2 J(!; t1),

then there exists a unique shock (x; t) which covers (x1; t1), i.e. (x1; t1) 2 �x;t(t1).

(b) Let (x1; t1) 2 J(!; t1) be a point of shock. Denote by x(t), t� t1 the position of the

shock at time t which covers (x1; t1). Then x(t), t� t1 is a Lipschitz continuous

function.

Proof. Denote by A(t1; t) the set of points x1 2 S1 that correspond to the �rst situation,

i.e., there exists a one-sided minimizer at time t which passes through (x1; t1). Obviously

this minimizer is unique, and A(t1; t) is closed. Hence B(t1; t) = S1 n A(t1; t) is open

and consists of non-intersecting open intervals. Let (x01; x
00

1) be one of these intervals.

(x01; t1), (x
00

1 ; t1) are reached by one-sided minimizers which start at (x0; t) and (x00; t). It
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is easy to see that x0 = x00. Otherwise a minimizer which starts from some point between

x0 and x00 will reach a point inside (x01; x
00

1). It follows that (x0; t) is a point of shock,

and (x01; x
00

1) � �x0;t(t1). Obviously a point of shock cannot be reached by a one-sided

minimizer that extends to time t. Thus if t1 < t, any point of shock at (x1; t1) must be

covered by a shock at (x; t) for some x 2 S1. Clearly such a covering shock (x; t) is unique.

This completes the proof of (a).

(b) basically follows from the fact the velocities of minimizers are bounded. It is

enough to show that x(�) is Lipschitz continuous at t = t1. It follows from Lemma

3.1 that there exists a constant C1(t1; !) such that for all one-sided minimizers  and

t 2 [t1; t1 + 1], j _(t)j�C1(t1; !). Therefore for any shock at (x(t); t), t 2 [t1; t1 + 1],

jx(t) � �
x(t);t

(t1)j�C1(t1; !)(t � t1), jx(t) � +
x(t);t

(t1)j�C1(t1; !)(t � t1). Since x1 2
(�
x(t);t

(t1); 
+
x(t);t

(t1)), we also have jx1 � x(t)j�C1(t1; !)(t � t1). This estimate implies

that x(t) is Lipschitz continuous. �

Remark. It may happen for some points (x1; t1) that they are covered by shocks and at the

same time there exist one-sided minimizers passing through them. This is possible only

if there are more than two minimizers starting at covering shock. This situation occurs

when two shocks merge.

In this and following sections we study the detailed structure and regularity properties

of solutions supported by the invariant measure. For this purpose, we need certain non-

degeneracy conditions on the forcing.

Non-degeneracy Condition: If x� is the local maximum of some Fk, we will denote

by I(x�) a closed interval on S1 containing x� which is contained in the basin of attraction

of x� for the potential Fk. In other words, fk < 0 on I(x�) to the right of x�, and fk > 0

on I(x�) to the left of x�. Assume that

(A1) There exists a �nite set of points X� = fx�g, x� 2 S1, each of which is a local

maximum of some Fk with the following property: for any (x1; x2) 2 S
1� S

1 there

exists an x� 2 X�, such that x1; x2 2 I(x�).

Below we will always assume that (A1) holds. Obviously (A1) fails if there is only
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one term in the sum of F (x; t). Nevertheless (A1) is ful�lled in generic situations. In

particular, it is easy to see that three such intervals I(x�) su�ce. However, by re�ning the

argument in Appendix D, we can show that the Basic Collision Lemma below also holds

when the potential contains two shifted cosine functions, for example. We will come back

to this point at the end of this section.

Consider two points x01 and x02 at time t = 0. We say that x01 and x02 merge before

t = � > 0 if there exists a shock at (y; �), y 2 S
1, which covers both x01 and x02, i.e.,

x01; x
0
2 2 �y;� (0). The following lemma is of fundamental importance to what follows.

Lemma 5.2. (Basic Collision Lemma). For any � > 0, there exists a positive number

p0(�) with the following property. Let u( � ; 0) 2 D0 and x01; x
0
2 be two positions at t = 0

which are measurable with respect to F0
�1

. Then the conditional probability under F0
�1

that x01 merges with x02 before t = � is no less than p0(�).

The proof of this lemma is given in Appendix D.

Lemma 5.3. The set of !'s for which u!( � ; t0) is continuous for some t0 2 R1 has

probability zero.

Proof. It follows from Lemma 5.1 that if u!( � ; t0) is continuous, then u!( � ; t) is continuous
for all t� t0. Denote by C(t) the set of ! such that u!( � ; s) is continuous for s� t. Then
�sC(t) = C(t+s) � C(t) for all s� 0. Using ergodicity we conclude that either P (C(t)) = 1

for all t, or P (C(t)) = 0 for all t. Assume that P (C(t)) � 1. It follows from Lemma 5.2

that there is a positive conditional probability p(f!(t0); t0 < tg) under Ft
�1

that u( � ; t+1)

has at least one shock. Hence we have

P (C(t+ 1)) =

Z
C(t)

(1� pf!(t0); t0 � tg) dP < P (C(t)) (5.2)

Therefore P (C(t+ 1)) < 1. Hence P (C(t)) � 0 for all t. �

It follows from Lemma 5.3 that for almost all ! and arbitrary t0 there exists at least

one shock at t0. Since the number of shocks is at most countable and the sum of their sizes

is bounded, i.e.,
P

x2J(!;t0)
(u!
�
(x; t0)� u!+(x; t0))�Varu

!

+(x; t0) < +1, we can numerate
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all the shocks in a measurable way. The �rst shock is the largest one, the second is next in

size and so on. If two or more shocks have the same size then we numerate them according

to their order of occurance on the semi-interval [0; 1). Denote by �i(t0) = (xi(t0); t0) the

position of the i-th shock. Obviously �i(t0) is a measurable function with respect to Ft0
�1

.

We will use `(I) to denote the length of the interval I.

Lemma 5.4. There exist positive constants C1; C2; K1; K2 > 0 such that for all j, and

t > t0,

Pf!: `j(t) = `
�
�xj(t);t(t0)

�
� 1�K1 exp(�C1(t� t0))g�K2 exp(�C2(t� t0)) (5.3)

Proof. Fix any j 2 N . The position of the j-th shock at time t will be denoted by x(t).

The following estimates are independent of j.

Consider a sequence of times ti = t0 + i, i = 0; 1; 2; : : : . For each i let Ii = S1 n
�x(ti);ti(t0) and zi be the mid-point of Ii. Denote by yi a point on S1 at time ti which

corresponds to zi at t = t0, i.e., either (yi; ti) is a point of the shock which covers (zi; t0),

or there is a unique one-sided minimizer at (yi; ti) which passes through (zi; t0). Clearly,

yi is measurable with respect to Fti
�1

. Denote by �i a random variable which takes the

value 1 if yi is covered by �x(ti+1);ti+1(ti) and 0 otherwise. Obviously �i = 1 if and only if

yi merges with x(ti) before ti+1.

Notice that if �i = 1 then the length of the complement to the interval �x(ti+1);ti+1(t0)

is no more than half of the length of the complement to �x(ti);ti(t0). For any �xed positive

integer K, with n = t� t0,

Pf!: `(In)� 2�Kg�P
�n�1X
i=0

�i �K

�

�

KX
m=0

X
0<i1<i2<:::<in�m �n�1

Pf�i1 = �i2 = : : : = �in�m = 0g

�

KX
m=0

Cn

m
(1� p0(1))

n�m

(5.4)
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where we used Lemma 5.2 and the Markov property to conclude that

P (�i1 = �i2 = : : : = �is = 0)� (1� p0(1))
s; (5.5)

for all 0� i1 < i2 < : : : < is.

It follows from (5.4) that for K �
n

2
we have

Pf!: `(In)� 2�Kg� (K + 1)CK

n
(1� p0(1))

n�K (5.6)

Let K = [�n] and choose � so small that

q1 =

�
1

�

���
1

1� �

�1��

(1� p0(1))
1�� < 1 (5.7)

Then,

Pf!: `(In)� e�[�n] ln 2g�M
p
n qn1 (5.8)

where M is an absolute constant. It follows that

Pf!: ` ��x(t);t(t0)
�
� 1� e�[�n] ln 2g�Mp

t� t0 q
t�t0

1 (5.9)

Take any q such that q1 < q < 1 and let C1 = � ln 2, K1 = 4, C2 = � ln q. Then (5.3)

follows from (5.9) for large enough K2. �

Using Borel-Cantelli Lemma, one gets from Lemma 5.4 the following:

Lemma 5.5. For almost all !

`
�
�xj(t);t(t0)

�! 1 as t!1 (5.10)

Moreover for any shock at �j(t0) there exists a random constant Tj(!; t0) such that for all

t > Tj(!; t0)

`
�
�xj(t);t(t0)

�
� 1� 2K1 exp(�C1(t� t0)) (5.11)

Remark. Since the intervals �xj(t);t(t0) do not intersect each other, Lemma 5.5 implies

that the shocks �j1(t0); �j2(t0) merge with each other after time T = max(Tj1 ; Tj2).

Let us de�ne now an object which will play a very important role in the remaining

part of this paper.
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De�nition 5.1. A C1 curve : (�1;+1)! S
1 is called a two-sided minimizer if for any

C1 compact perturbation  + �: (�1;+1)! S
1 of 

A�s;s( + �)�A�s;s()

for all su�ciently large s.

In other words, a curve  is called a two-sided minimizer if and only if for arbitrary

t0 2 R1 , its restriction on (�1; t0] is a one-sided minimizer.

Theorem 5.1. With probability 1 there exists a unique two-sided minimizer.

Proof. Existence of the two-sided minimizer follows from a compactness argument. Con-

sider a sequence of curves (n): [�n; n] ! S1 which minimize A�n;n() in the class of C1

curves. It follows from Lemma 3.3 that j _(n)(0)j�C(!; 0). Hence the sequence of points

(x
(n)
0 ; v

(n)
0 ) = ((n)(0); _(n)(0)) belongs to a compact set S1 � [�C(!; 0); C(!; 0)]. Then

there exists at least one limiting point (x0; v0). A standard argument as in the proof

of Theorem 3.1 shows that the solution of the Euler-Lagrange equation (2.3) with initial

conditions x(0) = x0, v(0) = v0 de�nes a two-sided minimizer.

For uniqueness notice that points on a two-sided minimizer  does not belong to

the intervals �xj(t);t(t0) for any j. Since `
�
�xj(t);t(t0)

�
! 1 as t ! 1, the two-sided

minimizer is unique. �

We will denote the two-sided minimizer by y!.

We now construct another important object, the main shock. For arbitrary t0 2 R1

consider a sequence of non-intersecting intervals �xj ;t0
(t), t� t0 corresponding to shocks

�j(t0) = (xj; t0) at time t0, xj 2 J(!; t0). Notice that here we consider intervals �xj ;t0
(t)

for t� t0. It turns out that for almost all ! there exists a unique shock at (z(t0); t0) for

which `(t) = `(�z(t0);t0(t))! 1 as t! �1.

Theorem 5.2. For almost all ! the following statements hold.

(a) For any t0 2 R1 there exists a unique shock at (z(t0); t0) such that

`(t) = `
�
�z(t0);t0(t)

�
! 1 as t! �1 (5.12)
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Moreover, for any � > 0 there exists a random constant T�;t0(!) such that for all

t < T�;t0(!)

`(t)�1� exp(�(C1 � �)(t0 � t)) (5.13)

The position of the shock (z(t0); t0) is measurable with respect to the �-algebra

F
t0

�1
.

(b) For all other shocks �j(t0) = (xj(t0); t0)

`j(t) = `
�
�xj(t0);t0(t)

�
! 0 as t! �1

(c) f(z(t); t); t 2 R1g is a Lipschitz continuous curve.

Proof. Consider a sequence of times �ti = t0 � i. It follows from Lemma 5.4 that with

probability greater than 1 � K2 exp(�C2i) there exists a shock at some point (x0(i); t0)

such that

`
�
�x0(i);t0(�ti)

�
� 1�K1 exp(�C1i) (5.14)

By Borel-Cantelli Lemma, there exists N1(!) such that for all i > N1(!), (5.14) holds for

some shock at (x0(i); t0). We will show that for i large enough x0(i) does not depend on

i. Suppose x0(i+ 1) 6= x0(i) for some i > N1. Then,

`
�
�x0(i+1);t0(�ti)

�
�K1 exp(�C1i) and `

�
�x0(i+1);t0(�ti+1)

�
� 1�K1 exp(�C1(i+ 1))

Denote by ai, bi, ai+1, bi+1 the end points of �x0(i+1);t0(�ti) and �x0(i+1);t0(�ti+1), re-

spectively, and by v(ai), v(bi), v(ai+1), v(bi+1) the velocities of the corresponding one-

sided minimizers. It follows from Lemma B.8 that jv(ai) � v(bi)j�Lijai � bij, where

Li = L0(�
t0�i!). Thus,

Di = dist((ai; v(ai)); (bi; v(bi)))�

q
1 + L2

i
K1 exp(�C1i)

Di+1 = dist((ai+1; v(ai+1)); (bi+1; v(bi+1)))� 1�K1 exp(�C1(i+ 1))

(5.15)

On the other hand, we have Di+1 � exp(di)Di, where di = d1(�
t0�i!) and d1(!) is de�ned

in Lemma B.5. It follows that

exp(di)�
Di+1

Di

�

1

2
p
1 + L2

i
K1

exp(C1i) (5.16)
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Since Li and di have �nite expectations, it follows that for any " > 0 there exists N"(!)

such that

jdij� "i; jLij� "i; for all i > N"(!) (5.17)

(see Lemma 6.2). Take " < C1. Then for i > �N"(!) > N"(!), (5.16) and (5.17) contradict

each other. Hence, for i > �N"(!), x0(i + 1) = x0(i). De�ne z(t0) = x0(i), i > �N"(!).

Obviously, `(�z(t0);t0(�ti))� 1 � K1 exp(�C1i), i > �N"(!). It follows from the estimates

(5.15){(5.17) that for any � > 0 there exists a random constant T�;t0(!) such that for

all t < T�;t0(!), (5.13) holds. A shock that satis�es (5.12) is obviously unique. Clearly

z(t0) is measurable with respect to Ft0

�1
. Notice that for any t > t0, the shock which

covers (z(t0); t0) also satis�es (5.12), (5.13). Hence for almost all ! such shock exists for

all t0 2 R1 . (a) is now proven. (b) follows from (a), since

0�
X

xj2J(!;t0)

`
�
�xj(t0);t0(t)

�
� 1 and `

�
�z(t0);t0(t)

�
! 1 as t! �1 :

Since the shock at
�
z(~t0); ~t0

�
covers (z(t0); t0) for all ~t0 � t0, we get (c). �

De�nition 5.2. The shock (z(t); t) constructed in Theorem 5.2 is called the main shock

at time t.

As we remarked in the introduction, two-sided minimizer and the main shock play

dual roles. The former acts as a repeller, the latter acts as an attractor. Indeed, it follows

from Theorem 5.2 that for any two one-sided minimizers 1, 2, dist(1(t); 2(t)) ! 0 as

t! �1. One can say that all one-sided minimizers approach the two-sided minimizer as

t! �1.

Lemma 5.6.

(a) For any two minimizers 1, 2

dist(1(t); 2(t))! 0 as t! �1 (5.18)

Moreover, for any � > 0 there exists a random constant T
1;2
�

(!) such that for all

t < T
1;2
�

(!)

dist(1(t); 2(t))� exp(�(C1 � �)t)
35



If 1 starts at time t1, and 2 starts at t2, then T
1;2
�

(!) = T�;t1;2(!), where constant

T�;t(!) is de�ned in Theorem 5.2 and t1;2 = min(t1; t2).

