Bridging Traditional and Machine Learning-Based Algorithms for

Solving Partial Differential Equations:
 The Random Feature Method

Weinan E

Peking University

Beijing, 2022

Collaborators

- Jingrun Chen, USTC
- Xurong Chi, USTC
- Zhouwang Yang, USTC

Example: Two-dimensional Poisson Equation

1. Strong form: Find $u(x, y) \in C^{2}(\Omega)$, s.t.

$$
\begin{aligned}
-\Delta u(x, y) & =f(x, y), & & \text { in } \Omega \\
u(x, y) & =0, & & \text { on } \partial \Omega
\end{aligned}
$$

or

$$
\min _{u(x, y) \in H_{0}^{1}(\Omega)} \int_{\Omega}(\Delta u+f)^{2} \mathrm{~d} x \mathrm{~d} y
$$

2. Weak form: Find $u(x, y) \in H_{0}^{1}(\Omega)$, s.t.

$$
\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x \mathrm{~d} y=\int_{\Omega} f v \mathrm{~d} x \mathrm{~d} y, \quad \forall v \in H_{0}^{1}(\Omega)
$$

3. Variational form :

$$
\min _{u(x, y) \in H_{0}^{1}(\Omega)} \int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-f u\right) \mathrm{d} x \mathrm{~d} y
$$

Numerical algorithms

- Low computational cost
- Low human cost
- Robustness and generality

An incomplete list of some of the difficulties we still encounter

- Problems with complex geometry: Stokes flow in porous media
- Kinetic equations: Direct simulation Monte Carlo algorithm
- Multi-scale problems

Outline

Traditional Algorithms

Machine Learning-based Algorithms $M \neq N$

A Bridge Between Traditional and Machine-learning Algorithms

Traditional Algorithms

- Strong form: Finite Difference Method, Spectral Collocation Method, Least Square Method
- Variational form: Ritz Method
- Weak form: Finite Element Method, Spectral (Galerkin) Method, Spectral Element Method, Mesh-free Method, etc

Finite Difference Method

- Discretization of equation \rightarrow grid points (collocation points)

$$
-\Delta u\left(x_{i, j}\right)=f\left(x_{i, j}\right)
$$

- Discretization of operator \rightarrow finite difference

$$
\frac{4 u_{i, j}-u_{i-1, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}}{h^{2}}=f_{i, j}
$$

- Boundary condition

$$
u_{1, j}=u_{m, j}=u_{i, 1}=u_{i, n}=0
$$

- Total number of conditions $=$ total number of unknowns

Simple, but not easy to handle complex geometries

Spectral Collocation Method

- Discretization of equation \rightarrow grid points (collocation points)

$$
-\Delta u\left(x_{i, j}\right)=f\left(x_{i, j}\right)
$$

- Approximation space: Linear combinations of global polynomials (Lagrange polynomials, Fourier polynomials, Chebyshev polynomials, etc)

$$
u_{N}(x, y)=\sum_{i, j} \phi_{i j}(x, y) u_{i j}
$$

- Polynomial basis functions need to satisfy boundary conditions

Spectral accuracy, not easy to handle complex geometries

Ritz Method

- Approximation space: Linear combinations of global basis functions (Polynomials, Trigonometric functions, etc)

$$
u_{N}(x, y)=\sum_{i, j} \phi_{i j}(x, y) u_{i j}
$$

- Basis functions need to satisfy boundary conditions
- Variational problem: Numerical integration

$$
u_{N}(x, y)=\underset{v_{N}(x, y) \in H_{0}^{1}(\Omega)}{\arg \min } \int_{\Omega}\left(\frac{1}{2}\left|\nabla v_{N}\right|^{2}-f v_{N}\right) \mathrm{d} x \mathrm{~d} y
$$

Not easy to handle complex geometries (boundary conditions and numerical integration)

Finite Element Method

- Mesh generation: Tedious and time-consuming ($\sim 70 \%$ for solving a PDE problem)
- Basis functions: linear combinations of local piecewise polynomials

$$
u_{N}(x, y)=\sum_{i, j} \phi_{i j}(x, y) u_{i j}
$$

- Weak form

$$
\int_{\Omega} \nabla u_{N} \cdot \nabla v \mathrm{~d} x \mathrm{~d} y=\int_{\Omega} f v \mathrm{~d} x \mathrm{~d} y, \quad \forall v \in V_{N}
$$

