
Machine Learning: Mathematical Theory and Scientific Applications

Weinan E

Joint work with:

Jiequn Han, Arnulf Jentzen, Chao Ma, Zheng Ma,
Han Wang, Qingcan Wang, Lei Wu, Linfeng Zhang, Yajun Zhou

Roberto Car, Wissam A. Saidi

October 10, 2019 1 / 75

Outline

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 2 / 75

PDEs and fundamental laws of physics

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 3 / 75

PDEs and fundamental laws of physics

PDEs and fundamental laws of physics

Navier-Stokes equations
Boltzmann equation
Schrödinger equation
......

October 10, 2019 4 / 75

PDEs and fundamental laws of physics

Dirac’s claim (1929)

”The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much too complicated to be soluble. ”

Dealing with the mathematical difficulty: Making (drastic/ad hoc) approximations (e.g.
density functional theory)

October 10, 2019 5 / 75

Period 1: Solving differential equations numerically

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 6 / 75

Period 1: Solving differential equations numerically

Numerical methods: 50’s-80’s

finite difference

finite element

spectral methods

......

These have changed the way we do science, and to an even greater extend, engineering.

gas dynamics/fluid dynamics

structural analysis

waves, optics

control of simple systems

......

If the finite difference method were invented today, the shock wave that it would generate
would be just as strong as the one generated by deep learning.

October 10, 2019 7 / 75

Period 1: Solving differential equations numerically

Many difficult problems remain

and we still have to rely on ad hoc approximations.

many-body problems (classical and quantum, in molecular science)

protein folding

first principle-based drug and materials design

coarse-grained molecular dynamics

polymeric fluids

transitional flows in gas dynamics

plasticity

turbulence, weather forecasting

......

Common feature of these problems: Dependence on many variables.

Curse of dimensionality: As the dimension grows, the complexity (or computational cost)
grows exponentially.

October 10, 2019 8 / 75

Period 2: Multiscale, multi-physics modeling

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 9 / 75

Period 2: Multiscale, multi-physics modeling

Multiscale, multi-physics modeling: 90’s till now

works well when the macro- and micro-scales are very well separated

not very effective when there are no separation of scales (e.g. turbulence problem)

October 10, 2019 10 / 75

Period 2: Multiscale, multi-physics modeling

Status summary

Solved: low dimensional problems (few dependent variables)

Unsolved: high dimensional problems (many dependent variables)

Machine learning, particularly deep learning, seems to be a powerful tool for high dimensional
problems.

October 10, 2019 11 / 75

Mathematical theory of machine learning

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 12 / 75

Mathematical theory of machine learning

Supervised learning: Approximating functions using data

Object of interest: f ∗ : Rd → R1, with respect to a prob measure µ on Rd.

Given a set of samples from µ, {xj}nj=1, and {yj = f ∗(xj)}nj=1

Task: Approximate f ∗ using S = {(xj, yj)}nj=1.

Strategy:

Construct some “hypothesis space” (a space of functions) Hm (m ∼ the dimension of
Hm).

linear regression: f (x, θ) = β · x + β0

generalized linear models: f (x, θ) =
∑m

k=1 ckφk(x), where {φk} are linearly independent functions.

two-layer neural networks: f (x, θ) =
∑

k akσ(bk · x + ck), where σ is some nonlinear function, e.g.

σ(z) = max(z, 0).

deep neural networks (DNN) : compositions of functions of the form above.

Minimize the “empirical risk”:

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− yj)2 =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2

October 10, 2019 13 / 75

Mathematical theory of machine learning

Classical numerical analysis (approximation theory)

Define a “well-posed” math model (the hypothesis space, the loss function, etc)
splines: hypothesis space = C1 piecewise cubic polynomials the data

In(f) =
1

n

n∑
j=1

(f (xj)− yj)2 + λ

∫
|D2f (x)|2dx

finite elements: hypothesis space = C0 piecewise polynomials

Identify the right function spaces, e.g. Sobolev/Besov spaces
direct and inverse approximation theorem (Bernstein and Jackson type theorems):

f can be approximated by trig polynomials in L2 to order s iff f ∈ Hs, ‖f‖2
Hs =

∑s
k=0 ‖∇kf‖2

L2
.

functions of interest are in the right spaces (PDE theory, real analysis, etc).

Optimal error estimates
A priori estimates (for piecewise linear finite elements, α = 1/d, s = 2)

‖fm − f ∗‖H1 ≤ Cm−α‖f ∗‖Hs

A posteriori estimates (say in finite elements):

‖fm − f ∗‖H1 ≤ Cm−α‖fm‖h

Key issue: Dependence on dimensionality
October 10, 2019 14 / 75

Mathematical theory of machine learning

Another benchmark: High dimensional integration

Monte Carlo: X = [0, 1]d, {xj, j = 1, · · · , n} is uniformly distributed in X .