For minimizers starting at the same time convergence in (5.18) is uniform.

(b) Any shock at a given time t will be eventually absorbed by the main shock.

This is obvious.

Another way to characterize the curve of the main shock is to say that it is the only

shock curve de�ned for all t 2 R1 .

Lemma 5.7. For almost all ! there exists a unique shock curve x!: (�1;+1) ! S1

such that u!+(x
!(t); t) < u!

�
(x!(t); t) and x!(t) is measurable with respect to Ft

�1
. This

curve is the curve of the main shock.

Proof. The existence follows from the existence of the main shock. Suppose now that

there exists another measurable shock curve x!(�) de�ned on R
1 . Fix arbitrary t0 2 R

1 .

It follows from Lemma 5.2 that with probability 1 the curves z(t) and x!(t) merge before

t = t0. Since t0 is arbitrary, x
!(t) coincides with z(t) with probability 1. �

Remark. Later we will prove a stronger result: the curve of the main shocks is the only

shock curve which is de�ned for all su�ciently negative times.

We end this section with some discussions on the assumption (A1). Obviously, a

necessary condition for the main results of this section to hold, namely the existence of a

unique main shock and two-sided minimizer, is that the minimum period of all the Fk's is

equal to 1. However, this condition is not su�cient, as we show now.

Theorem 5.3. If F (x; t) = cos 2�x dB(t), then with probability 1, there are at least two

main shocks, i.e., shock curves that de�ned for all negative times. There are also at least

two two-sided minimizers on S1� R1 .

We will give an outline of the proof. We will show that with probability one, x = 0

and x = 1=2 are points of shock for any time t. The main point is:

Lemma 5.8. With probability 1, �: (�1; t]! R
1 , �(s) � 0, is not a one-sided minimizer.
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This follows from the observation that with probability 1, there are large intervals on

which B(t)�B(s) > 0. On such intervals, one-sided minimizers are close to x = 1
2
. Hence

� � 0 is not minimizing.

As a consequence of symmetry, if �: (�1; t]! R
1 is a one-sided minimizer such that

�(t) = 0, then �� is also a one-sided minimizer. Therefore, with probability 1, x = 0 is

a point of shock for all t 2 R1 . The same argument applies to x = 1
2
. So there are at

least two main shocks. The rest of the statement in Theorem 5.3 follows from the same

argument as in the proof of Theorems 5.1 and 5.2.

It is easy to check that (A1) holds for

F (x; t) = cos 2�(x+ x1)dB1(t) + cos 2�(x+ x2)dB2(t) + cos 2�(x+ x3)dB3(t) (5.19)

where x1, x2, x3 are �xed constants such that their di�erences are not integer multiples of

1
2
. By re�ning the argument in Appendix D, one can actually show that Lemma 5.2 also

holds if there are only two terms in (5.19). On the other hand, without shifting phases,

(A1) does not hold if all of the Fk's are of the form cos 2�kx. It fails when x01 = 0, x02 =
1
2
.

However, the following argument shows that Lemma 5.2 still holds if:

The set fFkg contains either fsin 2�x; cos 2�lx, for some l 6= 0g, or

fcos 2�x; sin 2�lx, for some l 6= 0g.

We will illustrate how this claim can be proved when fFkg contains fcos 2�x; sin 4�xg. The

only situation we have to reconsider is when x01 is close to a critical point of F1(x) = cos 2�x,

and x02 is close to a critical point of F2(x) = sin 4�x. Without loss of generality, let us

assume that x01 is close to 0, and x02 is close to
1
8
. Heuristically we can �rst use F1 to move

x02 to a small neighborhood of 1
2
. If in this process x01 has moved out of the neighborhood

of 0, then we can use Lemma 5.2 with F1. If not, we use F2 to move x01 to a small

neighborhood of �1
8
. The forces dB2 can be chosen such that x02 will stay inside

�
1
8
; 5
8

�
.

Now both x01 and x02 are inside the region where F 01 is bounded away from 0, so we can

apply the proof of Lemma 5.2 to x01 and x
0
2 with the potential F1. We will omit the detailed

proof of these statements since they follow closely the proof of Lemma 5.2.
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x6. Hyperbolicity and Unstable Manifold of the Two-sided Minimizer

In this section we prove that the two-sided minimizer y!(�) constructed in Section 5

is a hyperbolic trajectory of the dynamical system (2.3), and we establish the existence of

its stable and unstable manifolds. The main technical di�culty is associated with the fact

that the hyperbolicity is non-uniform, as in many other dynamical systems with noises.

This is overcome by using Pesin's theory (see [Pes], [En]). Note in passing that we have

y!(t+ s) = y�s!(t) (6.1)

Denote by G!

t
the stochastic ow generated by the solutions of (2.3). Let J t

s
(!) be

the Jacobi map, i.e., the tangent map that maps the tangent plane T (y!(s); u
!(y!(s); s))

onto the tangent plane T (y!(t); u
!(y!(t); t)). This is well-de�ned since y!(t) is a point

of continuity of u!( � ; t) for all t. Moreover the Jacobi map has determinant 1 since the

dynamical system (2.3) preserves the Lebesgue measure. Obviously, we have

J t20 (!) = J t2�t10 (�t1!)J t10 (!)

for all t1; t2. In the terminology of ergodic theory, fJ t0(!)g is a cocycle (see [O]).

Lemma 6.1. De�ne log+ x = max(logx; 0), for x > 0. Then

sup
�1� t� 1

log+ kJ t0(!)k 2 L1(dP ) :

This result, together with some other technical estimates, is proved in Appendix B

(Lemma B.5).

As a consequence of the multiplicative ergodic theorem [O], [En], we conclude that

with probability 1:

(A) either

lim
t!�1

1

t
ln kJ t+t1

t1
(!)ek = 0

for all e 2 Tt1 = T (y!(t1); u
!(y!(t1); t1));
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(B) or there exists a constant � > 0 and a measurable normalized basis feu
t
(!); es

t
(!)g of

Tt = T (y!(t); u
!(y!(t); t)), such that

J t
t1
(!)eu

t1
(!) = au(t; t1;!)e

u

t
(!); J t

t1
(!)es

t1
(!) = as(t; t1;!)e

s

t
(!) ;

where the functions au(t; t1;!) and as(t; t1;!) are also cocycles satisfying

au(t+ s; 0;!) = au(s; 0; �t!)au(t; 0;!)

as(t+ s; 0;!) = as(s; 0; �t!)as(t; 0;!) :

Furthermore,

lim
t!1

ln au(t; t1;!)

t� t1
= �; lim

t!1

ln as(t; t1;!)

t� t1
= ��

If (B) holds, the cocycle fJ t
s
(!)g is said to be hyperbolic and the basis feu

t
(!); es

t
(!)g

is called the Oseledetz basis.

Theorem 6.1. With probability 1, the cocycle fJ t
s
(!)g is hyperbolic.

We will prove Theorem 6.1 later. It is useful to recall the following simple result:

Lemma 6.2. Let f�ig be a sequence of identically distributed random variables such that

Ej�ij < +1. Then for any " > 0, there exists a random variable N" > 0, such that for all

i, jij�N", we have

j�ij� "jij :

This is a simple consequence of the Chebyshev inequality and the Borel-Cantelli

lemma. Lemma 6.2 is equivalent to the statement that

lim
i!1

�i

i
= 0

with probability 1. However, we will use it in the form of Lemma 6.2.

Let x(�) be an arbitrary one-sided minimizer de�ned on (�1; 0]. Fix a positive integer

k and consider a sequence of times ti = �ki.

Denote (yi; ui) = (y!(ti); u
!(y!(ti); ti)), (xi; vi) = (x(ti); u

!(x(ti); ti)), Ji = J
ti�1

ti
(!),

`i = dist(xi; yi), �i = dist((xi; vi); (yi; ui)).
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Lemma 6.3. For any " > 0 there exists a random constant `";k(!) such that with proba-

bility 1

�i � (1 + ")kJi+1k�i+1; i� 0 : (6.1)

provided that `0 � `";k(!).

Proof. Let L0(i) = L0(�
ti!), d(i) = dk(�

ti!), �d(i) = �dk(�
ti!), where L0 is de�ned in

Lemma B.8, and dk, �dk are de�ned in (B.29-30) and Lemma B.5. It follows from Theorem

5.2 that for any � > 0 there exists a random constant N�(!) such that for all i > N�(!)

`i � exp((C1 � �)ti) (6.2)

Since jvi � uij�L0(i)`i, we have

�i �

q
L2
0(i) + 1 `i �

q
L2
0(i) + 1 exp((C1 � �)ti) (6.3)

Let �i = f(x; v) = �(xi; vi) + (1� �)(yi; ui), 0��� 1g be the interval connecting (xi; vi)

and (yi; ui). Clearly �i 2 Bk(�
ti!). It follows from the de�nition of d(i) that for any

(x; v) 2 �i

kG�
ti!

t
(x; v)�G�

ti!

t
(yi; ui)k� exp(d(i))�i; �k � t� 0 (6.4)

Since d(i), �d(i), L0(i) have �nite expectations, for any � > 0, there exists N�(!) such that

jd(i)j; j �d(i)j; jL0(i)j� �i for i > N�(!) (6.5)

Hence, for i > max(N�(!); N�(!))

kG�
ti!

t
(x; v)�G�

ti!

t
(yi; ui)k�

p
�2i2 + 1 exp(�i+ (C1 � �)ti); �k � t� 0 (6.6)

Take � < (C1��). Then (6.6) implies that there exists N�;�(!) > max(N�(!); N�(!)) such

that �i � Ok(�
ti!) for all i > N�;�(!). Clearly, if �0 is small enough, then �i � Ok(�

ti!)

for i�N�;�(!). Since the two-sided minimizer corresponds to a point of continuity of u!+,

we have �0 ! 0 as `0 ! 0. Thus, there exists `0(!) > 0 such that �i 2 Ok(�
ti!) for all
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i, provided that `0 � `0(!). Denote now D(i) = Dk;2(!), �D(i) = �Dk;2(!), where DT;r(!),

�DT;r(!) are de�ned in (B.22). Since �i 2 Ok(�
ti!), we have for all i� 0

�i � kJi+1k�i+1 +
1

2
exp( �D(i))�2

i+1 = kJi+1k�i+1

�
1 +

exp( �D(i))

2kJi+1k
�i+1

�

Since 1
kJi+1k

� kJ�1
i+1k� exp(D(i)), we have

�i � kJi+1k�i+1

�
1 +

1

2
exp(D(i) + �D(i))�i+1

�
(6.7)

Again, since D(i) and �D(i) have �nite expectations, for any � > 0, there exists N�(!) such

that

jD(i)j; j �D(i)j� �i for i > N�(!) (6.8)

Thus, using (6.3), (6.5), (6.8), for i > max(N�(!); N�(!); N�(!)):

1

2
exp(D(i) + �D(i))�i+1 �

1

2

p
�2i2 + 1 exp(2�i+ (C1 � �)ti) (6.9)

Take � < C1��

2
. It follows from (6.9) that there exists N(!) such that for i > N(!)

1

2
exp(D(i) + �D(i))�i+1 � " (6.10)

This implies (6.1) for i > N(!). Now, in order to get (6.1) for all i, take �0(!) so small

that for �0 � �0(!)
1

2
exp(D(i) + �D(i))�i+1 � "; 0� i�N(!) (6.11)

As above, we can choose `";k(!) < `0(!) so small that `0 < `";k(!) implies �0 � �0(!).

(6.1) obviously follows from (6.10), (6.11). �

Proof of Theorem 6.1. Assume that (A) holds. It follows from the subadditive ergodic

theorem that

lim
n!1

R
ln kJn0 (!)kP (d!)

n
= 0 (6.12)

Then, for any " > 0 there exists k 2 N such that Ak = 1
k

R
ln kJk0 (!)kP (d!) < ". By

ergodic theorem, with probability 1

1

kn

nX
i=1

ln kJk0 (�
ti!)k �!

n!1

1

k

Z
ln kJk0 (!)kP (d!) = Ak (6.13)
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Hence there exists a random constant n"(!) such that, with probability 1,

1

kn

nX
i=1

ln kJk0 (�
ti!)k�Ak + "� 2" (6.14)

for all n > n"(!).

Consider now a one-sided minimizer x(�) at time t0 = 0 such that `0 = jx(0) �

y!(0)j� `";k(!), where `";k(!) is de�ned in Lemma 6.3. Then, by Lemma 6.3 for all n > 0:

`0 � �0 � (1 + ")n
nY
i=1

kJ
ti�1

ti
(!)k�n (6.15)

Thus for n > n"(!)

�n �
�0

(1 + ")n
nQ
i=1

kJ
ti�1

ti
(!)k

=
�0

(1 + ")n exp
� nP
i=1

ln kJk0 (�
ti!)k

�

� �0e
�"n exp(�2"kn) (6.16)

On the other hand, it follows from Theorem 5.2 that for large enough n

�n �

q
L2
0(n) + 1 `n �

q
L2
0(n) + 1 exp(�(C1 � �)kn)

�

p
�2n2 + 1 exp(�(C1 � �)kn) (6.17)

Here, as in the proof of Lemma 6.3, we used again that jL0(n)j� �n for n large enough.

Take " so small that 3" < C1 � �. Then, (6.16) and (6.17) are contradictory to each

other. �

Remark. It follows from the proof of Theorem 6.1 that ��C1 � �. Since � is arbitrarily

small, ��C1.

Next we construct stable and unstable manifolds of the two-sided minimizer. We

will denote by �! the trajectory in the phase space of the two-sided minimizer �! =

f(y!(t); u
!(y!(t); t)); t 2 R

1
g, and let (x(t;x0; u0); u(t;x0; u0)) be the solution of the SDE

(2.3) with initial data x(0) = x0, u(0) = u0. We will concentrate on t = 0 but the same

holds for any other t.
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De�nition 6.1. A local stable manifold of �! at t = 0 is the set

W s

�;"
= f(x0; u0); dist((x(t;x0; u0); u(t;x0; u0)); (y!(t); u

!(y!(t); t)))� �e
�(��")t

g

for some " > 0, � > 0 and all t > 0. A local unstable manifold of �! at t = 0 is the set

Wu

�;"
= f(x0; u0); dist((x(t;x0; u0); u(t;x0; u0)); (y!(t); u

!(y!(t); t)))� �e
�(��")jtj

g

for some " > 0, � > 0 and all t < 0.

Pesin [Pes] gave general conditions under which such local stable and unstable mani-

folds exist for smooth maps of compact manifolds. It is easy to check that his results can

be extended directly to the current situation of stochastic ows. Below we will formulate

Pesin's theorem and later verify that its conditions are satis�ed for our problem.

Denote by Si the Poincare map at t = i associated with the SDE (2.3). In other

words, Si maps (xi; ui) at t = i to the solution of (2.3), (xi+1; ui+1) at t = i+1. Similarly

we denote by Sn

i
; S�n

i
the maps that map the solution of (2.3) at t = i to the solution at

t = i+ n; t = i� n respectively.

De�ne �u
i
; �s

i
by the relations

J i+1
i

(!)eu
i
= e�

u
i eu

i+1; J
i+1
i

(!)es
i
= e��

s
i es

i+1

where fes
i
; eu

i
g constitute the Oseledetz basis.