- Boundary conditions can be enforced easily

Simple, easy to handle complex geometries, but generating the mesh is not easy

Spectral (Galerkin) Method

- Approximation space: Linear combinations of global polynomials

$$
u_{N}(x, y)=\sum_{i, j} \phi_{i j}(x, y) u_{i j}
$$

- Polynomial basis functions need to satisfy boundary conditions
- Weak form

$$
\int_{\Omega} \nabla u_{N} \cdot \nabla v \mathrm{~d} x \mathrm{~d} y=\int_{\Omega} f v \mathrm{~d} x \mathrm{~d} y, \quad \forall v \in V_{N}
$$

Simple, spectral accuracy, not easy to handle complex regions (boundary conditions, numerical integration)

Spectral Element Method

- Mesh generation
- Approximation space: Linear combination of local higher-degree polynomials (Double summation of order index and element index)

$$
u_{N}(x, y)=\sum_{i, j} \phi_{i j}(x, y) u_{i j}
$$

- Boundary conditions can be implemented easily
- Weak form:

$$
\int_{\Omega} \nabla u_{N} \cdot \nabla v \mathrm{~d} x \mathrm{~d} y=\int_{\Omega} f v \mathrm{~d} x \mathrm{~d} y, \quad \forall v \in V_{N}
$$

Spectral accuracy, easy to handle complex geometries Mesh generation, boundary conditions and numerical integration can be difficult

Meshfree Method

- Approximation space: Linear combinations of global and local functions $u_{N}(x, y)=\sum_{i, j} \phi_{i j}(x, y) u_{i j}$
- Boundary conditions are enforced by a penalty term
- Weak form:

$$
\int_{\Omega} \nabla u_{N} \cdot \nabla v \mathrm{~d} x \mathrm{~d} y=\int_{\Omega} f v \mathrm{~d} x \mathrm{~d} y, \quad \forall v \in V_{N}
$$

Simple, algebraic accuracy, not easy to handle complex geometries (numerical integration)

Accuracy vs Efficiency

WHICH METHOD IS BETTER???

- Strong form: Collocation points
- Weak form: Numerical integration
- Approximation space
- Boundary conditions

Note that we always have $M=N$, where

- $M=$ number of parameters
- $N=$ number of equations, or collocation points

Deep Neural Network

A new approximation space

$$
u(x, y)=W \sigma\left(W_{2} \sigma\left(W_{1} \mathbf{x}+b_{1}\right)+b_{2}\right)
$$

How to optimize the parameters W and b ?

- Strong form: Collocation points
- Variational form: Numerical integration or Monte-Carlo sampling
- Weak form: Numerical integration or Monte-Carlo sampling

Components of a machine-learning algorithm

- Loss function: Strong, variational, weak Collocation point, Quadrature or Monte Carlo sampling
- Approximation space: Deep neural networks
- Optimization of NN parameters: Stochastic gradient descent method

Comparison

- Error sources: approximation, integration, optimization
- SGD can get a reasonable solution, which is not good enough
- In high dimension
- Traditional methods fail
- Deep learning methods work (1% relative error without convergence order)
- In low dimension $d \leq 3$
- Traditional methods typically work well
- Deep-learning methods work (1% relative error without convergence order), but have high coding efficiency

Machine Learning-based Algorithms

- Variational form: Deep Ritz Method (DRM) ${ }^{1}$
- Strong form: Deep Galerkin Method (DGM) ${ }^{2}$, Physics-Informed Neural Networks (PINN) ${ }^{3}$
- Weak form: Weak Adversarial Network (WAN) ${ }^{4}$
- etc
${ }^{1}$ EY2018.
${ }^{2}$ SS2018.
${ }^{3}$ PINN.
${ }^{4}$ Bao.

Deep Ritz Method

$$
\left\{\begin{array}{lr}
-\Delta u(x)=f(x), & x \in \Omega \\
u(x)=g(x), & x \in \partial \Omega
\end{array}\right.
$$

Loss function: Variational form + boundary penalty term

$$
I[u]=\int_{\Omega}\left(\frac{1}{2}|\nabla u(x)|^{2}-f(x) u(x)\right) \mathrm{d} x+\lambda \int_{\partial \Omega}(u(x)-g(x))^{2} \mathrm{~d} x
$$

Optimization:

$$
\begin{aligned}
\theta_{k+1}= & \theta_{k}-\alpha \nabla_{\theta} \frac{|\Omega|}{N_{v}} \sum_{i=1}^{N_{v}}\left[\frac{1}{2}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right)\right] \\
& -\lambda \alpha \nabla_{\theta} \frac{|\partial \Omega|}{N_{b}} \sum_{j=1}^{N_{b}}\left[u\left(y_{j}\right)-g\left(y_{j}\right)\right]^{2}
\end{aligned}
$$