I(g) =

∫
X

g(x)dµ, In(g) =
1

n

∑
j

g(xj)

E(I(g)− In(g))2 =
1

n
var(g)

var(g) =
∫
X g

2(x)dx− (
∫
X g(x)dx)2

The O(1/
√
n) rate is basically the best we can hope for.

However, var(g) can be very large in high dimension. That’s why variance reduction is
important!

October 10, 2019 15 / 75

Mathematical theory of machine learning

Second issue: Finite amount of data

Empirical risk vs. population risk:

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− yj)2 =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2

R(θ) = E(f (x, θ)− f ∗(x))2 =

∫
Rd

(f (x, θ)− f ∗(x))2dµ

Two important parameters: n (the number of data) and m (the number of parameters).
Three regimes:

m < n under-parameterized regime

m > n over-parametrized regime

m ∼ n competing regime

October 10, 2019 16 / 75

Mathematical theory of machine learning

Estimating the generalization gap

”Generalization gap” = R̂(θ̂)− R̂n(θ̂) = I(g)− In(g), g(x) = (f (x, θ̂)− f ∗(x))2

I(g) =

∫
X=[−1,1]d

g(x)dµ, In(g) =
1

n

∑
j

g(xj)

g is very correlated with the data.

Current strategy: Study the worst case situation.

For Lipschitz functions (Wasserstein distance)

sup
‖h‖Lip≤1

|I(h)− In(h)| ∼ 1

n1/d

For functions in Barron space, to be defined later

sup
‖h‖B≤1

|I(h)− In(h)| ∼ 1√
n

October 10, 2019 17 / 75

Mathematical theory of machine learning

Rademacher complexity

Let H be a set of functions, and S = (x1,x2, ...,xn) be a set of data points. Then, the
Rademacher complexity of H with respect to S is defined as

R̂S(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

Given a function class H, for any δ ∈ (0, 1), with probability at least 1− δ over the random
samples S = (x1, · · · ,xn),

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ 2R̂S(H) + sup
h∈H
‖h‖∞

√
log(2/δ)

2n
.

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≥ 1

2
R̂S(H)− sup

h∈H
‖h‖∞

√
log(2/δ)

2n
.

October 10, 2019 18 / 75

Mathematical theory of machine learning

If H = unit ball in C0: R̂S(H) ∼ O(1)

If H = unit ball in Lipschitz space: R̂S(H) ∼ O(1/n1/d)

If H = unit ball in Barron space: R̂S(H) ∼ O(1/
√
n)

October 10, 2019 19 / 75

Mathematical theory of machine learning

Two types of machine learning models

(1). Models that suffer from the curse of dimensionality:

generalization error = O(m−α/d + n−β/d)

piecewise polynomial approximation

wavelets with fixed wavelet basis

(2). Models that don’t suffer from the curse of dimensionality:

generalization error = O(γ1(f ∗)/m + γ2(f ∗)/
√
n)

random feature models:

shallow neural networks

deep residual neural networks

October 10, 2019 20 / 75

Mathematical theory of machine learning Example 1: Random feature model

Example 1: Random feature model

{φ(·;ω)}: collection of random features. π: prob distribution of the random variable ω.

Example: φ(x, ω) = σ(ωTx), σ(z) = max(z, 0).

Hypothesis space: Given any realization {ωj}mj=1, i.i.d. with distribution π

Hm({ωj}) = {fm(x,a) =
1

m

m∑
j=1

ajφ(x;ωj).}.

October 10, 2019 21 / 75

Mathematical theory of machine learning Example 1: Random feature model

Function space

Consider functions of the form

Hφ = {f : f (x) =

∫
a(ω)φ(x;ω)dπ(ω)}, ‖f‖2

Hφ = Eω∼π[|a(ω)|2]

This is the same as the reproducing kernel Hilbert space (RKHS) Hk for the kernel:

k(x,x′) = Eω∼π[φ(x;ω)φ(x′;ω)]

October 10, 2019 22 / 75

Mathematical theory of machine learning Example 1: Random feature model

A priori estimates of the regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖H, θ̂n = argmin Ln(θ)

where

‖θ‖H =

 1

m

m∑
j=1

|aj|2
1/2

Theorem
Assume that the target function f ∗ : [0, 1]d 7→ [0, 1] ∈ Hk. There exist constants C0, C1, C2,
such that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of
training set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

Hk
m

+ ‖f ∗‖Hk

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.