Pesin's Theorem. Assume that there exist constants �; � > 0, and "0 2 (0; 1), and for

" 2 (0; "0), one can �nd a positive random variable C("; !) such that for i 2 Z

(I)

kDSn

i
es
i
k�C("; !)e�(��")ne"jij

kDS�n
i

eu
i
k�C("; !)e�(��")ne"jij

(II)

j sin hes
i
; eu

i
i j�

1

C("; !)
e�"jij
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(III) Let ri =
1

C(";!)
e
�"jij, and

Bi(!) = f(x; u); k(x; u)� (y!(i); u
!(y!(i); i))k� rig :

Then for some r � 2,

sup
(x;u)2Bi

max
1� j � r

�
kDj

Si(x; u)k; kD
j
S
�1
i (x; u)k

�
�C("; !)e"jij

Under these assumptions, one can �nd positive "1(�; �; "0) and �("), de�ned for 0 <

" < "1, and C
r�1 curves W s

�;", W
u
�;" in the phase space of the dynamical system (2.3), such

that

(i) W
s
�;" and W

u
�;" are respectively the stable and unstable manifold of �! at t = 0.

Moreover, they are Cr�1 graphs on the interval [��1("); �1(")] for some �1(") > 0.

(ii) W
s
�;" \W

u
�;" = (y!(0); u

!(y!(0); 0))

(iii) The tangent vectors to W
s
�;" and W

u
�;" at (y!(0); u

!(y!(0); 0)) are respectively e
s
0

and e
u
0 .

(iv) If (x; u) 2 B0, and for n� 0

dist
�
S
�n
0 (x; u); (y!(�n); u

!(y!(�n);�n))
�
�
��e��n

for some constants � > 0 and �� > 0, then (x; u) 2 W
u
�;".

Our task is reduced to checking the assumptions (I), (II) and (III) in Pesin's Theorem.

To begin with, let us observe that (II) follows from the following argument (see [R]).

Since

lim
t!1

ln as(0; t)

t
= �; lim

t!1

ln au(0; t)

t
= ��

and the area of the parallelogram generated by est and e
u
t is independent of t, we have

lim
t!1

ln j sin hest ; e
u
t i j

t
= 0 :

To see that (III) holds, de�ne

di(!) = sup
�1� t� 0

sup
(x;u)2B0(�i!)

kDG�i!
t (x; u)k

�di(!) = sup
0� t� 1

sup
(x;u)2B0(�i!)

kDG�i!
t (x; u)k

where G!
t is the stochastic ow de�ned earlier.
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Lemma 6.4. For any " > 0, there exists random constants C1("; !), C2("; !) such that,

with probability 1,

di(!) � C1("; !)e
"jij

; �di(!) � C2("; !)e
"jij

for i 2 Z.

Proof. Assume C("; !) > 1. Then it follows from Lemma B.5 that

Z
log+ d0(!)dP < +1;

Z
log+ �d0(!)dP < +1

Now Lemma 6.4 follows directly from Lemma 6.2. �

Let C("; !) > max(C1("; !); C2("; !)), and

di;r(!) = sup
(x;v)2Bi

max
1� j � r

kDj
Si(x; v)k ;

�di;r(!) = sup
(x;v)2Bi

max
1� j � r

kDj(Si�1)
�1(x; v)k

Statement (III) follows from the following lemma.

Lemma 6.5. For any " > 0, there exist random constants C3("; !) and C4("; !) such that

di;r(!)�C3("; !)e
"jij

; �di;r(!)�C4("; !)e
"jij

for i 2 Z.

Proof. Let (x0; v0) 2 Bi(!). Consider the solution of (2.3), (x(t); v(t)), such that x(i) = x0,

v(i) = v0, for t 2 [i; i+ 1],

jv(t)� u
!(y!(i+ t); i+ t)j� di(!)k(x0; v0)� (y!(i); u

!(y!(i); i))k� 1

from Lemma 6.4. Therefore Bi(!) � O1(�
i
!) where O1(!) is de�ned in Appendix B.

Lemma 6.5 now follows directly from Lemma B.4 and Lemma 6.2. The second estimate

can be proved in the same way. �

Finally, we prove statement (I).
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Lemma 6.6. For any " > 0, one can �nd random constants C5("; !) and C6("; !) such

that

kDSni e
s
i k�C5("; !)e

�(��")n
e
"jij

; n� 1

kDS�ni e
u
i k�C6("; !)e

�(��")jnj
e
"jij

; n� � 1

Proof. We will prove the �rst statement. The second one can be proved in the same way.

From ergodic theorem we have

lim
n!+1

1

n

n�1X
j=0

�
s
j = �� < 0

Thus for any " 2 (0; �), there exists a constant C7("; !)�0 such that

e

n�1P

j=0

�sj
�C7("; !)e

�n(��")

For any � 2 (0; 1), de�ne K(�) by:

K(�) = inffK : P (C(!)�K)� �g :

Denote

�1 = P (C(!)�K(�))� �; m1(m;!) = maxfi : 1� i�m; C(�i!)�K(�)g :

Notice, that m1(m;!) is de�ned for large enough m. By the ergodic theorem,

lim
m!1

#fi : 1� i�m; C(�i!)�K(�)g

m
= �1

where # denotes cardinality. Thus for any �2 2 (0; �1), there exists a random constant

M(�2; !) such that for all m > M(�2; !)

#fi : 1� i�m; C(�i!)�K(�)g

m
� �1 � �2

Hence

m1 � (�1 � �2)m
46



Consequently for m > M(�2; !),

kDSnme
s
mk = e

m+n�1P

j=m

�sj
= e

m+n�1P

j=m1

�sj

e

�

m�1P

j=m1

�sj

�C(�m1!)e�(m+n�m1)(��")e

�

m�1P

j=m1

�sj

�K(�)e�n(��")e�(m�m1)(��")e

m�1P

j=m1

(��sj )

We also have, with �3 = �1 � �2

m�1X
j=m1

(��sj)� max
�3m� k�m�1

m�1X
k

(��sj)

� max
�3m� k�m�1

mX
j=k+1

log+ kD(S�1j )(y!(j); u
!(y!(j); j))k

� max
�3m� k�m�1

mX
j=k+1

d1(�
j
!)

where d1(!) is de�ned in (B.29). Using Lemma B.5 and standard probabilistic estimates,

one can show that for appropriate �3 < 1 there exists a constant M1(!) such that for all

m > M1(!),
m�1X
j=m1

(��sj)� max
�3m� k�m�1

mX
j=k+1

d1(�
j
!)� "m :

In fact, it is enough to have �3 so close to 1 that (1 � �3)Ed1(!) <
"
2
, where Ed1(!) =R

d1(!)P (d!). Hence it is enough to choose � = 1 � "
8Ed1 (!)

; �2 = "
8Ed1 (!)

. Then for

m > max(M1(!);M(�2; !)),

kDSnme
s
mk�K(�)e�n(��")e"m :

�

This completes the veri�cation of the assumptions in Pesin's Theorem, and establishes

the existence of local stable and unstable manifolds W s
�;", W

u
�;". One can also de�ne in a
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standard way global stable and unstable manifolds W s, Wu:

W
s =

1[
i=1

S
�i
i W

s
�;"(y�i!(0); u

!(y�i!(0); 0))

W
u =

1[
i=1

S
i
�iW

u
�;"(y��i!(0); u

!(y��i!(0); 0))

Obviously, W s, Wu are also C
r�1 curves which coincide with W

s
�;", W

u
�;" in some neigh-

borhood of (y!(0); u
!(y!(0); 0)).

The following theorem is a consequence of the properties of unstable manifolds.

Theorem 6.2.

a. The graph f(x; u!+(x; 0)); x 2 S
1g is a subset of the global unstable manifold W

u.

b. There exists a (random) neighborhood of (y!(0); u
!(y!(0); 0)) such that Wu

�;" con-

sists of one-sided minimizers in this neighborhood, i.e., the solutions of (2.3) with

initial data on W
u
�;" in this neighborhood gives rise to one-sided minimizers.

Proof.

a). As was shown earlier, any one-sided minimizer (x; u) converges exponentially fast

to (y!(t); u
!(y!(t); t)) as t ! �1. It follows that S�i0 (x; u) 2 B0(�

�i
!) for some i > 0.

Hence S
�i
0 (x; u) lies on the local unstable manifold W

u
�;"(y��i!(0); u

!(y��i!(0); 0)), as a

consequence of Pesin's Theorem (iv), and (x; u) lies on the global unstable manifold.

b). The local unstable manifold W
u
�;" is a C

r�1 curve with the tangent vector eu0 at

(y!(0), u
!(y!(0); 0)). Let M� = f(x; u): x 2 (y!(0)� �; y!(0) + �), (x; u) corresponds to

a one-sided miminizerg. Since y!(0) is a point of (Lipschitz) continuity of u!+(x) it follows

that there exists �0(!) such that for all � < �0(!), M� � W
u
�;". Hence e

u
0 is not a vertical

vector, i.e. e0 6= (0; 1). Therefore there exists a neighborhood O! of (y!(0); u
!(y!(0); 0))

such that in this neighborhood W
u
�;" is a graph of a Cr�1 function, i.e.

W
u
�;" \O! = f(x; u): x 2 (y!(0)� �1(!); y!(0) + �2(!)); u = �u(x)g ;

where �1(!); �2(!) > 0, and �u(x) is a C
r�1 function. Choose now � so small that

M� � W
u
�;" \ O!. It follows that for x 2 (y!(0) � �; y!(0) + �), �u(x) = u

!
+(x; 0), which

proves b). �
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Corollary 6.3. There exists �(!) > 0 such that there are no shocks inside an interval

(y!(0)� �; y!(0) + �). Moreover, u!+ 2 C
r�1(y!(0)� �; y!(0) + �).
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x7. Regularity of Solutions

In this section, we give a complete description of the solution u
!
+ in terms of the

unstable manifold Wu, and prove that the number of shocks is �nite for almost all !. We

also prove a stronger version of Lemma 5.8, namely, that all shocks except the main shock

have �nite prehistory. We will start with the latter statement.

Theorem 7.1. Fix arbitrary t0 2 R
1 . With probability 1 there exists a random constant

Tt0(!) such that all shocks at time t0, except the main shock, are generated after the time

t0�Tt0(!). In other words, all shocks at time t0�Tt0(!) merge with the main shock before

t = t0.

Proof. Fix any t 2 R
1 . It follows from Theorem 6.2 that there exists "1(t; !) > 0 such that

the velocities of all one-sided minimizers in (y!(t) � "1, y!(t) + "1) lie on a C
r�1 curve.

Hence there are no shocks in the "1-neighborhood of y!(t). Notice that the random constant

"1(t; !) has stationry distribution. We can choose an � > 0 so small that P (!: "1(t; !) >

�) > 0. Then there exists an in�nite sequence ti ! �1, such that "1(ti; !) > �; i 2 N .

Since minimizers at t = t0 converge uniformly to the two-sided minimizer as t! �1, there

exists It0(!) such that for i� It0(!), all minimizers starting at t = t0 pass through the

"1-neighborhood of y!(ti). Now let Tt0(!) = t0�tIt0 (!). We conclude that the complement

(on S
1) of the "1-neighborhood of y!(tIt0 (!)) will merge into the main shock before time

t0. Since the "1-neighborhood of y!(tIt0 (!)) contains no shocks, this completes the proof

of Theorem 7.1. �

Let s be the signed arclength parameter for the unstable manifoldWu of the two-sided

minimizer at t = 0:

W
u = f(x(s); u(s)); x(s) 2 S

1
; u(s) 2 R

1g ; (7.1)

with s = 0 at (y!(0); u
!(y!(0); 0)). From the proof of Theorem 6.2, dx

ds
(0) 6= 0. We will �x

orientation of the parameter s by the assumption dx
ds
(0) > 0. Let e�0 be the lifting of Wu

to the universal cover

e�0 = f(~x(s); u(s)); ~x(s) 2 R
1
; u(s) 2 R

1g : (7.2)
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Also, denote by (xs(t; !); vs(t; !)) the solution of (2.3) with initial data xs(0; !) = x(s);

vs(0; !) = u(s). Since for all s, the solutions (xs(t; !); vs(t; !)) converge exponentially fast

to (y!(t); _y!(t)) as t! �1, we can de�ne the function

A(s) =

0Z
�1

�
1

2
(v2s(t; !)� _y2!(t)) + (F (xs(t; !); t)� F (y!(t); t))

�
dt (7.3)

Since Wu is almost surely a Cr�1 manifold, A(s) is almost surely a Cr�1 function. Let

�A(x) = min
s:x(s)=x

A(s) (7.4)

In the following, we will numerate the shocks as in Section 5, except we number the main

shock (which is not necessarily the strongest shock at a given time) as the zeroth shock.

Our next theorem describes the following picture. Viewing the unstable manifold

W
u as a curve on the cylinder fx 2 S

1
; u 2 R

1g, the two-sided minimizer divides Wu

into left and right pieces. It turns out that all shocks correspond to double folds of Wu,

i.e., graph of a multi-valued function. A single-valued function is obtained by introducing

jump discontinuities which is a vertical cut on the double fold. These are the shocks

in the solution. The end points of the cut de�ne two points on W
u with the same x-

coordinate (namely the position of the shock) and the same value of the action A in (7.3).

If x denotes the position of the shock, then the end points of the cut are (x; u!+(x; 0))

and (x; u!
�
(x; 0)). Except for the main shock, the one-sided minimizers starting from

(x; u!+(x; 0)) and (x; u!
�
(x; 0)) approach the two-sided minimizer as t ! �1 from the

same side. However, for the main shock, they approach the two-sided minimizer from

di�erent sides. We formulate this as:

Theorem 7.2. Fix arbitrary t0 2 R
1 .

I Let (x(s); u(s)) 2 W
u. (x(s); u(s)) gives rise to a one-sided minimizer if and only

if A(s) = �A(x(s)). With probability 1, �A(x) is de�ned for all x 2 S
1, i.e. the

minimum in (7.4) is attained. Moreover �A is a continuous function on S
1.
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II Let xi be the position of the i-th shock, i� 1 (not the main shock!). Then there

exists an interval `i = [si; si] such that

si = minfs: x(s) = xi; A(s) = �A(xi)g

si = maxfs: x(s) = xi; A(s) = �A(xi)g

`i lies either to the left or to the right of the two-sided minimizer, i.e. s = 0 =2 `i,

i� 1. `i\`j = ;, i 6= j. If we denote by ~x the x-coordinate of points on the unstable

manifold lifted to the universal cover, then ~x(si) = ~x(si).

III The main shock corresponds to the only point z(t0; !) 2 S
1 such that there exist

s
(1)

< 0, s(2) > 0 for which A(s(1)) = A(s(2)) = �A(z(t0; !)), x(s
(1)) = x(s(2)) =

z(t0; !). Denote

S = maxfs < 0: x(s) = z(t0; !); A(s) = �A(z(t0; !))g

S = minfs > 0: x(s) = z(t0; !); A(s) = �A(z(t0; !))g :

Then, ~x(S)� ~x(S) = 1.

IV Let �! = [S; S)r [
i� 1

[si; si). Then for almost all ! the graph of u!+(x; 0), x 2 S
1

coincide with f(x(s); u(s)), s 2 �!g.

Proof.

I. Clearly minimizers correspond to minima of A when the x coordinate is �xed. Since

with probability 1, minimizers exist for all x 2 S
1, �A(x) attains its minimum. Since the

set of minimizers is closed, �A(x) is continuous.

II. For every shock (except the main shock), denote by si, si the values of the param-

eter s corresponding to the left-most and right-most minimizers. Since both the left-most

and right-most minimizers approach the two-sided minimizer from the same side, the in-

terval li = [si; si] does not contain s = 0. Since minimizers do not intersect, the intervals

`i do not intersect. It follows from Theorem 7.1 that all shocks, except the main shock,

have �nite past history. Notice that, at the moment of creation of a shock, si = si. Hence,
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~x(si) = ~x(si). Since ~x(si)� ~x(si) is a continuous function of time between merges and it

takes only integer values, ~x(si)� ~x(si) � 0 for all shocks except the main shock.

III. The main shock is the only shock for which the two extreme one-sided minimizers

approach the two-sided minimizer from di�erent sides. Thus [S; S] has non-empty interior.