October 10, 2019 23 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

Summary of the general strategy

express the target function as an expectation

identify the right function space (including the norm)

prove direct and inverse approximation theorems

study the Rademacher complexity

prove a priori estimates

October 10, 2019 24 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

Example 2: Two-layer neural networks

Hm = { 1

m

m∑
j=1

ajσ(bTj x + cj)}

Consider f : X = [−1, 1]d 7→ R of the following form (”generalized ridgelet transform”)

f (x) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc) = E(a,b,c)∼ρaσ(bTx + c)

Ω = R1 × Rd × R1, ρ is a probability distribution on Ω.

‖f‖Bp = inf
ρ

(
Eρ[|a|p(‖b‖1 + |c|)p]

)1/p

Barron space:

Bp = completion of {f ∈ S : ‖f‖Bp <∞}, B∞ ⊂ · · · B2 ⊂ B1.

October 10, 2019 25 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

Barron space and RKHS

Note that we can rewrite “Barron functions” in the form (now π depends on f).

f (x) =

∫
Rd×R1

a(ω)σ(ωTx)dπ(ω)

Define:
kπ(x,x′) = Eω∼πσ(ωTx)σ(ωTx′)

We can write
B2 =

⋃
π

Hkπ

Two-layer neural network can be understood as random feature model with adaptive
(learned) features.

October 10, 2019 26 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

What kind of functions admit such a representation?

Theorem (Barron and Klusowski (2016)): If
∫
Rd ‖ω‖

2
1|f̂ (ω)|dω <∞, where f̂ is the

Fourier transform of f , then f can be represented as

f̃ (x) = f (x)− (f (0) + x · ∇f (0)) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc)

where σ(z) = max(0, z). Moreover f ∈ B∞. Furthermore, we have

‖f̃‖B∞ ≤ 2

∫
Rd
‖ω‖2

1|f̂ (ω)|dω

October 10, 2019 27 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

Direct and inverse approximation theorems

Theorem (Direct Approximation Theorem)
There exists an absolute constant C0 such that

‖f − fm‖L2(X) ≤
C0‖f‖B2√

m

Theorem (Inverse Approximation Theorem)
For p > 1, let

Np,C = { 1

m

m∑
k=1

akσ(bTkx + ck) :

(
1

m

m∑
k=1

|ak|p(‖bk‖1 + ck)
p

)1/p

≤ C,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ Np,C such that

fm(x)→ f ∗(x)

for all x ∈ X . Then there exists a probability distribution ρ on Ω, such that

f ∗(x) =

∫
aσ(bTx + c)ρ(da, db, dc),

for all x ∈ X .
October 10, 2019 28 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

Complexity estimates

Theorem
Let FQ = {f ∈ B1, ‖f‖B1 ≤ Q}. Then we have

R̂n(FQ) ≤ 2Q

√
2 ln(2d)

n

October 10, 2019 29 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

A priori estimates for regularized model

where the path norm is defined by:

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

‖θ‖P =
1

m

m∑
k=1

|ak|(‖bk‖1 + |ck|) (= ‖f (·; θ)‖B1)

Theorem (Weinan E, Chao Ma, Lei Wu, 2018)

Assume that the target function f ∗ : [0, 1]d 7→ [0, 1] ∈ B2. There exist constants C0, C1, C2,
such that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of
training set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

B2

m
+ ‖f ∗‖B2

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.

October 10, 2019 30 / 75

Mathematical theory of machine learning Example 2: Two-layer neural networks

An example of posteriori estimates

Behnam Neyshabur, Zhiyuan Li, et al. (2018):

|R(θ)− R̂n(θ)| ≤ C1(9θ 9 +1)

√
log(2d)

n
+ C2

√
log(4C2(1 + 9θ9))2/δ)

n

where 9θ9 is some norm of θ

October 10, 2019 31 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

f (x, θ) = WLσ ◦ (WL−1σ ◦ (· · ·σ ◦ (W0x))), θ = (W0,W1, · · · ,WL)

σ is a scalar function.
“◦” means acting on each components, the W ’s are matrices.

October 10, 2019 32 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Instability: Exploding and vanishing gradients

f (x, θ) = WLσ ◦ (WL−1σ ◦ (· · ·σ ◦ (W0x))), θ = (W0,W1, · · · ,WL)

Instability of fully connected deep neural networks:

“∇θf
′′ = WL ·WL−1 · · ·W0 ∼ κL, L >> 1

”Exploding or vanishing gradients problem” (see Hanin (2018)).

Solution: Using residual networks (He et al. (2016))

z0,L(x) = V x,

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)), l = 0, 1, · · · , L− 1

f (x, θ) = α · zL,L(x)

October 10, 2019 33 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Dynamical system viewpoint

E (2017, Comm Math Stats), Chen et al (NeurIPS 2018, “Neural ODE”):

Constructing a rich class of nonlinear functions through the flow map of a dynamical
system with different choices of F :

dz(x, t)

dt
= F (z(x, t)), z(0,x) = V x

The flow map x→ z(x, 1) is a nonlinear mapping.