Clearly the intervals `i constructed above belong to [S; S]. As a consequence of periodicity,

we have ~x(S) = 1 + ~x(S).

IV. IV follows easily from I-III. �

We next prove that for �xed time t0 the number of shocks is �nite. Consider time t0�1.

Although the position of the two-sided minimizer at time t0 � 1 is not measurable with

respect to Ft0�1
�1

, the position of the main shock and the unstable manifold are measurable

with respect to Ft0�1
�1

. Consider the unstable manifold W
u(t0) at time t0 as the image of

W
u(t0 � 1) under the time-1 stochastic ow G1 = G

�t0�1!
1 :

W
u(t0) = f(x(s); v(s)) = G1(y(s); w(s)); (y(s); w(s)) 2W

u(t0 � 1); s 2 R
1g (7.5)

Let E be the event that there exists s0 2 R
1 such that dx

ds
(s0) =

d2x
ds2

(s0) = 0.

Lemma 7.3.

PfEjFt0�1
�1

g = 0

for almost all conditions.

Proof. Consider an arbitrary interval [s1; s2]; s1; s2 2 R
1 . Denote by E1 the event that

there exists s0 2 [s1; s2] such that dx
ds
(s0) = d2x

ds2
(s0) = 0. It is enough to show that

PfE1jF
t0�1
�1

g = 0 for all s1; s2. Let G1 = (G
(1)
1 ; G

(2)
1 ). We have

dx

ds
=

@G
(1)
1

@y

dy

ds
+
@G

(1)
1

@w

dw

ds
;
dv

ds
=

@G
(2)
1

@y

dy

ds
+
@G

(2)
1

@w

dw

ds

d
2
x

ds2
=

@
2
G
(1)
1

@y2

�
dy

ds

�2

+ 2
@
2
G
(1)
1

@y@w

dy

ds

dw

ds
+
@
2
G
(1)
1

@w2

�
dw

ds

�2

(7.6)

+
@G

(1)
1

@y

d
2
y

ds2
+
@G

(1)
1

@w

d
2
w

ds2
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Denote by

A(!) = max
s1 � s� s2

�����@kG
(1;2)
1

@yi@wj
(y(s); w(s))

���� ;
���� dds

�
@
k
G
(1;2)
1

@yi@wj
(y(s); w(s))

����� ;
1 � k � 2; i+ j = k; i� 0; j � 0

�

B(!) = max
s1 � s� s2

�
1;
���d2y
ds2

���; ���d2w
ds2

����
(7.7)

Notice that B(!) is measurable with respect to Ft0�1
�1

. Take small " > 0 and divide the

interval [s1; s2] into subintervals of length ". Denote by s(j), 1� j �
�
s2�s1

"

�
+ 2, the end-

points of the elements of the partition. Assume that there exists s0 2 [s(j); s(j+ 1)], such

that dx
ds
(s0) =

d2x
ds2

(s0) = 0. Then

���dx
ds

(s(j))
��� = ���dx

ds
(s0) +

d
2
x

ds2
(�)(s(j)� s0)

��� = ���d2x
ds2

(�)(s(j)� s0)
���; (7.8)

where � 2 (s(j); s0). Denote by

V ("; !) = max
s1 � s0;s00 � s2;js0�s00j� "

�����dyds (s0)� dy

ds
(s00)

����;
����dwds (s0)� dw

ds
(s00)

���� ;����d2yds2
(s0)�

d
2
y

ds2
(s00)

����;
����d2wds2 (s0)� d

2
w

ds2
(s00)

����
�

(7.9)

Obviously V ("; !) is measurable with respect to Ft0�1
�1

and V ("; !) ! 0 as " ! 0. Using�
dy

ds

�2
+
�
dw
ds

�2
= 1 and (7.6) it is easy to show that for all s1 � s

0
; s
00
� s2; js

0 � s
00j� "

����d2xds2
(s0)�

d
2
x

ds2
(s00)

�����A(!)(10V ("; !) + 2"B(!) + 4") (7.10)

Notice that j� � s0j� ". Hence, using (7.8), (7.9), we have���dx
ds

(s(j))
����A(!)(10V ("; !) + 2"B(!) + 4")" (7.11)

Fix arbitrary � > 0. We will show that the conditional probability that s0 exists is less

than � for almost all conditions. Clearly there exists a random constant K(!) > 0 which

is measurable with respect to Ft0�1
�1

such that

P (A(!) > K(!)jFt0�1
�1

) <
�

2
(7.12)
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for almost all conditions. If A(!)�K(!) then

���dx
ds

(s(j))
����T ("; !) = K(!)(10V ("; !) + 2"B(!) + 4")"; (7.13)

where T ("; !) is measurable with respect to Ft0�1
�1

.

Fix ~s 2 [s1; s2] and consider the random process xs(t) =
@x
@s
(t; ~s), vs(t) =

@v
@s
(t; ~s),

where (x(t; s); v(t; s)) = G
�t0�1!
t (y(s); w(s)). Clearly (xs(t); vs(t)) satis�es the stochastic

di�erential equation

_xs(t) = vs(t); xs(0) =
dy

ds
(~s)

_vs(t) =
X
k

f
0

k(x(t; ~s))xs(t) _Bk(t); vs(0) =
dw

ds
(~s)

(7.14)

It follows from Lemma B.9 that the joint probability distribution for
�
@x
@s
(1; ~s)

= xs(1);
@v
@s
(1; ~s) = vs(1)

�
has density p(xs; vs) which is uniformly bounded inside any

compact set for all ~s 2 [s1; s2]. If A(!)�K(!) then, as it follows from (7.6),

max
s1 � s� s2

max

����dx
ds

���; ���dv
ds

���� � 2K(!) (7.15)

Denote by O(!) = f(xs; vs) 2 R
2 : x

2
s + v

2
s � 8K

2(!)g, �"(!) = f(xs; vs) 2 R
2 : jxsj

�T ("; !)g. Let R(!) = max
s1 � ~s� s2

sup
(xs;vs)2O(!)

p(xs; vs). Then, for any ~s 2 [s1; s2] we have

P

��
@x

@s
(1; ~s);

@v

@s
(1; ~s)

�
2 O(!) \�"(!)jF

t0�1
�1

�
�R(!)(4K(!))2T ("; !) (7.16)

Clearly, R(!) is measurable with respect to Ft0�1
�1

. Using (7.12), (7.16), we have

P (E1jF
t0�1
�1

) �
�

2
+ 8K(!)R(!)T ("; !)

�h
s2 � s1

"

i
+ 1

�
(7.17)

Choose " so small that

8K2(!)R(!)"

��
s2 � s1

"

�
+ 1

�
(10V ("; !) + 2"B(!) + 4") �

�

2
:

Then, P (E1jF
t0�1
�1

)� � for almost all conditions. �

Lemma 7.3 easily implies the following theorem.
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Theorem 7.4. Fix t0 2 R
1 . With probability 1, the number of shocks at time t0 is �nite.

Proof. As above, consider the unstable manifold W
u(t0) parametrized by the arclength

parameter of the unstable manifold W
u(t0 � 1). Denote by S

0

; S

0

the values of the pa-

rameter corresponding to the main shock. For every shock at time t0 (except the main

shock) there exists an interval ` = [s0; s00] � [S
0

; S

0

], such that x(s0) = x(s00). Thus there

exists a point ŝ 2 (s0; s00) for which dx
ds
(ŝ) = 0. Notice that the intervals ` corresponding

to di�erent shocks do not intersect. If there are in�nitely many shocks, then there exists

an in�nite sequence of ŝi's in [S
0

; S

0

], such that dx
ds
(ŝi) = 0. Let s0 be an accumulation

point for the sequence fŝig. Obviously, dx
ds
(s0) =

d2x
ds2

(s0) = 0. It follows from Lemma

7.3 that the conditional probability for the existence of such an s0 is equal to zero. This

immediately implies the theorem. �
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x8. The Zero Viscosity Limit

In this section, we study the limit as "! 0 of the invariant measures for the viscous

equation
@u

@t
+

@

@x

�u2
2

�
=
"

2

@
2
u

@x2
+
@F

@x
(8.1)

Under the same assumptions on F , it was proved in [S2] that for " > 0, there exists a

unique invariant measure �" de�ned on the �-algebra of Borel sets of D. Furthermore,

as in the inviscid case studied in this paper, �" can be constructed as the probability

distribution of an invariant functional

u
!

"
(�; 0) = �"

0(!)(�) (8.2)

such that u!
"
is a solution of (8.1) when the realization of the forces is given by !. The

main result of this section is the following:

Theorem 8.1. With probability 1,

u
!

"
(x; 0)! u

!(x; 0) ;

for almost all x 2 S1, as " ! 0. More precisely, let x 2 I(!) = fy 2 [0; 1], there exists a

unique one-sided minimizer passing through (y; 0)g. Then

u
!

"
(x; 0)! u

!(x; 0) as "! 0 (8.3)

As a simple corollary, we have

Theorem 8.2. �" converges weakly to � as "! 0.

Our proof of Theorem 8.1 relies on the Hopf-Cole transformation: u!" = �"(log')x
where ' satis�es the stochastic heat equation

@'

@t
=
"

2

@
2
'

@x2
� 1

"
' � F (8.4)

As we explain in Appendix C, the product F �' should be understood in the Stratonovich

sense. The solution of (8.4) has the Feynman-Kac representation

'(x; t) = E

n
e
� 1
"

R
t

s
F (x+�(�);�)d�

'(x+ �(s); s)
o

(8.5)
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for s < t, where E denotes expectation with respect to the Wiener measure with variance

", �(t) = 0, andZ
t

s

F (x+ �(�);�)d� =
X
k

Fk(x+ �(t))Bk(t)�
X
k

Fk(x+ �(s))Bk(s)

�
X
k

Z
t

s

fk(x+ �(�))Bk(�)d�(�) : (8.6)

The integrals in (8.6) are understood in the Ito sense.

For x; y 2 R
1 , �1 > �2, de�ne

K"(x; �1; y; �2) = e

1
"

�P
k

Fk(x)Bk(�1)�
P
k

Fk(y)Bk(�2)

�

�
Z
e

1
"

P
k

R
�1
�2

fk(�(s))Bk(s)d�(s)

dW
(x;�1)

(y;�2)
(�)

where dW
(x;�1)

(y;�2)
(�) is the probability measure de�ned by the Brownian bridge: �(�1) = x,

�(�2) = y, with variance ". Using (8.5), for s < t, we can write the solution of (8.1) as

u
"(x; t) = �"

R 1
0

@

@x
M(x; t; y; s)e�

1
"
h
"(y;s)

dyR 1
0
M(x; t; y; s)e�

1
"
h"(y;s)

dy

(8.7)

where h"(y; s) =
R
y

0
u
"(z; s)dz, and

M(x; �1; y; �2) =

1X
m=�1

K"(x; �1; y +m; �2)

for x; y 2 [0; 1]. M is the transfer matrix for Brownian motion on the circle S1.

De�ne also

A(x; �1; y; �2) = inf
�(�1)=x;�(�2)=y

A�2;�1(�)

Lemma 8.1. For almost every ! 2 
, there exists a � = �(!) > 0, and C0 = C0(!) > 0,

such that
1

gm

�K"(x; �; z +m; 0)e
1
"
A(x;�;z+m;0) � gm (8.8)

for all x; z 2 [0; 1], m 2 N, where

gm =

(
C1(!); if (jmj+ 1) kFk� �C0(!)

C2(!)e
8(jmj+1)2

"
kFk2

�
�
; if (jmj+ 1) kFk� > C0(!)

(8.9)
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C1(!) and C2(!) are constants depending only on !, kFk� is de�ned in Appendix B.

Proof. We will assume m� 0. Let : [0; � ]! R
1 be a minimizer such that (0) = z +m,

(�) = x, and

A(x; �; z +m; 0) = A0;� ()

 satis�es the Euler-Lagrange equation:

Z
�

0

_(s)d�(s)�
Z

�

0

X
k

Bk(s)
�
f
0
k
((s)) _(s)ds+ fk((s))d�(s)

�
= 0 (8.10)

for test functions � on [0; � ]. Performing a change of variable � = +
p
"� in the functional

integral in K", we obtain, using (8.10) and the Cameron-Martin-Girsanov formula:

K"(x; �; z +m; 0) = e
� 1
"
A(x;�;z+m;0)

E �e
1
"
H (8.11)

where the exponent H is given by

H = H1 +
p
"H2

H1 =

Z
�

0

X
k

�
fk

�
 +

p
"�
�� fk()� f

0
k
()

p
"�
	
Bk(s) _(s)ds

H2 =

Z
�

0

X
k

Bk(s)
�
fk

�
 +

p
"�
�� fk()

	
d�(s) (8.12)

In (8.11), E� denotes expectation with respect to the standard Brownian bridge �(0) = 0,

�(�) = 0.

We now estimate H. A simple Taylor expansion to second order gives:

jH1j� "kFk� max
0� s� �

j _(s)j
Z �

0

�
2(s)ds (8.13)

Using Lemma B.1, we get for � = �(!)

jH1j� "kFk� C(!)(jmj+ 1)

�

Z
�

0

�
2(s)ds�C(!)"kFk� (jmj+ 1)(��)2 (8.14)
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where �� = max
0� s� �

�(s). For H2, we use the mean value theorem to write it in the form

1p
"
H2 =

Z
�

0

X
k

Bk(s)f
0
k

�
 +

p
"�k�

�
�(s)d�(s) = H21 +H22 (8.15)

where �k 2 [0; 1], H21 =
1p
"
H2 �H22 with

H22 =
�

2

Z
�

0

�X
k

Bk(s)f
0
k

�
 +

p
"�k�

��2
�
2(s)ds�

�

2
kFk2

�
�(��)2 (8.16)

We will choose the value of � later (� = 3 will su�ce). (8.14) and (8.16) can be combined

to give:
1

"
jH1j+ jH22j�C(!)kFk� (jmj+ 1)(��)2

The constant C(!) is changed to a di�erent value in the last step. Now we have

E� e
1
"
H = E� e

1
"
H1+H21+H22 �

�
E �e

C(!)kFk� (jmj+1)(��)2
�1=2 �

E� e
2H21

�1=2
(8.17)

Using the fact that for a > 0

P f�� > ag �
Cp
��

Z +1

a

e
� �

2

2� d� (8.18)

we have

E� e
C(!)kFk� (jmj+1)(��)2 � Constant (8.19)

if

C(!)kFk�(jmj+ 1) <
1

2�
: (8.20)

For the second factor in (8.17), we use the inequality (see [McK])

PfH21 > �g < e
��� (8.21)

Then

E �e
2H21 �

1X
N=0

e
2(N+1)

PfH21 > Ng �
1X
N=1

e
2(N+1)��N

< +1 (8.22)

if we choose � > 2.
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When m violates (8.20), we estimate H1 using Lemma B.1:

H1 =
p
"

Z
�

0

X
k

Bk(s)
�
f
0
k

�
 +

p
"�k�

�� f
0
k
()

�
�(s) _(s)ds (8.23)

jH1j� 2
p
" kFk� (jmj+ 1)

�

Z �

0

j�(s)jds � 2
p
" kFk� (jmj+ 1)�� (8.24)

Hence

E �

�
e
1
"
H1

�2
�C(!)

Z +1

0

e

4(jmj+1)p
"

kFk�
p
� ���

2

2 d� (8.25)

�C(!)e
16(jmj+1)2

"
kFk2

�
�

As before we have then

E� e
1
"
H �C(!)e

8(jmj+1)2
"

kFk2
�
�

These give the upper bounds.

Similarly we can prove the same bounds for (E�e
1
"
H)�1. This completes the proof of

Lemma 8.1. �

It is easy to see that for �xed � , z and m, A(x; �; z +m; 0) is di�erentiable at x, if

and only if there exists a unique minimizer  such that A(x; �; z + m; 0) = A0;� () and

(�) = x, (0) = z +m. In this case we have

_(�) =
@

@x
A(x; �; z +m; 0)

When the minimizer is not unique, A(x; �; z + m; 0) has both left and right derivatives.

Moreover

D
+
x
A(x; �; z +m; 0) = _+(�)

D
�
x
A(x; �; z +m; 0) = _�(�)

where + and � are the right-most and left-most minimizers. In either case, let us de�ne

v(x; z +m; �) = D
�
x A(x; �; z +m; 0)

We have
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Lemma 8.2. The following inequality holds:��� 1

K"(x; �; z +m; 0)

�
"
@K"

@x
(x; �; z +m; 0) + v(x; z +m; �)K"(x; �; z +m; 0)

����
�
p
" kFk�gm

where gm was de�ned in Lemma 8.1.

Proof. For simplicity, we will write Km = K"(x; �; z + m; 0), vm = v(x; z + m; �). A

straightforward computation gives

"
@Km

@x
= e

� 1
"

P
k

Fk(x)Bk(�)
Z
G(�)e

1
"

P
k

R
�

0
fk(�(s))Bk(s)d�(s)

dW
(x;�)

(z+m;0)
(�) (8.28)

where

G(�) = �
X
k

fk(x)Bk(�)� x� (z +m)

�
+
X
k

Z
�

0

Bk(s)
h
f
0
k
(�)

s

�
d� + fk(�)

1

�
ds

i
;

(8.29)

and

"
@Km

@x
+ vmKm=e

� 1
"

P
k

Fk(x)Bk(�)
Z
(G(�)�G(�))e

1
"

P
k

R
�

0
fk(�(s))Bk(s)d�(s)

dW
(x;�)

(z+m;0)
(�)

Performing a change of variable � = � +
p
"�, we get

"
@Km

@x
+ vmKm = e

� 1
"
A(x;�;z+m;0)

E�

�
(G(� +

p
"�)�G(�))e

1
"
H

�
(8.30)

where H is de�ned as before. Write G(� +
p
"�)�G(�) as

G(� +
p
"�)�G(�) =

p
"

�

X
k

�Z �

0

Bk(�)f
00
k
(� + �k

p
"�)s�(s) _�(s)ds

+

Z
�

0

Bk(s)f
0
k
(� +

p
"�)sd�(s) +

Z
�

0

Bk(�)f
0
k
(� + �k

p
"�)�(s)ds

�

We can then follow the steps in the proof of Lemma 8.1 to establish (8.27). �

Remark. The estimates in Lemmas 8.1 and 8.2 are proved for the time interval [0; � ]. It

is easy to see that they hold for arbitrary intervals of the type [t; t + � ] and [t � �; t] by

choosing suitable � which in general depend on t. For t in a compact set, we can choose �

to be independent of t such that (8.8) holds.

Our next lemma gives uniform estimates of u".
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Lemma 8.3. There exist positive constants "0(!; t), C(!; t), such that

ju"
!
(x; t)j�C(!; t) (8.31)

for x 2 [0; 1], 0 < "� "0(!; t). Furthermore, "0( � ; t) and C( � ; t) are stationary random

processes in t.

Proof. The basic idea is to use the fact that for " small, the functional integral is concen-

trated near minimizers whose velocities are estimated in Lemma B.1. We will prove (8.31)

for t = 0 by working on the time interval [��; 0] where � was de�ned in Lemma 8.1. It

will be clear that the proof works with little change for arbitrary t.

Let N =
C0(!)

kFk�
, where C0(!) was de�ned in Lemma 8.1. Denote A

�(x; z; �) =

= inf
m2N

A(x; 0; z +m;��) for x; z 2 [0; 1]. It is easy to see that for � � 1,

A(x; 0; z +m;��)� A
�(x; z; �)�

1

3

(jmj+ 1)2

�
� C(!) (8.32)

for jmj > N .

Again for simplicity of notation, we will denote Km = K"(x; 0; y +m;��), �(dy) =
e
� 1

"
h
"(y;0)

dy. Using Lemma 8.2 and (8.7), we have

ju"(x; 0)j� I1 +
p
"kFk�I2

where

I1 =

P
m

R 1
0
vmKm�(dy)P

m

R 1
0
Km�(dy)

I2 =

P
m

R 1
0
gmKm�(dy)P

m

R 1
0
Km�(dy)

(8.33)

For jmj > N , we can use (8.32) and Lemma 8.1 to get

Km � e�
1
"
A(x;0;y+m;��)

gm

�C(!)e�
1
"
A
�(x;y;�)

e
� 1

3"

(jmj+1)2
�

+
8(jmj+1)2

"
kFk2

�
�

�C(!)�
1
"
A
�(x;y;�)

e
� 1

4"

(jmj+1)2
�
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if � is small enough. Hence we get, using the fact that jvmj� C(!)(jmj+1)
�

jI1j�

P
jmj<N

R 1
0
jvmjKm�(dy)

P
m

R 1
0
Km�(dy)

+

P
jmj>N

R 1
0
jvmjKm�(dy)

P
m

R 1
0
Km�(dy)

� C(!)N � 1
�
+ C(!)

� P
jmj>N

C(!)(jmj+1)
�

e
� 1

4"

(jmj+1)2
�

� R 1
0
e
� 1

"
A
�(x;y;�)

�(dy)

R 1
0
e
� 1
"
A�(x;y;�)

�(dy)

� C(!)

In the last step we used the fact that � depends only on !. Similarly

jI2j � C(!) +

P
jmj>N

R 1
0
gmKm�(dy)

P
m

R 1
0
Km�(dy)

� C(!)

where we used

Kmgm �C(!)e�
1
"
A
�(x;y;�)

e
� 1

4"

(jmj+1)2
�

if � is small enough. This completes the proof of Lemma 8.3. �

De�ne for C > 0

QC =
n
h 2 Lip[0; 1]; such that (8.34)

h(y) =

Z
y

0

u(z)dz; juj�C;
Z 1

0

u(z)dz = 0
o
:

Take x 2 I(!). Denote the unique minimizer that passes through (x; 0) by �
�. For

h 2 QC , T < 0, de�ne the modi�ed action as

A
h

T;0(�) = AT;0(�) + h(�(T )) (8.35)

and denote by ���
h

the minimizer of Ah
T;0. Obviously �

��
h

in general depends on h and T .
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Lemma 8.4. Fix a constant C > 0. For any � > 0, there exists T � = T
�(�) < 0, such

that

j _���
h
(0)� _��(0)j < �

2
(8.36)

for T < T
� and all h 2 QC (T � in general depends on C).

Proof. Assume to the contrary that there exists a sequence Tj ! �1, hj 2 QC , such that

j _���
hj
(0)� _��(0)j� �

2

Then from Lemma 3.3, the f _���
hj
(0)g's are uniformly bounded and we can choose a sub-

sequence, still denoted by f���
hj
g, such that ���

hj
converges (uniformly on compact sets of

(�1; 0] and _���
hj
(0)! _~�(0) to a limiting path ~� de�ned on (�1; 0]. From Lemma 3.6, ~� is

also a one-sided minimizer. Since ~�(0) = x, and

j _~�(0)� _��(0)j� �

2

this violates the assumption that there exists a unique one-sided minimizer passing

through (x; 0).

Lemma 8.5. Fix a constant C > 0. There exists a function �(�) de�ned on (0;+1) ,

� > 0, with the following properties: For any � > 0, one can �nd a T
� = T

�(�) < 0,

such that for any path � de�ned on [T �; 0], with �(0) = x, the inequality j _�(0)� _��(0)j > �

implies

jAh
T�;0(�)�AhT�;0(���h )j > �(�) (8.37)

for all h 2 QC .

Proof. Assume to the contrary that there exists a � > 0, and a sequence fTjg, Tj ! �1,

hj 2 QC , and �j de�ned on [�Tj ; 0], such that j _�j(0)� _��(0)j > �, and

���AhjT�
j
;0(�j)�AhjT�

j
;0(�

��
hj
)
��� < 1

j
(8.38)

From the estimates proved in Section 3, f _�j(0)g are uniformly bounded. Therefore we can

choose a subsequence, still denoted by f�jg, such that �j converges (uniformly on compact
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sets of (�1; 0] and _�j(0) ! _~�(0)) to ~� de�ned on (�1; 0]. From (8.38), ~� is also a one-

sided minimizer. Since ~�(0) = x, j _~�(0)� _��(0)j > �, we arrive at a contradiction with the

assumption that there exists a unique one-sided minimizer passing through (x; 0).

Now we are ready to prove theorem 8.1.

Proof of Theorem 8.1. Fix an x 2 I(!). Denote by �
� the unique one-sided minimizer

passing through (x; 0). Take � > 0. From Lemmas 8.4 and 8.5 we can �nd a T � < 0, such

that (8.36) and (8.37) hold.

Let n be a su�ciently large integer (depending only on ! and T
�), such that the

estimates in Lemma 8.1 hold on the intervals [(k+1)s; ks] where s = T
�
n
, k = 0; 1; : : : ; ; n�1.

Using Lemma 8.2, we have (� = �s)

u
"(x; 0) = �"

R 1
0

@

@x
M(x; 0; y; T �)�(dy)R 1

0
M(x; 0; y; T �)�(dy)

where

�(dy) = �1

"
h(y); h(y) =

Z y

0

u
"(z; T �)dz

Hence

u
"(x; 0) =

�" R 1
0

R 1
0

@

@x
M(x; 0; z1; s)M(z1; s; y; T

�)dz1�(dy)R 1
0

R 1
0
M(x; 0; z1; s)M(z1; s; y; T �)dz1�(dy)

=

R 1
0

R 1
0

�P
m

v(x; 0; z1 +m; s)K"(x; 0; z1 +m; s)
�
M(z1; s; y; T

�)dz1�(dy)R 1
0

R 1
0

�P
m

K"(x; 0; z1 +m; s)
�
M(z1; s; y; T �)dz1�(dy)

+ O(1)
p
"kFk�

R 1
0

R 1
0

�P
m

gmK"(x; 0; z +m; s)
�
M(z1; s; y; T

�)dz1�(dy)R 1
0

R 1
0

�P
m

K"(x; 0; z +m; s)
�
M(z1; s; y; T �)dz1�(dy)

= I3 +O(1)
p
"kFk�I4
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where O(1) denotes a uniformly bounded quantity. As in the proof of Lemma 8.3, we can

show:

jI4j�C(!)N =
C(!)C0(!)

kFk�
For zk; zk+1 2 [0; 1] we have, using Lemma 8.1,

M(zk; ks; zk+1; (k + 1)s) =
X

jmj<N

K"(zk; ks; zk+1 +m; (k + 1)s)

+
X

jmj>N

K"(zk; ks; zk+1 +m; (k + 1)s)

� e�
1
"
A
�(zk;ks;zk+1;(k+1)s)

�
C(!)N +

X
jmj>N

e�
(jmj+1)2

3"
+

8(jmj+1)2

"
kFk2

�
�

�

�C(!)Ne�
1
"
A
�(zk;ks;zk+1;(k+1)s)

Let x = z0, y = zn, we obtain for �xed fz0; z1; z2; : : : ; zng,
n�1Y
k=1

M(zk; ks; zk+1; (k + 1)s)� (C(!)N)ne
� 1
"

n�1P

k=0

A
�(zk;ks;zk+1;(k+1)s)

Denote by
R 0
dz1

P0

m

and
R 00

dz1
P00

m

summation and integration over the sets of (z1;m)

such that jvm� _��(0)j > � and jvm� _��(0)j < � respectively, where vm = v(x; 0; z1+m; s).

From Lemma 8.4, the second sum and integral
R 00

dz1
P00

m

cover the set jvm � _���
h
(0)j < �

2
.

We have

I5 =

Z 0

dz1
X0

m

K"(x; 0; z1 +m; s)M(z1; s; y; T
�)�(dy)

=

Z 0

dz1
X0

m

K"(x; 0; z1 +m; s)

Z
[0;1]n�1

n�1Y
k=1

M(zk; ks; zk+1; (k + 1)s)dz2 : : : dzn�(dy)

� (C(!)N)n
Z 0

dz1
X0

m

Z
[0;1]n�1

e
� 1
"
(A(x;0;z1+m;s)+

n�1P
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A
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dz2 : : : dzn
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Z
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e
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"
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A
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� (C(!)N)ne�
1
"
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T�;0(�
��

h
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In the last step, we used (8.39). On the other hand, there exists a �2 > 0, such that if

jz � ���
h
(s)j < �2, then

jv(x; 0; z; s)� _���
h
(0)j < �

2

Choose a �1 > 0, such that �1 < �2; �1 <
�(�)

2nC3(!)
, C3(!) to be de�ned later. Using Lemma

8.4 we get

I6 =

Z 00

dz1
X00

m

K"(x; 0; z1 +m; s)M(z1; s; y; T
�)�(dy)

�

Z
jzk��

��

h
(ks)j<�1

nY
k=1

K"(zk�1; (k � 1)s; zk; ks)e
� 1
"
h(zn)dz1 : : : dzn

�
1

C(!)n

Z
jzk��

�

h
(ks)j<�1

e
� 1
"

�
nP

k=1

A
�(zk�1;(k�1)s;zk;ks)+h(zn)

�
dz1 : : : dzn

It is easy to see that if jzk � ��
h
(ks)j < �1, jzk�1 � ��

h
((k � 1)s)j < �1, then

jA�(zk�1; (k � 1)s; zk; ks)�Aks;(k�1)s(�
��
h
)j�C3(!)�1

and if jzn � ���
h
(T �)j < �1, then

jh(zn)� h(���
h
(T �))j�C3(!)�1

C3(!) is de�ned by the above estimates. Hence we have

I6 �
1

C(!)n
�n1 e

� 1
"
(Ah

T�;0(�
��

h
)+nC3(!)�1)

Therefore ���I5
I6

����C(!)2n �Nn��n1 e�
1
2"
�(�)

Similarly, if we de�ne

I7 =

Z 0

dz1
X0

m

v(x; 0; z1 +m; s)K"(x; 0; z1 +m; s)M(z1; s; y; T
�)�(dy)

I8 =

Z 00

dz1
X00

m

v(x; 0; z1 +m; s)K"(x; 0; z1 +m; s)M(z1; s; y; T
�)�(dy)
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then we can also get ���I7
I6

����C(!)2nNn��n1 e�
1
2"
�(�)

Finally we obtain

ju"(x; 0)� _��(0)j�
���I7 + I8 � ��(0)(I5 + I6)

I5 + I6

���+p
"C(!)kFk�

�

���I8 � ��(0)I6

I6

���+ jI7j
I6

+ j _�(0)jI5
I6

+
p
"kFk�C(!)

� � + C(!)2nNn��n1 e�
1
2"
�(�) +

p
"kFk�C(!)

� � + � = 2�

if we choose " su�ciently small. This completes the proof of Theorem 8.1. �

69



Appendix A. Proof of Lemma 2.1 for the Random Case

In this appendix we comment on the proof of Lemma 2.1 for the random case. Let

F �(x; t) =
P1

k=1 Fk(x)
_B�

k
(t), where B�

k
is the standard molli�cation of Bk. Denote by

u�(x; t) the unique entropy solution of

@u

@t
+

@

@x

�u2
2

�
=

@F �

@x
(A.1)

with the initial data u(x; t0) = u0(x). We will assume that ku0kL1 � Const,
R 1
0
u0(z)dz =

0. From classical results [Li] we know that u�(x; t) is given by

u�(x; t) =
@

@x
inf

�: �(t)=x

n
A
�

t0;t
(�) +

Z
�(t0)

0

u0(z)dz
o
; (A.2)

where

A
�

t0;t
(�) =

Z
t

t0

1

2
_�(s)2ds+

Z
t

t0

1X
k=1

Fk(�(s))dB
�

k
(s)

=

1X
k=1

Fk(�(t))(B
�

k
(t)� B�

k
(t0))

+

Z
t

t0

 
1

2
_�(s)2 �

1X
k=1

fk(�(s)) _�(s)(B
�

k
(s)� B�

k
(t0))

!
ds : (A.3)

It is easy to see that the boundary terms at the right hand side of (A.3) resulted from

integration by parts do not a�ect the variational formula (A.2) and can be neglected.