Choose the optimal U ,W (·), α to approximate f ∗ by

f ∗(x) ∼ α · z(x, 1)

Simplest choice of (nonlinear) F :

F (z;U (t),W (t)) = U (t)σ ◦ (W (t)z)

October 10, 2019 34 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Plan of attack for residual networks

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)),

z0,L(x) = V x, f (x, θ) = α · zL,L(x)

express target function as a compositional expectation (compositional law of large
numbers)

compositional function spaces (Barron space is embedded in compositional function
spaces)

direct and inverse approximation theorem

optimal scaling for the Rademacher complexity

a priori estimates for the regularized model

October 10, 2019 35 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Compositional law of large numbers

Consider the scheme (compositions of random near identity maps):

z0,L(x) = V x,

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)),

(Ul,Wl) are i.i.d. sampled from a distribution ρ. Then we have the following convergence
theorem for zL,L.

Theorem
Assume that

Eρ‖|U ||W |‖2
F <∞

where for a matrix A, |A| means taking element-wise absolute value for A. Define z(x, t)
by

z(x, 0) = V x,
d

dt
z(x, t) = E(U ,W)∼ρUσ ◦ (Wz(x, t)).

Then we have
zL,L(x)→ z(x, 1)

almost surely as L→ +∞.
October 10, 2019 36 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Compositional function spaces

Let {ρt} be a family of prob distributions (for (U ,W)) such that Eρtg(U ,W) is integrable
as a function of t for any continuous function g. Define:

z(x, 0) = V x,
d

dt
z(x, t) = E(U ,W)∼ρtUσ ◦ (Wz(x, t))

Let fα,{ρt},V (x) = αTz(x, 1) and define

d

dt
Np(t) = (Eρt|U |p|W |p)1/pNp(t), Np(0) = I

‖f‖Dp = inf
f=fα,{ρt},V

‖α‖p ‖Np(1)‖p,p ‖V ‖p,p,

October 10, 2019 37 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Barron space and compositional function space

f (x) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc)

d

dt
z(x, t) = Eρ(a, b, c)

 a0
0

σ ◦ ([0, bT , c]z(x, t)),

z(x, 0) =

 0
x
1

 .
Then, f (x) = eT1 z(x, 1). In addition, we have

Theorem
B2 ⊂ D2. There exists constant C > 0, such that

‖f‖D2 ≤
√
d + 1‖f‖B2

holds for any f ∈ B2,

October 10, 2019 38 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Theorem (Inverse approximation theorem)

Let f ∈ L2(D0) be a continuous function. Assume that there is a sequence of residual
networks {fL(·)}∞L=1 with increasing depth such that fL(x)→ f (x), for all x ∈ D0.
Assume further that the parameters are (entry-wise) bounded, then there exists α, {ρt} and
V such that Eρtg(U ,W) is integrable as a function of t for any continuous function g and

f (x) = fα,{ρt},V (x).

Theorem (Direct approximation theorem)

Let f ∈ L2(D0) ∩ D2. There exists a residue-type neural network fL(·) of input dimension
d + 1 and depth L such that ‖fL‖P . ‖f‖3

c1
and∫

D0

|f (x)− fL((x)|2dx→ 0

Furthermore, if f = fα,{ρt},V and ρt is Lipschitz continuous in t (.....) then∫
D0

|f (x)− fL((x)|2dx .
‖f‖2

D2

L

October 10, 2019 39 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Complexity control

Theorem
Rademacher complexity bound Let FL,Q = {fL : ‖fL‖D1 ≤ Q}. Assume xi ∈ [−1, 1]d.
Then, for any data set S = (x1, ...,xn), we have

R̂S(FL,Q) ≤ 3Q

√
2 log(2d)

n
.

October 10, 2019 40 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Regularized model and a priori estimates

Regularized loss function:

J(θ) = L̂(θ) + λ(‖θ‖D1 + 1)

√
2 log(2d)

n
.

‖θ‖P =

∥∥∥∥|α|T (I +
1

L
|UL−1||WL−1|

)
· · ·
(
I +

1

L
|U1||W1|

)
|V |
∥∥∥∥

1

Theorem (Weinan E, Chao Ma and Qingcan Wang, 2018)

Assume that f ? : [−1, 1]d → [−1, 1] such that f ∗ ∈ D2. Let

θ̂ = argmin θJ(θ)

Then there exist fixed constants C0 and L0 such that if λ > C0 and L > L0, then for any
δ > 0, with probability at least 1− δ,

L(θ̂) .
‖f ∗‖2

D2

L
+ λ(‖f ∗‖3

D1
+ 1)

√
log(2d)

n
+

√
log(1/δ)

n
.