Denote

U(x; t) = inf
�: �(t)=x

n
At0;t

(�) +

Z
�(t0)

0

u0(z)dz
o

(A.4)

and

U �(x; t) = inf
�: �(t)=x

n
A
�

t0;t
(�) +

Z
�(t0)

0

u0(z)dz
o
: (A.5)

It is clear that U(x; t) is well de�ned, i.e. the variational problem in (A.4) does have a

solution. We will show that u�(x; t) ! u(x; t) = @U

@x
(x; t) in L1

loc(S
1 � [t0;1)) as � ! 0

and consequently u(x; t) is a weak entropy solution of (1.1). This follows from
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Lemma A.1. For almost all !, there exist c1, c2, c3, depending only on !, t and t0, such

that

kU �( � ; t)� U( � ; t)kL1(S1) � c1(!; t; t0)�
1=3; (A.6)

ku�( � ; t)kL1(S1) � c2(!; t; t0) ; (A.7)

and

ku�( � ; t)kBV (S1) � c3(!; t; t0) (A.8)

where BV (S1) is the space of functions on S1 with bounded variation.

Proof. For any � 2 C1[t0; t] we have

jA�

t0;t
(�)�At0;t

(�)j�
X
k

Z
t

t0

jfk(�(s))j j _�(s)j jB�

k
(s)� Bk(s)jds

For almost every !, fBk( � )g is C
1
3 for all k. Hence

jB�

k
(s)� Bk(s)j�C(!)�1=3

This gives

jA�

t0;t
(�)�At0;t

(�)j� max
t0 � s� t

j _�(s)jC(!)�1=3(t� t0) (A.9)

Denote by ��
�
and �� the minimizers in (A.5) and (A.4) respectively. We have, using

Lemma B.1,

U �(x; t)� U(x; t) = A�

t0;t
(��
�
) +

Z
�
�

�
(t0)

0

u0(z)dz �
�
At0;t

(��) +

Z
�
�(t0)

0

u0(z)dz
�

�A
�

t0;t
(��) +

Z
�
�(t0)

0

u0(z)dz �
�
At0;t

(��) +

Z
�
�(t0)

0

u0(z)dz
�

� max
t0 � s� t

j��(s)jC(!)�1=3jt� t0j
�C(!; t; t0)�

1=3

Similarly,

U(x; t)� U �(x; t)�C(!; t; t0)�
1=3
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To prove (A.7) we use the theory of backward characteristics (see [D]). If (x; t) is a

point of continuity of u�( � ; t), then there exists a unique backward characteristic  coming

to (x; t) and for s 2 [t0; t]

u�((s); s) = u0((t0); t0) +

1X
k=1

�
Fk((s))B

�

k
(s)� Fk((t0))B

�

k
(t0)
�

�
Z

s

t0

1X
k=1

fk((r))u
�((r); r)B�

k
(r)dr : (A.10)

Hence

ju�((s); s)j� ju0((t0); t0)j+ c(!) + c(!)

Z
s

t0

ju�((r); r)jdr (A.11)

and ju�((t); t)j� c2(!; t� t0). Since the points of continuity form a set of full measure in

S
1, we have (A.7).

Now consider two points of continuity for u�( � ; t), x1 and x2, and let 1(s) and

2(s) be the characteristics coming to (x1; t) and (x2; t) respectively. For i = 1; 2 denote

ui(s) = u�(i(s); s). Then

d

ds

�
u1 � u2

1 � 2

�
= �

�
u1 � u2

1 � 2

�2

+
1

1 � 2

d

ds
(u1 � u2)

= �
�
u1 � u2

1 � 2

�2

+

1X
k=1

�Z 1

0

fk(1 + r(2 � 1))dr

�
dB�

k
(r)

(A.12)

using mean value theorem and (2.3). This implies
u1 � u2

1 � 2
� c(!) since it solves an equation

of the form _y = �y2 + C. Together with (A.7) gives (A.8). �

Lemma A.2. For almost every !, the sequence u� converges in L1
loc(S

1 � [t0;1)) to a

limit u as � ! 0. Moreover u(x; t) = @

@x
U(x; t) and u is an entropy weak solution of (1.4).

Proof. Integrating (A.1) on S1� [t; t+ � ], we getZ 1

0

dxju�(x; t+ �)� u�(x; t)j� 1

2

Z
t+�

t

dsk(u�)2kBV (S1)+

+
X
k

jBk(t+ �)�Bk(t)j
Z 1

0

jfk(x)jdx

�C1(!)� + C2(!)�
1=3

72



In the last step, we used Lemma A.1 and the H�older continuity of the Wiener process.

Hence u� is uniformly continuous in t, viewed as a function of t in L1(S1). Therefore there

exists a subsequence, still denoted by u�, and u 2 L1loc([t0;1); BV (S1))\C([t0;1); L1(S1))

such that

u� ! u in L1
loc(S

1� [t0;1)) ;

as � ! 0. From (A.6), we have

u =
@U

@x
:

From (A.8), the convergence also takes place in L
p

loc(S
1� [t0;1)) for p < +1. Hence u is

an entropy weak solution of (1.4). �

Finally, observe that the solution operator for the molli�ed problem is order preserving,

i.e. u�1( � ; t0)�u�2( � ; t0) implies u�1( � t)�u�2( � ; t) for t� t0. Therefore the limiting solution,

as � ! 0, is also order preserving. Together with the conservation properties, we see that

the solution operator is contractive in L1(S1) by the Crandall-Tartar Lemma [CT]

ku1( � ; t)� u2( � ; t)kL1(S1) � ku1( �; t0)� u2( �; t0)kL1(S1) : (A.13)

This implies uniqueness of order-preserving weak solutions. In particular, since the solu-

tions obtained in the zero-viscosity limit of (1.1) is also order-preserving, as a consequence

of the comparison principle, we conclude that u = @

@x
U is the viscosity limit.
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Appendix B. Some Technical Estimates

Denote by (x(t;x0; v0); v(t;x0; v0)) the solution of (2.3) with initial data x(0;x0; v0) =

x0, v(0;x0; v0) = v0. Sometimes we will also use the abbreviation (x(t); v(t)). Consider

the stochastic ow G!

t
de�ned by

G!

t
(x0; v0) = (x(t;x0; v0); v(t;x0; v0)) (B.1)

Since fk 2 Cr the stochastic ow G!

t
is Cr smooth with probability 1. For � > 0 and

! 2 
, de�ne �� to be the set of � -minimizers,

�� = f 2 C1[��; 0];(0); (��) 2 S1; (B.2)

A��;0() = min
�(0)=(0)

�(��)=(��)

A��;0(�)g

We shall also consider the case when endpoints belong to the universal cover R1 , rather

than S1. Denote

��;m = f 2 C1[��; 0]; 0� (0)� 1;m� (��)� (m+ 1); (B.3)

A��;0() = min
�(0)=(0)

�(��)=(��)

A��;0(�)g

Of course �� ;��;m depends on !. Let V� (!) = sup
2��

j _(0)j; V�;m(!) = sup
2��;m

j _(0)j,
�V� (!) = sup

2��

max
�� � s� 0

j _(s)j; �V�;m(!) = sup
2��;m

max
�� � s� 0

j _(s)j. In Lemma 3.3 it was shown

that V� (!)�C(!) for � �T (!). We consider now the case of small � .

Lemma B.1. There exists a constant �(!) such that for 0 < � < �(!)

V� (!)� �V� (!)�
2

�
(B.4)

Furthermore, for any m 2 Z1

V�;m(!)� �V�;m(!)�
2(jmj+ 1)

�
: (B.5)
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Proof. The proof is similar to the proof of Lemma 3.3. Let

kFk� = max
�� � s� 0

X
k

kFk(x)kC3(S1)jBk(s)� Bk(0)j (B.6)

For arbitrary solutions of (2.3), (x(t); v(t)), t 2 [��; 0], if we denote (t) = x(t), v0 = j _(0)j,
v = max

�� � t� 0
j _(t)j, then we have

v � v0 + kFk� + kFk��v (B.7)

or

v �
v0 + kFk�
1� kFk�� (B.8)

provided that kFk�� < 1. Now

j _(t)� _(0)j� kFk� + kFk�v� � kFk� (1 + v0�)

1� kFk�� (B.9)

Assume that � � 1 is small enough so that kFk� � � where � will be chosen later. Then we

have

v �
v0 + �

1� �
(B.10)

j _(t)� _(0)j� �(v0 + 1)

1� �
(B.11)

Thus, provided that v0 � 1, we have

j _(t)j� 1� 3�

1� �
v0 (B.12)

for t 2 [��; 0]. From (B.12), we get

A��;0()�
1

2

�1� 3�

1� �

�2
v20� � kFk��v � kFk� � 1

2

�1� 3�

1� �

�2
v20� �

�

1� �
(v0 + 1)

Let 1 be the straight line such that 1(0) = (0), 1(��) = (��). Then

A��;0(1)�
l2

2�
+ lkFk� + kFk� � l2

2�
+ (l + 1)�;
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where l = j1(0)� 1(��)j. Since A��;0(1)�A��;0(), one can easily show that v0 �
3l
2�

if l � 1 and �� 1
40
. If l < 1, then

A��;0(1)�
1

2�
+ 2kFk� � 1

2�
+ 2�;

which together with A��;0(1)�A��;0() gives v0 �
3
2�

if �� 1
40

and � � 1. It follows that

V� (!)�
3
2�
; �V� (!)�

2
�
and V�;m(!)�

3(jmj+1)

2
; �V�;m(!)�

2(jmj+1)

�
.

In summary �(!)�1 can be chosen such that kFk�(!) � 1
40
. �

Lemma B.2. For any K > 1, there exists ��(!) > 0, such that for all 0 < � � ��(!)

kDiG!

t
(x; v)k�K (B.13)

for 1� i� r, jvj�V� (!) + 1, x 2 S1, t 2 [��; 0].

Proof. We will prove Lemma B.2 for i = 1. For 2� i� r the proof is similar.

Consider the Jacobi matrix

DG!

t
=

�
J11(t); J12(t)

J21(t); J22(t)

�

where

J11(t) =
@x(t)

@x0
; J12(t) =

@x(t)

@v0
; J21(t) =

@v(t)

@x0
; J22(t) =

@v(t)

@v0
:

Obviously (J11; J12) and (J21; J22) satisfy

( _J11(t) = J21(t)

_J21(t) =
P
k

fk(x(t))J11(t) _Bk(t)
(B.14)

J11(0) = 1; J21(0) = 0; and

( _J12(t) = J22(t)

_J22(t) =
P
k

fk(x(t))J12(t) _Bk(t)
(B.15)

J12(0) = 0; J22(0) = 1.
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Consider �rst (B.14). Let J(�) = max
�� � s� 0

jJ21(s)j. Then

jJ11(s)j� 1 + J(�)� (B.16)

for s 2 [��; 0].

J21(s) =

Z 0

s

X
k

fk(x(t))J11(t)dBk(t) (B.17)

= �
X
k

fk(x(s))J11(s)Bk(s)�
Z 0

s

X
k

f 0
k
(x(t))v(t)J11(t)Bk(t)dt

�
Z 0

s

X
k

fk(x(t))J21(t)Bk(t)dt

Using (B.8),(B.4) we have

max
�� � s� 0

jv(s)j� v0 + kFk�
1� kFk�� �

3

�
(B.18)

if � is su�ciently small. Therefore

J(�)� kFk�
�
1 + J(�)�

�
+ 3kFk�

�
1 + J(�)�

�
+ kFk��J(�) : (B.19)

It follows from (B.19) that

J(�)�
4kFk�

1� 5kFk�� ! 0

and

jJ11(s)� 1j�J(�)� ! 0

as � ! 0. Hence we have

jJ11(s)j; jJ21(s)j�K

for s 2 [��; 0], if � is su�ciently small. In the same way, we can prove

jJ12(s)j; jJ22(s)j�K

for s 2 [��; 0] if � is su�ciently small. This completes the proof of Lemma B.2. �

Denote B� = f(x; v); x 2 S
1; jvj�V� (!) + 1g, and B� (t) = G!

t
B� , for t 2 [��; 0].

Then similar to Lemma B.2, we have
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Lemma B.3. For any K > 1, there exists ~�(!) > 0, such that for all 0 < � � ~�(!)

kDi(G!

t
)�1(x; v)k�K (B.20)

for 1� i� r, (x; v) 2 B� (t), t 2 [��; 0].

Proof. Lemma B.3 follows immediately from Lemma B.2 together with the estimate

kDG!

t
(x; v)� Ik� max

�
5kFk�

1� 5kFk�� ;
�

1� 5kFk��
�

(B.21)

for t 2 [���(!); 0], (x; v) 2 B� . (B.21) can be proved in the same way as (B.19). �

We will denote by �r;K(!) the maximum value of ��(!) such that both (B.13) and

(B.20) hold for all � � ��(!).

Let OT (!) = f(x0; v0); jv(t;x0; v0)j� sup
2��

jv(t)j+ 1, for t 2 [�T; 0]g and OT (t; !) =

G!

t
OT (!). De�ne

DT;r(!) = sup
�T � t� 0

sup
(x;v)2OT (!)

max
1� i� r

log+ kDiG!

t
(x; v)k ; (B.22)

�DT;r(!) = sup
�T � t� 0

sup
(x;v)2OT (t;!)

max
1� i� r

log+ kDi(G!

t
)�1(x; v)k :

Lemma B.4. For any positive integer m,

Z
DT;r(!)

mP (d!) <1;

Z
�DT;r(!)

mP (d!) <1 (B.23)

Proof. The proof is similar to the proofs of similar statements in [Bax], [K2]. De�ne a

sequence of stopping times �n:

�0 = 0; �1 = �r;K(!); �i+1 = �r;K(�
ti!);

where ti is de�ned by t0 = 0, t1 = ��1, ti = �
iP

j=0

�j . Choose n such that jtn(!)j�T <

jtn+1(!)j. Then
G!

�T (x; v) = fn+1 � fn � : : : � f1(x; v) (B.24)
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where f1 = G!

��1 , f2 = G�
t1!

��2 ; : : : ; fi = G�
ti�1!

��i for 1� i�n, and fn+1 = G�
tn!

tn(!)�T . Notice

that for all (x; v) 2 OT (!),

sup
1� i� r

kDifj((fj�1 � : : : � f1)(x; v))k�K; (B.25)

for 1� j �n+ 1, since fj�1 � : : : � f1(x; v) 2 B�j
. We now use the following fact. Consider

f � g(x; v). Assume that

sup
1� i� r

kDig(x; v)k�M1 and sup
1� i� r

kDif(g(x; v))k�M2 :

Then there exists a constant Cr depending only on r such that

sup
1� i� r

kDi(f � g)(x; v)k�CrM2M
r

1 :

Using (B.24) and (B.25), we obtain

sup
(x;v)2OT (!)

kDiG!

�T (x; v)k�K(CrK
r)n (B.26)

provided that jtn(!)j�T < jtn+1(!)j.
Since for any t 2 [�T; 0], we can write

G!

t
(x; v) = �fl � fl�1 � : : : � f1(x; v) (B.27)

for some l, 1� l�n+ 1 and (B.25) holds, we get

sup
�T � t� 0; (x;v)2OT (!)

kDiG!

t
(x; v)k�K(CrK

r)n (B.28)

We now haveZ
Dr(!)

mdP �

1X
n=0

log
m
(K(CrK

r)n)Pfjtn(!)j�T < jtn+1(!)jg

Let q = Pf�r;K(!)�Tg. Obviously q < 1 since there exists a set of !'s with positive

probability such that �r;K(!) > 1. Using the strong Markov property we have

Pfjtn(!)j�T < jtn+1(!)jg�P (�j �T; 1� j �n)

=

nY
j=1

P (�j �T ) = qn
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Thus, Z
Dr(!)

mdP �

1X
n=0

(log K + n log(CrK
r))mqn < +1

The other estimate can be proved in the same way. �

A stronger estimate holds for the �rst derivative DG!

t
. For T > 0, de�ne

dT (!) = sup
�T � t� 0

sup
(x;v)2BT

log
+ kDG!

t
(x; v)k (B.29)

�dT (!) = sup
0� t�T

sup
(x;v)2BT

log
+ kDG!

t
(x; v)k (B.30)

Lemma B.5. Let m be a positive integer, thenZ



(dT (!))
mdP < +1

Z



( �dT (!))
mdP < +1 (B.31)

Remark. Lemma B.5 is stronger than Lemma B.4 for r = 1 since BT � OT .

Proof. Let x(t) = x(t;x0; v0), v(t) = v(t;x0; v0). We have

v(t) = v0 �
Z 0

t

X
k

fk(x(s))dBk(t) = v0 �
X
k

fk(x(t))Bk(t)

+

Z 0

t

X
k

f 0
k
(x(s))Bk(s)v(s)ds

Let M!(t) = max
t� s� 0

jv(s)j, then for t 2 [�T; 0]

M!(t)� jv0j+ kFk
T
+

Z 0

t

kFk
T
M!(s)ds

This implies, for t 2 [�T; 0],

M!(t)� (jv0j+ kFk
T
)ekFkT jtj

Consider next (B.14) and (B.15). Let J!(t) = max
t� s� 0

jJ!21(s)j, �t;�;k = sup
t�� � s� t

jBk(s)

�Bk(t)j, for � > 0, and kfkk = sup
0� x� 1

jfk(x)j. Since

J!21(s) = J!21(t)�
Z

t

s

X
k

fk(x(u))J
!

11(u)dBk(u) ;
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we have (without loss of generality, we can assume Bk(t) = 0)

J!(t� �)� J!(t) + sup
t�� � s� t

���X
k

fk(x(s))Bk(s)J
!

11(s)

���
+

Z
t

t��

���X
k

f 0
k
(x(u))Bk(u)v(u)J

!

11(u)

���du
+

Z
t

t��

���X
k

fk(x(u))Bk(u)J
!

21(u)

���du
� J!(t) +

�X
k

kfkk�t;�;k

�
(1 + J!(t� �)T )

+ (1 + J!(t� �)T )M!(T )2kFk
T
� + J!(t� �)2kFk

T
�

Choosing � small enough such that

X
k

kfkk�t;�;k �
1

6T
; 2TM!(T )kFk

T
� <

1

6
; 2kFk

T
� �

1

6
(B.32)

we get

J!(t� �)� 2

�
J!(t) +

1

3T

�
(B.33)

De�ne a sequence of stopping times ��i, i� 1 by

��1 = inf

n
� :
X
k

kfkk�0;�;k =
1

6T

o

��i+1 = inf

n
� :
X
k

kfkk�ti;�;k
=

1

6T

o

where ti = �
iP

j=1

��j. Assume that jtk�1j�T < jtkj. We can divide [ti+1; ti], 0� i� k � 1,

into subintervals such that (B.32) holds on each subinterval. The total number of these

subintervals can be estimated from above by

R(k; T ) = k + 12TkFk
T
(1 + TM!(T )) :

From (B.33) we get

J!(T )� 2R(k;T )
�
J!(0) +

2

3T

�
=

2

3T
2R(k;T ) (B.34)
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We now show that Z
R(k; T )mdP < +1 (B.35)

Denote q = P (��1 �T ) < 1. Using the strong Markov property, we have

Pfjtk�1j�T � jtkjg� qk�1 (B.36)

Hence Z
kmP (d!)�

1X
k=1

kmPfjtk�1j�T � jtkjg�
1X
k=1

kmqk�1 <1 (B.37)

On the other hand, since M!(T )� (jv0j+ kFk
T
)ekFkT T , we haveZ

(M!(T )kFk
T
)mP (d!)�

Z
(jv0j+ kFkT )2memkFkTTP (d!)

�

Z
(VT (!) + 1 + kFk

T
)2memkFkTTP (d!)

Recall that kFk
T
=
P
k

kFkkC3 max
�T � t� 0

jBk(t)j. There exist constants A;B > 0, such that

P (kFk
T
�x)�Ae�Bx

2

(B.38)

Therefore for any positive integers l and mZ
kFkl

T
emkFkT TP (d!) <1 (B.39)

We also have from Lemma 3.3 and (B.38) thatZ
VT (!)

lemkFkTTP (d!) < +1

Hence we obtain Z
(M!(T )kFk

T
)mP (d!) < +1

An estimate for J!11(t) follows from (B.16). Similar estimates can also be proved for

J!12(t) and J
!

22(t). Together we obtain the �rst inequality in (B.31). The second inequality

can be proved in the same way. �

Consider two minimizers 1 and 2 on (�1; 0], 1(0) = y, 2(0) = x. Denote v1(�) =

_1(�), v2(�) = _2(�).
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Lemma B.6. Assume y � x > 0, v1(0)� v2(0) = ~L(y � x) and ~L > 4kFk1(6 + 21kFk1).
Then

v1(t)� v2(t)� 0 (B.40)

for t 2 [��0; 0], where �0 = min

�
1; 1

2kFk1

�

v1(t)� v2(t) >
~L

4
(y � x) (B.41)

for t 2 [��1; 0], where �1 = min

�
1; 1

4kFk1

�
Proof. We �rst prove (B.40). We shall consider 1; 2 as curves on the universal cover.

Suppose that for some ��0 < t� 0, v1(t) � v2(t) = 0. Denote by t1 = maxf��0 � t� 0:
v1(t) � v2(t) = 0g, t2 = minft: �t1 � t� 0; v1(t) � v2(t) = ~L(y � x)g. Clearly 0� v1(t) �
v2(t)� ~L(y � x), t1 � t� t2. Also, since minimizers do not intersect, 0� 1(t) � 2(t)

� 1(0)� 2(0) = y � x. We have

v1(t1) = v1(t2) +
X
k

fk(1(t1))Bk(t1)�
X
k

fk(2(t2))Bk(t2)

+

t2Z
t1

X
k

f 0
k
(1(s))v1(s)Bk(s)ds

v2(t1) = v2(t2) +
X
k

fk(2(t1))Bk(t1)�
X
k

fk(2(t2))Bk(t2)

+

t2Z
t1

X
k

f 0
k
(2(s))v2(s)Bk(s)ds

Thus, 0 = v1(t1)� v2(t1) = v1(t2)� v2(t2) + �v, where

�v =
X
k

(fk(1(t1))� fk(2(t1)))Bk(t1)�
X
k

(fk(1(t2))� fk(2(t2)))Bk(t2)

+

t2Z
t1

X
k

(f 0
k
(1(s))� f 0

k
(2(s)))v1(s)Bk(s)ds+

t2Z
t1

X
k

f 0
k
(2(s))(v1(s)� v2(s))Bk(s)ds
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Let C1 =
1
4
+kFk1, C = 20C1. It follows from Lemma 3.3 and (B.8) that jv1(0)j; jv2(0)j�C

and for all ��0 � s� 0:

jv1(s)j; jv2(s)j� 2(C + kFk1)� 10 + 42kFk1

Thus,

j�vj� 2kFk1(y � x) + (t2 � t1)kFk1(10 + 42kFk1)(y � x)

+ (t2 � t1)kFk1 � ~L(y � x)�
�
(12 + 42kFk1) + �0 ~L

�
kFk1(y � x)

Since �0 �
1

2kF1k
, (12 + 42kFk1)kFk1 < ~L

2
we have from the estimate above:

j�vj <
 
~L

2
+

~L

2

!
(y � x) < ~L(y � x) ;

which contradicts to j�vj = ~L(y � x).

Next we prove (B.41). Suppose ��1 � t� 0. Then v1(t)� v2(t)�0. Suppose for some

��1 � t� 0: v1(t)�v2(t) = ~L
4
(y�x). Denote t3 = maxf��1 � t� 0: v1(t)�v2(t) = ~L

4
(y�x)g,

t4 = minf�t3 � t� 0: v1(t)�v2(t) = ~L(y�x)g. Clearly, ~L
4
(y�x)� v1(t)�v2(t)� ~L(y�x),

0� 1(t)� 2(t)� y � x, t3 � t� t4. Using the same estimates as above, we have

~L

4
(y � x) = v1(t3)� v2(t3) = v1(t4)� v2(t4) + �v ;

where

j�vj� 2kFk1(y � x) + (t4 � t3)kFk1(10 + 42kFk1)(y � x) + (t4 � t3)kFk1 ~L(y � x)

� ((12 + 42kFk1) + �1 ~L)kFk1(y � x)

<

 
~L

2
+

~L

4

!
(y � x)

=
3~L

4
(y � x) :

On the other hand, v1(t4)� v2(t4) = ~L(y � x), and �v = � 3
4
~L(y � x), which contradicts

the estimate above. �
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Lemma B.7. Let y � x > 0, v1(0) � v2(0) = ~L(y � x). Then, with P -probability 1,

~L� max (4kFk1(6 + 21kFk1); 4).

Proof. Suppose ~L > 4kFk1(6+21kFk1). Then, for all ��1 � t� 0, v1(t)�v2(t) > ~L
4
(y�x).

Thus the two minimizers would intersect before the time �� = � (y�x)
~L
4
(y�x)

= � 4
~L
, where

��1 � �� � 0 since ~L > max (4kFk1(6 + 21kFk1); 4). This contradiction proves Lemma

B.7. �

Denote kFk�1;1 = max
�1� s� 1

P
k

kFk(x)kC3 jBk(s) � Bk(0)j. Let L0 = 4 + 24kFk�1;1 +

84kFk2�1;1. Obviously, L0 > max (4kFk1(6 + 21kFk1); 4). Consider two minimizers at

time t = 1: 1(�); 2(�), �1� � � 1. Denote y = 1(0), v(y) = 1(0), x = 2(0), v(x) =

_2(0).

Lemma B.8. With P -probability 1

jv(y)� v(x)j�L0jy � xj

Proof. Suppose y�x > 0. Then, it follows from Lemma B.7 that: v(y)� v(x)�L0(y�x).
Similarly we can prove an estimate from other side. �

Lemma B.9. Consider the process

dx = vdt

dv =
X
k

fk(x(t))dBk(t)

da = bdt

db = a
X
k

f 0
k
(x(t))dBk(t)

and a(0), b(0) satis�es a(0)2+b(0)2 = 1. Assume that there exists a constant �0 > 0, such

that X
k

f 0
k
(x)2 ��0
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for all x 2 [0; 1]. Then the joint probability distribution of (a(1); b(1)) has density �p(a; b)

which is uniformly bounded (with respect to (a(0); b(0))) on any compact domain.

Proof. We will only give an outline for the proof. The generator L for the di�usion process

can be written as

L = La;b + L
0

where

La;b = b
@

@a
+

1

2
a2

 X
k

f 0
k
(x)2

!
@2

@b2

L
0 = v

@

@x
+ a

X
k

f 0
k
(x)fk(x)

@2

@b@v

+
1

2

X
k

fk(x)
2 @

2

@v2

The operator La;b is hypoelliptic on R
2 n f(0; 0g for each �xed x 2 [0; 1] [IK]. Therefore for

each �xed x 2 [0; 1], the solution of

@tp
x = L

�
a;b
px

px(a; b; 0) = �(a� a(0); b� b(0))

is smooth for t > 0, except at (a; b) = (0; 0) [IK]. Since the delta function px(�; 0) is

concentrated on the unit circle, we have that for 0� t� 1, px is uniformly bounded (with

respect to x and (a(0); b(0))) on the circle

0� px(a; b; t)�C�

if a2+ b2 = 1
4
, and 0� t� 1. Using maximum principle for the operator La;b on the domain�

(a; b); a2 + b2 � 1
4

	
� [0; 1], we conclude that

px(a; b; t)�C�

if a2 + b2 � 1
4
, and t� 1. Since C� is independent of (x; v) and (a(0); b(0)), and since px is

smooth away from the origin, we obtain the desired result.
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Appendix C. Hopf-Cole Transformation and the Feynman-Kac Formula

Hopf-Cole transform and the Feynman-Kac formula are standard tools used in the

analysis of (1.1). In the random case, some care has to be taken because of the appearance

of stochastic integrals [S2].

Consider the stochastic PDE

d =
"

2

@2 

@x2
dt+

�
�1

"

X
k

Fk(x)dBk(t) + c(x)dt
�
 (C.1)

where the function c(x) will be de�ned later. In the following, stochastic integrals will be

understood in the Ito sense.

Let v = �" ln  . Using Ito formula, we have

dv = �"
2

2

1

 

@2 

@x2
dt+

X
k

Fk(x)dBk(t) + c(x)dt+
1

2"
a(x)dt (C.2)

where a(x)dt = E (
P
Fk(x)dBk(t))

2
=

�P
k

F 2
k
(x)
�
dt. Choose c(x) = � 1

2"
a(x), we get

dv = �"
2

2

1

 

@2 

@x2
dt+

X
k

Fk(x)dBk(t) (C.3)

Let u = �vx. It is straightforward to verify that u satis�es

du+

�
u
@u

@x
� "

2

@2u

@x2

�
dt =

X
k

fk(x)dBk(t) (C.4)

The Feynman-Kac formula for (C.1) takes the form

 (x; t) = E� 
�
x+

p
" �(t0); t0

�
e
� 1

"

R
t

t0

P

k

Fk(x+
p
" �(s))dBk(s)

(C.5)

where E� denotes expectation with respect to the Wiener process on [t0; t] such that

�(t) = 0. It is easy to verify that the extra terms that occur in the Ito formula for the

exponential function in (C.5) are accounted for by the last term c(x) dt in (C.1).

(C.1) can also be rewritten as

d =
"

2

@2 

@x2
dt� 1

"
 �

X
k

Fk(x)dBk(t) (C.6)

where \�" denotes product in the Stratonovich sense.
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Appendix D. Basic Collision Lemma

This appendix is devoted to the proof and discussion of Lemma 5.2. We will use the

notion of the backward Lagrangian map. It will be convenient to work with R
1 instead

of S1. Fix t; s 2 R
1 , t > s, and x 2 R

1 . Let �+, �� be the maximal and minimal

backward characteristics (see [D]) such that �+(t) = ��(t) = x. We de�ne Y +
s;t
(x) = �+(s),

Y �
s;t
(x) = ��(s).

We will study the case of F (x; t) = � 1
2�

cos(2�x)dB(t), f(x; t) = sin(2�x)dB(t). It

will be clear that the general situation follows from the same argument. From Lemma

B.1, we can assume, without loss of generality, that ku(� ; 0)kL1 �C for some random

constant C. Otherwise we change the initial time from t = 0 to some positive number, say

1
16
. It follows from Lemma B.1, that

u �� ; 1
16

�
L1

�C1 for some random constant C1

depending on the forces on
�
0; 1

16

�
. In addition, we will consider a particular case when

x01 =
1
8
, x02 =

7
8
. It is easy to see from the proof that the argument works in the general case

as well. We will use the notation O(�) to denote quantities that are bounded in absolute

value by A�, where A is an absolute constant.