October 10, 2019 41 / 75

Mathematical theory of machine learning Example 3. Deep neural networks

Lots of questions remain open:

do these estimates truly reflect what is going on? are they sharp?

how do the errors behave in different regimes (under-parametrized, over-parametrized,
competing)

why simple minded optimization algorithms seem to work well (with some tuning)?
landscapes, gradient descent dynamics

October 10, 2019 42 / 75

High dimensional PDEs

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 43 / 75

High dimensional PDEs

Nonlinear parabolic PDEs

∂u

∂t
+

1

2
∆u +∇u · µ + f

(
u,∇u

)
= 0.

Terminal condition: u(T,x) = g(x).

To fix ideas, we are interested in the solution at t = 0, x = ξ for some vector ξ ∈ Rd.

Example:

Black-Scholes Equation with Default Risk and many underlies:

f = −(1− δ)Q(u)u−Ru

Hamilton-Jacobi-Bellman in control theory
∂u

∂t
+

1

2
∆u + H

(
∇u
)

= 0.

October 10, 2019 44 / 75

High dimensional PDEs

Linear Parabolic PDE and Feynman-Kac Formula

∂u

∂t
(t,x) +

1

2
∆u(t,x) +∇u(t,x) · µ(t,x) + f (t,x) = 0.

Terminal condition u(T,x) = g(x).

Let
dXt = µ(t,Xt) dt + dWt,

Feynman-Kac formula:

u(t,x) = E[g(XT) +

∫ T

t

f (s,Xs)ds|Xt = x].

Compute the solution of PDE using Monte Carlo, overcoming the curse of dimensionality.

October 10, 2019 45 / 75

High dimensional PDEs

Nonlinear Feynman-Kac: Connection between PDE and BSDE

Backward stochastic differential equations (Pardoux and Peng 1992): Find an adapted
process {(Xt, Yt, Zt)}t∈[0,T] such that

Xt = ξ +

∫ t

0

µ(s,Xs) ds + Wt

Yt = g(XT) +

∫ T

t

f (Ys, Zs) ds−
∫ T

t

(Zs)
T dWs

Ito’s formula gives:

u(t,Xt) = g(XT) +

∫ T

t

f (u(s,Xs),∇u(s,Xs))ds−
∫ T

t

∇u(s,Xs)dWs.

Therefore we have:
Yt = u(t,Xt), Zt = ∇u(t,Xt)

October 10, 2019 46 / 75

High dimensional PDEs

New formulation of the nonlinear PDE

Consider the variational problem:

inf
Y0,{Zt}0≤t≤T

E|g(XT)− YT |2,

s.t. Xt = ξ +

∫ t

0

µ(s,Xs) ds + Wt,

Yt = Y0 −
∫ t

0

f (Ys, Zs) ds +

∫ t

0

(Zs)
T dWs.

The unique minimizer gives the solution to the PDE.

October 10, 2019 47 / 75

High dimensional PDEs

Deep BSDE method (E, Han, Jentzen (2017)

Key step: approximate the function x 7→ ∇u(t, x) at each discretized time step t = tn
by a feedforward neural network (a subnetwork)

∇u(tn, Xtn) ≈ ∇u(tn, Xtn|θn)

where θn denotes neural network parameters.

u(0,x) ≈ u(0,x|θ0)

Observation: after time discretization, we can stack all the subnetworks together to
form a deep neural network (DNN) as a whole:

Xtn+1 −Xtn ≈ µ(tn, Xtn) ∆tn + ∆Wn

u(tn+1, Xtn+1)− u(tn, Xtn) ≈ −f (u(tn, Xtn),∇u(tn, Xtn))∆tn +∇u(tn, Xtn)∆Wn.

October 10, 2019 48 / 75

High dimensional PDEs

Figure: Each column corresponds to a subnetwork at time t = tn

L(θ) = E
[∣∣g(XtN)− û

(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣2].
Open-source code on https://github.com/frankhan91/DeepBSDE

October 10, 2019 49 / 75

https://github.com/frankhan91/DeepBSDE

High dimensional PDEs

LQG (linear quadratic Gaussian) Example for d=100

Hamilton-Jacobi-Bellman equation:

∂u

∂t
+ ∆u− λ‖∇u‖2

2 = 0

u(t,x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.

0 10 20 30 40 50

lambda

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u
(0

,0
,.
..
,0

)

Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0)) when λ = 1, which achieves 0.17% in a runtime of

330 seconds. Right: u(t=0, x=(0)) for different λ.

October 10, 2019 50 / 75

High dimensional PDEs

Black-Scholes Equation with Default Risk for d=100

“exact” solution at t = 0 x = (100, . . . , 100) computed by the multilevel Picard method.

Figure: Approximation of u(t=0,x=(100, . . . , 100)) against number of iteration steps. The deep BSDE method

achieves a relative error of size 0.46% in a runtime of 617 seconds.

Has been applied to the pricing of basket options and path-dependent options.

October 10, 2019 51 / 75

Integrating machine learning with physics-based modeling

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 52 / 75

Integrating machine learning with physics-based modeling

Basic setup

we are given a micro-scale model (quantum mechanics, kinetic theory)

we would like to construct an effective macro-scale model (classical molecular dynamics,
hydrodynamics) with the help of machine learning

Requirements for the macro-scale model:

obey physical constraints (symmetry, invariants, etc)

reliable, i.e. ”uniformly” accurate
need the “optimal data set” (as small as possible yet representative enough), generated
”on the fly”

October 10, 2019 53 / 75

Integrating machine learning with physics-based modeling

The exploration-labeling-training procedure for “on-the-fly”
learning

Zhang, Wang and E, J. Chemical Phys., 2017

Start out with no (macro-scale) model, no data; but with a micro-scale model.

Repeat the following steps:
1 exploration: explore the configuration (state) space, and decide which

configurations/states need to be labeled.
2 labeling: compute the micro-scale solutions for the configurations that need to be

labeled. This is our data set.
3 training: train the macro-scale model, and use it to help the exploration

Indicator: ε = maxi
√
〈‖fi − f̄i‖2〉, f̄i = 〈fi〉

October 10, 2019 54 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Traditional dilemma: accuracy vs cost.

E = E(x1,x2, ...,xi, ...,xN),

mi
d2xi
dt2

= Fi = −∇xiE.

Two ways to calculate E and F :

Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive:

E = 〈Ψ0|HKS
e |Ψ0〉, µφ̈i = HKS

e φi +
∑
j

Λijφj.

Empirical potentials: efficient but unreliable. The Lennard-Jones potential:

Vij = 4ε[(
σ

rij
)12 − (

σ

rij
)6], E =

1

2

∑
i 6=j

Vij.

October 10, 2019 55 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Integrating ML with molecular modeling

New paradigm:

quantum mechanics model – micro-scale model for data generation

machine learning – parametrize (represent) the model

molecular dynamics – simulator

October 10, 2019 56 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Deep potential

The whole sub-network consists of an encoding net Di(Ri) and a fitting net Ei(Di).

(Rotation: R̃i(R̃i)T , permutation: (Gi1)TR̃i and (R̃i)TGi2.)
DeepPot-SE (arxiv: 1805.09003, NIPS 2018), see also Behler and Parrinello, PRL 2007.

October 10, 2019 57 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Only a small percentage of data needs to be labeled

∼0.005% configurations explored by DeePMD are selected for labeling.

October 10, 2019 58 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Case 1: accuracy is comparable to the accuracy of the data

October 10, 2019 59 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Case 2: structural information of DFT water

Radial and angular distribution function of liquid water (PI-AIMD):

Distribution of the Steinhardt order parameter Q̄6:

October 10, 2019 60 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

DeePMD-kit

Towards realization of a general platform for ML-based PES modeling.

interfacing state-of-the-art deep learning and MD packages: TensorFlow, LAMMPS, i-PI;

parallelization: MPI/GPU support.

Comp. Phys. Comm., 2018: 0010-4655 (https://github.com/deepmodeling/deepmd-kit))

October 10, 2019 61 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

1 physical/chemical problems

understanding water (phase diagram of water, including reactive regions; phase transition: ice to

water, ionic liquid to super-ionic ice; nuclear quantum effect: collective tunneling, isotope effect;

reactive event: dissociation and recombination; water surface and water/TiO2 interface; spectra:

infra-red; Raman; X-ray Absorption; exotic properties: dielectric constant; density anomaly, etc.

physical understanding of different systems that require long-time large-scale simulation with high

degrees of model fidelity (high-pressure iron: fractional defect; phase boundary; high-pressure

hydrogen: exotic phases)

catalysis (Pt cluster on MoS2 surface; CO molecules on gold surface, etc.)

2 materials science problems

battery materials (diffusion of lithium in LGePS, LSGeSiPS, etc.; diffusion of Se in Cu2Se alloy)

high entropy/high temperature alloy (CoCrFeMnNi alloy; Ni-based alloy)

3 organic chemistry/bio problems

crystal structure prediction of molecular crystals;

protein-ligand interaction;

protein folding.