The basic strategy is to construct forces that are large on [0; t1] and small on [t1; 1]

for some t1 in order to set up approximately the following picture: At t = t1, u is very

positive for x 2 [0; 1
2
] and very negative for x 2 [1

2
; 1]. If the forcing is small on [t1; 1], a

shock must form which will absorb su�cient amount of mass, if we imagine that there is

a uniform distribution of masses on [0; 1] at t = t1. In order to make this intuitive picture

rigorous, we must carefully control the value of u when the forcing is small.

We will make the following assumptions on B and t1:

B(0) = 0; max
0� s� t1

jB(s)j�2B(t1); 4�t1B(t1) < �0; B(t1) > �C (D.1)

where �C; �0 are chosen below. We will show that if B satis�es (D.1), then x01 and x
0
2 merge

before t = 1. Therefore the probability of merging is no less than the probability of the

Brownian paths satisfying (D.1) which is positive.

Fix x 2 [0; 1]. Let � be a genuine backward characteristic emanating from x at t = t1:
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�(t1) = x. Denote y = �(0), then

u(x; t1) = u(y; 0) + sin(2�x)B(t1)�
Z

t1

0

2� cos(2��(s)) _�(s)B(s)ds (D.2)

Hence juj1 = max
0� x� 1
0� t� t1

ju(x; t)j satis�es

juj1 �C + B(t1) + 2�juj1
Z

t1

0

jB(s)jds

Therefore

juj1 �M =
C + B(t1)

1� �0

We now estimate u(� ; t1). The idea is that on the set where the force is bounded away

from zero, u is either very negative or very positive, reected by the term involving �2

below. We will bound u on the complement of this set. For x 2
�
1
16
; 1
2
� "
�
; 0 < " << 1,

" will be �xed later, we have

u(x; t1)� � C + �1B(t1)� 2�M

Z
t1

0

jB(s)jds

� � C + �1B(t1)� �0M

with �1 = sin
�
2�
�
1
2
� "
��

= sin(2�"). For x 2
�
1
16
; 7
16

�
, this can be improved to, with

�2 = sin �

8
,

u(x; t1)� � C + �2B(t1)� �0M

The size of " is chosen such that there is a �nite gap between �2 and �1. For x 2
�
1
2
� "; 1

2

�
,

we have

ju(x; t1)j�C + �1B(t1) + �0M

Similarly on
�
1
2
; 1
�
we have the estimates

ju(x; t1)j�C + �1B(t1) + �0M;

for x 2
�
1
2
; 1
2
+ "
�
;

u(x; t1)�C � �2B(t1) + �0M
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for x 2
�
9
16
;
15
16

�
; and

u(x; t1)�C � �1B(t1) + �0M

for x 2
�
1
2
+ ";

15
16

�
.

Next on [t1; 1] we will choose B(t) to be so small that

max
t1 � s� 1

jB(s)� B(t1)j� � (D.3)

The value of � will be chosen later. We �rst prove the following approximate monotonicity

lemma.

Lemma D.1. Let x� be a point of shock at t = 1, y1 = Y
�
t1;1

(x�), y2 = Y
+
t1;1

(x�) and

y 2 (y1; y2). Then Z y

y1

(z + tu(z; t1))dz � x
�(y � y1)� � C�juj1

x
�(y2 � y)�

Z y
2

y

(z + tu(z; t1))dz � � C�juj1

where t = 1� t1; juj1 = jju(�; t1)jjL1.

Remark. In the absence of forces, the correct statement isZ y

y1

(z + tu(z; t1))dz � x
�(y � y1)� 0

These statements were used in [ERS] as the basis for an alternative formulation of the

variational principle. In the presence of force, similar statements appear to be invalid due

to the presence of conjugate points. However, when the force is small, the error is also

small, as claimed in Lemma D.1.

Proof of Lemma D.1. De�ne y� by:

y
� + tu(y�; t1) = x

� (D.4)

Denote by �+, �� the maximal and minimal backward characteristics such that

�+(1) = ��(1) = x
�. Then

y1 +

Z 1

t1

u(��(s); s)ds = x
�

y2 +

Z 1

t1

u(�+(s); s)ds = x
�
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Furthermore, for s 2 [t1; 1], we have

u(�+(s); s) = u(y2; t1) + sin(2��+(s))(B(s)� B(t1))

�

Z s

t1

2� cos(2��+(s)) _�+(s)(B(s)� B(t1))ds (D.5)

Hence

ju(�+(s); s)� u(y2; t1)j�O(�)juj1 (D.6)

and

y2 + tu(y2; t1) = x
� +O(�)juj1 (D.7)

Similarly

y1 + tu(y1; t1) = x
� +O(�)juj1 (D.8)

and

ju(��(s); s)� u(y1; t1)j�O(�)juj1 (D.9)

From the action minimizing property of ��, we get, by comparing the action of ��

and �(s) = y
� + (s� t1)u(y

�
; t1)

Z 1

t1

u
2(��(s); s)

2
ds�

1

2�
cos(2�x�)(B(1)� B(t1))

+

Z 1

t1

_��(s) sin(2���(s))(B(s)�B(t1))ds

� t
u
2(y�; t1)

2
�

1

2�
cos(2�x�)(B(1)� B(t1))

+

Z 1

t1

u(y�; t1) sin 2�(y
� + (s� t1)u(y

�
; t1))(B(s)� B(t1))ds

+

Z y
�

y1

u(y; t1)dy

This gives us

t
u
2(y1; t1)

2
� t

u
2(y�; t1)

2
+

Z y
�

y1

u(y; t1)dy + O(�)juj1

Finally, we get using (D.4), (D.7) and (D.8):

Z y
�

y1

u(y; t1)dy �
t

2
(u2(y1; t1)� u

2(y�; t1)) + O(�)juj1
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Z y
�

y1

(z + tu(z; t1))dz � (y� � y1)x
�

=
(y�)2

2
�
y
2
1

2
+ t

Z y
�

y1

u(z; t1)dz � (y� � y1)x
�

�
(y�)2

2
�
y
2
1

2
+
t
2

2
(u2(y1; t1)� u

2(y�; t1))� (y� � y1)x
� +O(�)juj1

= O(�)juj1:

Proof of Lemma 5.2. Let z01 and z
0
2 be the Eulerian positions of x01 and x

0
2 respectively

at time t1 following the forward characteristics de�ned by u. They are well-de�ned if the

forward characteristics are continued properly by shocks [D]. Moreover, we have jx01 �

z
0
1 j�O(�0); jx

0
2 � z

0
2 j�O(�0), since t1 is small. Assume to the contrary that z01 and z

0
2

do not merge until time 1. Then there exists x1 and x2, such that x1 < x2, and z
0
1 2

[Y �t1;1(x1); Y
+
t1;1

(x1)], z
0
2 2 [Y �t1;1(x2); Y

+
t1;1

(x2)]. Let �1 = Y
�
t1;1

(x1), �2 = Y
+
t1;1

(x1), �1 =

Y
�
t1;1

(x2), �2 = Y
+
t1;1

(x2). We have �1 < �2 < �1 < �2. Using the estimates obtained

earlier on u(�; t1), we have the following:

If �2 <
3
8
, then

x1 = �2 + (1� t1)u(�2; t1) + O(�)juj1 (D.10)

��2 + (1� t1)(�C + �2B(t1)� �0M) +O(�)juj1

Similarly, if �1 >
5
8
, then

x2 = �1 + (1� t1)u(�1; t1) +O(�)juj1 (D.11)

� �1 + (1� t1)(C � �2B(t1) + �0M) + O(�)juj1

To deal with the case when either �1 <
5
8
, or �2 >

3
8
, we introduce the parametrized

measure dQs(�) which is the pullback of Lebesgue measure by the backward Lagrangian

map from t = t1 to t = s: Qs[x1; x2) = Y
+
t1;s

(x2)� Y
�
t1;s

(x1).

If we de�ne � = dQs, u(x; t) =
1
2
(u(x+; t)+u(x�; t)), then it is easy to see that (�; u)

satis�es

�t + (�u)x = 0 (D.12)
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in the distributional sense.

Let �1, �2 be two genuine backward characteristics de�ned on [t1; 1], such that �1 <

�2. Multiplying the above equation by x and integrating over the region: t1 � s� 1,

�1(s)�x� �2(s), we get

�2(1)Z
�1(1)

xdQ1(x)�

�2(t1)Z
�1(t1)

xdx =

1Z
t1

ds

�2(s)Z
�1(s)

u(x; s)dQs(x) (D.13)

Lemma D.2. For s 2 [t1; 1]

�2(s)Z
�1(s)

u(x; s)dQs(x) =

�2(t1)Z
�1(t1)

u(y; t1)dy +O(�)juj1

Proof. First we assume that x is a point of continuity of u(� ; s). Then from the arguments

presented earlier, we have

u(x; s) = u(y; t1) + O(�)juj1 (D.14)

where y = Y
+
t1;s

(x) = Y
�
t1;s

(x).

If x is a point of discontinuity of u(� ; s), let y1 = Y
�
t1;s

(x), y2 = Y
+
t1;s

(x). We then

have

u(x; s) =
1

2
(u(x�; s) + u(x+; s))

=
1

2
(u(y1; t1) + u(y2; t1)) +O(�)juj1

On the other hand, similar to the proof of Lemma D.1, we also have

y1+(s� t1)u(y1; t1)

= y2 + (s� t1)u(y2; t1) + O(�)juj1
u
2(y1; t1)

2
(s� t1)

=
u
2(y2; t1)

2
(s� t1) +

Z y2

y1

u(y; t1)dy +O(�)juj1
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HenceZ y2

y1

u(y; t1)dy =
s� t1

2
(u2(y1; t1)� u

2(y2; t1)) + O(�)juj1

=
s� t1

2
(u(y1; t1)� u(y2; t1))(u(y1; t1) + u(y2; t1)) + O(�)juj1

= (y2 � y1)
u(y1; t1) + u(y2; t2)

2
+O(�)juj1

This can be written as

u(x; s)Qs(fxg) =

Z y2

y1

u(y; t1)dy +O(�)juj1: (D.15)

Now Lemma D.2 follows from (D.14) and (D.15) using a standard approximation argument.

We now continue with the proof of Lemma 5.2. Using Lemma D.2, we can rewrite

(D.13) as

�2(1)Z
�1(1)

xdP1(x)�

�2(t1)Z
�1(t1)

xdx = (1� t1)

�2(t1)Z
�1(t1)

u(y; t1)dy + O(�)juj1

Applying this to Y �t1;1(x1), Y
�
t1;1

(x2), we get

x1 �
1

�2 � �1

�2Z
�1

fx+ (1� t1)u(x; t1)gdx =
O(�)juj1

�2 � �1

x2 �
1

�2 � �1

�2Z
�1

fx+ (1� t1)u(x; t1)gdx =
O(�)juj1

�2 � �1

Assume that �2 >
3
8
. Then �2�z

0
1 >

1
4
�O(�0). Integrating both sides of the equation

ut +
�
u
2

2

�
x
= �Fx over the region: 0� t� t1, �1(t) � x� �2(t), where �1(t) = Y

�
t;t1

(x01),

�2(t) = Y
+
t;t1

(�2), we get

�2Z
x0
1

u(x; t1)dx�

�2(0)Z
�1(0)

u(x; 0)dx =
1

2

t1Z
0

[u(�1(t); t)
2
� u(�2(t); t)

2]dt (D.16)

�
1

2�
B(t1)

�
cos(2��2(t1))� cos(2��1(t1))

�

+

t1Z
0

B(t)
�
_�2(t) sin(2��2(t))� _�1(t) sin(2��1(t))

�
dt
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This implies that

�2Z
x0
1

u(x; t1)dx� �
1

2�
B(t1)

�
cos(2��2)� cos(2�x01)

�

� C � t1juj
2
1 � juj1

t1Z
0

jB(s)jds

Hence, using Lemma D.1, we obtain

x1 �
1

�2 � x
0
1

�2Z
x0
1

(z + (1� t1)u(z; t1))dz + O(�)juj1

� �
2

2�
(1� t1)B(t1)

�
cos(2��2)� cos(2�x01)

�
(D.17)

� C � 4t1juj
2
1 � 4�0juj1 + O(�)juj1

Similarly, if �1 <
5
8
,

x2 �
1

x
0
2 � �1

x
0

2Z
�1

�
z + (1� t1)u(z; t1)

�
dz +O(�)juj1 (D.18)

� �
2

2�
(1� t1)B(t1)(cos 2�x

0
2 � cos 2��1)

+ C + 4t1juj
2
1 + 4�0juj1 + O(�)juj1

If �1 �
3
8
, we have cos(2�x02) � cos(2��1)� 0, and if �2 �

5
8
, we have cos(2��2) �

cos(2�x01) � 0. Otherwise, we can use (D.10) and (D.11). In any case, we always have, for

some positive constant C�, that

x1 � x2 �C
�
B(t1)� C0(1 + t1juj

2
1 + �0juj1 + �juj1)

�C
�
B(t1)� C0 � C0(4�0 + �)juj1

�

�
C
�
�

2C0(4�0 + �)

1� �0

�
B(t1)� C1 (D.19)

The constants C�, C0, C1 do not depend on �0, �, B(t1).
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If we choose �0, �, such that

C
�
�

2C0(4�0 + �)

1� �0

> 0 (D.20)

we can then choose �C, such that

x1 � x2 > 0

contradicting to the assumption that x1 �x2. This completes the proof of Lemma 5.2. �

We now estimate the location of the shock x
� where x01 and x

0
2 have merged into at

t = 1, assuming that the forces are chosen as in the proof of Lemma 5.2. Let y1 = Y
�
t1;1

(x�),

y2 = Y
+
t1;1

(x�). We have

x
� =

1

y2 � y1

y2Z
y1

(y + (1� t1)u(y; t1))dy +O(�)juj1

We also have ��� 1

y2 � y1

y2Z
y1

y dy �
1

2

��� < 1

2
(1� x

0
2 + x

0
1)

���
y2Z

y1

u(y; t1)dy
���� (1� x

0
2 + x

0
1)ju(� :0)j1 + t1juj

2
1

+
1

2�
j(cos 2�y2 � cos 2�y1)B(t1)j+ �0juj1

(D.21)

where we used an analog of (D.16). The factors 1� x
0
2 + x

0
1;

1
2
(1� x

0
2 + x

0
1) can be made

arbitrarily small by choosing x01 close to 0, and x
0
2 close to 1.

Notice that in (D.21) the coe�cient in front of B(t1) is approximately equal to jy1 +

1 � y2j sin 2��y for some �y 2 (y2; y1 + 1), whereas C� in (D.19) is bounded from below by

min(sin 2�x01; sin 2�x
0
2). Therefore by choosing x01 close to 0, x

0
2 close to 1, and B(t1) such

that (D.20) holds but j cos 2�y2� cos 2�y1jB(t1) is small, we can make x� arbitrarily close

to 1
2
. We have arrived at:

Lemma D.3. Assume that F (x; t) = � 1
2�

cos(2�x)dB(t). Fix any "1; "2 > 0. Then the

following event has positive probability p0("1; "2). There exists x� 2
�
1
2
� "1;

1
2
+ "1

�
, such
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that ["2; 1� "2] � [Y �0;1(x
�); Y +

0;1(x
�)]. In other words, the interval ["2; 1� "2] is mapped to

a point x� 2
�
1
2
� "1;

1
2
+ "1

�
by the forward Lagrangian map.

To prove this, we just have to take an "3 < "2, and x
0
1 = "3, x

0
2 = 1� "3 and use the

argument outlined above. We omit the details.
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