October 10, 2019 62 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

Concluding remarks

1 the integration of machine learning and PDE models is a truly very powerful tool
Deep potential based molecular dynamics (DPMD) now allows us to perform large scale MD

simulations with quantum accuracy.

Machine learning-based hydrodynamic models allow us to develop moment closure for realistic

kinetic theory models (Maxwell molecules).

We can now solve large classes of high dimensional PDEs quite routinely.

.....

2 from the viewpoint of machine learning, this provides a framework for ”on the fly”
learning.

3 high dimensional numerical analysis is a fruitful approach for studying the mathematical
theory of machine learning.

October 10, 2019 63 / 75

Integrating machine learning with physics-based modeling Molecular dynamics

MSML 2020

A new annual conference:
Mathematical and Scientific Machine Learning (MSML)

First meeting:

Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)

Time: July 15-17, 2020

Location: Princeton

Submission deadline: November 30, 2019

website: http://msml-conf.org

October 10, 2019 64 / 75

http://msml-conf.org

Integrating machine learning with physics-based modeling Kinetic model for gas dynamics

Example 2: Modeling gas dynamics

Kn =
mean free path

macroscopic length

1.1 Some History and Background 1 CONTINUUM MODELS

Kn10¡2 10¡1 1.0 10.0

½ ½

Euler�Eqn

equilibrium non-equilibrium

NSF�Eqn kinetic�regime free�flight
transition
regime

½ ½½

! !!!

Figure 1: Overview of the range of Knudsen number and various model regimes.

the moment systems lead to stable hyperbolic equations. However, in practical explicit
systems hyperbolicity is given only in a finite range due to linearization. In Junk (1998)
and Junk (2002) it is shown that the fully nonlinear maximum-entropy approach has
sever drawbacks and singularities. Furthermore, the hyperbolicity leads to discontinuous
sub-shock solutions in the shock profile. A variant of the moment method has been
proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum-entropy
10-moment system has been used by Suzuki and van Leer (2005).

Both fundamental approaches of kinetic theory, Chapman-Enskog and Grad, exhibit
severe disadvantages. Higher order Chapman-Enskog expansions are unstable and Grad’s
method introduces subshocks and show slow convergence. It seems to be desirable to
combine both methods in order to remedy their disadvantages. Such an hybrid approach
have already been discussed by Grad in a side note in Grad (1958). He derives a variant
of the regularized 13-moment equations given below, but surprisingly he neither gives any
details nor is he using or investigating the equations. In the last fifty years the paper Grad
(1958) was cited as standard source for introduction into kinetic theory, but, apparently,
this specific idea got entirely lost and seems not to be known in present day literature.

The Chapman-Enskog expansion is based on equilibrium and the corrections describe
the non-equilibrium perturbation. A hybrid version which uses a non-equilibrium as basis
is discussed in Karlin et al. (1998). They deduced linearized equations with unspecified
coefficients. Starting from Burnett equations Jin and Slemrod (2001) derived an extended
system of evolution equations which resembles the regularized 13-moment system. It is
solved numerically in Jin et al. (2002). However, the tensorial structure of their relations
is not in accordance with Boltzmann’s equation. Starting from higher moment systems
Müller et al. (2003) discussed a parabolization which includes higher order expressions
into hyperbolic equations.

The regularized 13-moment-equations presented below were rigorously derived from
Boltzmann’s equation in Struchtrup and Torrilhon (2003). The key ingredient is a Chapman-
Enskog expansion around a pseudo-equilibrium which is given by the constitutive relations
of Grad for stress tensor and heat flux. The final system consists of evolution equations
for the fluid fields: density, velocity, temperature, stress tensor and heat flux. The closure
procedure adds second order derivatives to Grad’s evolution equations of stress and heat
flux, thus regularizes the former hyperbolic equations into a mixed hyperbolic-parabolic
system with relaxation. The relaxational and parabolic part is only present in the equa-
tions of stress and heat flux and models the multi-scale dissipation of Boltzmann’s equa-
tion, see Struchtrup and Torrilhon (2003). Like the Boltzmann equation the R13 system
is derived for monatomic gases and all the results in this chapter are restricted to this
case. The extension to poly-atomic gases or mixtures is future work. The text book by
Struchtrup (2005b) provides an introduction to approximation methods in kinetic theory

RTO-EN-AVT-194 10 - 5

October 10, 2019 65 / 75

Integrating machine learning with physics-based modeling Kinetic model for gas dynamics

Boltzmann Equation

One-particle density function f (x,v, t)

∂tf + v · ∇xf =
1

ε
Q(f), v ∈ R3, x ∈ Ω ⊂ R3,

ε = Knudsen number and Q is the collision operator.

Macroscopic state variables: ρ, u and T (density, bulk velocity and temperature)

ρ =

∫
f dv, u =

1

ρ

∫
fv dv, T =

1

3ρ

∫
f |v − u|2 dv.

When ε� 1, Boltzmann can be approximated by Euler:

∂tU +∇x · F (U) = 0,

with p = ρT , E = 1
2ρu

2 + 3
2ρT ,

U = (ρ, ρu, E)T

F (U) = (ρu, ρu⊗ u + pI, (E + p)u)T

October 10, 2019 66 / 75

Integrating machine learning with physics-based modeling Kinetic model for gas dynamics

Machine learning-based moment method

Objective: construct an uniformly accurate (generalized) moment model using machine
learning.

Step 1: Learn the Moments through Autoencoder
Find an encoder Ψ that maps f (·,v) to generalized moments W ∈ RM and a decoder Φ
that recovers the original f from U ,W

W = Ψ(f) =

∫
wf dv, Φ(U ,W)(v) = h(v;U ,W).

The goal is essentially to find optimal w and h parametrized by neural networks through
minimizing

E
f∼D
‖f − Φ(Ψ(f))‖2 + λη(η(f)− hη(U ,W))2.

η(f) denotes entropy.

October 10, 2019 67 / 75

Integrating machine learning with physics-based modeling Kinetic model for gas dynamics

Step 2: Learn the Fluxes and Source Terms in the PDE

Recall the general conservative form of the moment system{
∂tU +∇x · F (U ,W ; ε) = 0,

∂tW +∇x ·G(U ,W ; ε) = R(U ,W ; ε).

Rewrite it into (variance reduction){
∂tU +∇x · [F0(U) + F̃ (U ,W ; ε)] = 0,

∂tW +∇x · [G0(U) + G̃(U ,W ; ε)] = R(U ,W ; ε).

F0(U),G0(U) are the fluxes of the moments U ,W under the Maxwellian distribution.

Our goal is to obtain ML models for F̃ , G̃,R from the original kinetic equation.

Issues: (1) physical symmetries (e.g. Galilean invariance); (2) data generation (active
learning algorithm); (3) locality vs. non-locality of the model

October 10, 2019 68 / 75

Integrating machine learning with physics-based modeling Kinetic model for gas dynamics

Numerical results for transitional flows: Maxwell molecules

ε varies from 10−3 to 10 in the domain. W ∈ R9.

October 10, 2019 69 / 75

Integrating machine learning with physics-based modeling Kinetic model for gas dynamics

Numerical results

Learned functions w(v) as generalized moments

−10 −5 0 5 10
v

−4

−2

0

W
1

−10 −5 0 5 10
v

1

2

3

4

5

W
2

−10 −5 0 5 10
v

−1

0

1

2

3

W
3

−10 −5 0 5 10
v

−2

0

2

4

W
4

−10 −5 0 5 10
v

−5

−4

−3

−2

W
5

−10 −5 0 5 10
v

−4

−2

0

2

W
6

October 10, 2019 70 / 75

Natural languages

Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep neural networks

5 High dimensional PDEs

6 Integrating machine learning with physics-based modeling
Molecular dynamics
Kinetic model for gas dynamics

7 Natural languages

October 10, 2019 71 / 75

Natural languages

Scales in natural languages

Diversity and universality of human languages at different scales:

words

sentences

inter-sentences

October 10, 2019 72 / 75

Natural languages

What is semantics? Semantics are invariants under translation

October 10, 2019 73 / 75

Natural languages

Summary and Conclusion

We are at the verge of a new scientific revolution that will impact mathematics and applied
mathematics in fundamental ways.

Integrating machine learning (Keplerian paradigm) with first principle based physical
modeling (Newtonian paradigm) opens up a new (and powerful) paradigm for scientific
research.
Applied mathematics is the most natural platform for this integration.

Theoretical foundation of machine learning = high dimensional numerical analysis

October 10, 2019 74 / 75

Natural languages

MSML 2020

A new annual conference:
Mathematical and Scientific Machine Learning (MSML)

First meeting:

Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)

Time: July 15-17, 2020

Location: Princeton

Submission deadline: November 30, 2019

website: http://msml-conf.org

October 10, 2019 75 / 75

http://msml-conf.org

	PDEs and fundamental laws of physics
	Period 1: Solving differential equations numerically
	Period 2: Multiscale, multi-physics modeling
	Mathematical theory of machine learning
	Example 1: Random feature model
	Example 2: Two-layer neural networks
	Example 3. Deep neural networks

	High dimensional PDEs
	Integrating machine learning with physics-based modeling
	Molecular dynamics
	Kinetic model for gas dynamics

	Natural languages