- Variational form: ReLU converges in general
- Boundary condition is enforced by penalty term, but the penalty parameter is difficult to tune
- Loss function can be negative
- $M \neq N$

DGM, PINN

$$
\begin{aligned}
& \partial_{t} u=\mathcal{L} u, \quad(t, x) \in[0, T] \times \Omega \\
& u(0, x)=u_{0}(x), x \in \Omega \\
& u(t, x)=g(x), \quad(t, x) \in[0, T] \times \partial \Omega
\end{aligned}
$$

Loss function: strong form in the least-squares sense + boundary penalty term

$$
\begin{aligned}
L(u)= & \left\|\partial_{t} u-\mathcal{L} u\right\|_{2,[0, T] \times \Omega}^{2}+\lambda_{1}\left\|u(0, \cdot)-u_{0}\right\|_{2, \Omega}^{2} \\
& +\lambda_{2}\|u-g\|_{2,[0, T] \times \partial \Omega}^{2}
\end{aligned}
$$

- Strong form: High regularity, and usually ReLU does not converge
- Boundary condition is enforced by penalty term, but the penalty parameter is difficult to tune
- $M \neq N$

WAN

$$
\left\{\begin{array}{l}
\langle\mathcal{A}[u], \varphi\rangle \triangleq \int_{\Omega}\left(\sum_{j=1}^{d} \sum_{i=1}^{d} a_{i j} \partial_{j} u \partial_{i} \varphi+\sum_{i=1}^{d} b_{i} \varphi \partial_{i} u+c u \varphi-f \varphi\right) \mathrm{d} x=0 \\
\mathcal{B}[u]=0, \quad \text { on } \partial \Omega
\end{array}\right.
$$

Loss function: weak form

$$
\begin{gathered}
\|\mathcal{A}[u]\|_{\text {op }} \triangleq \max \left\{\langle\mathcal{A}[u], \varphi\rangle /\|\varphi\|_{2} \mid \varphi \in H_{0}^{1}, \varphi \neq 0\right\} \\
\min _{u \in H^{1}}\|\mathcal{A}[u]\|_{\text {op }}^{2} \Longleftrightarrow \min _{u \in H^{1}} \max _{\varphi \in H_{0}^{1}}|\langle\mathcal{A}[u], \varphi\rangle|^{2} /\|\varphi\|_{2}^{2} \\
L_{\text {int }}(\theta, \eta) \triangleq \log \left|\left\langle\mathcal{A}\left[u_{\theta}\right], \varphi_{\eta}\right\rangle\right|^{2}-\log \left\|\varphi_{\eta}\right\|_{2}^{2} \\
L_{\text {bdry }}(\theta) \triangleq\left(1 / N_{b}\right) \cdot \sum_{j=1}^{N_{b}}\left|u_{\theta}\left(x_{b}^{(j)}\right)-g\left(x_{b}^{(j)}\right)\right|^{2}
\end{gathered}
$$

$\min _{\theta} \max _{\eta} L(\theta, \eta), \quad$ where $L(\theta, \eta) \triangleq L_{\text {int }}(\theta, \eta)+\alpha L_{\text {bdry }}(\theta)$

- Weak form: ReLU converges in general
- Boundary conditions require penalty terms
- Min-max problem: uses GAN to solve and takes longer to optimize
- $M \neq N$

Machine Learning-based Algorithms

- Simple, meshfree, easy to handle complex geometries and boundary conditions
- The accuracy cannot be improved systematically and the penalty parameters are difficult to tune
- Training takes a long time and the optimization error is difficult to quantify
- Low human cost and low application barrier

Local Extreme Learning Machine ${ }^{6}$

- Strong form: collocation points
- Approximation space: domain decomposition + extreme learning machine (only parameters in the output layer optimized) ${ }^{5}$
- Linear least-squares problem $M \neq N$
- Similar to the spectral element method

Spectral accuracy, easy to handle complex geometries

[^0]- Scalar PDE form

$$
\left\{\begin{array}{c}
\mathcal{L} u(\boldsymbol{x})=f(\boldsymbol{x}), \text { in } \Omega \\
\mathcal{B} u(\boldsymbol{x})=g(\boldsymbol{x}), \text { on } \partial \Omega
\end{array}\right.
$$

- Domain decomposition: $\Omega=\Omega_{1} \cup \Omega_{2} \cup \cdots \cup \Omega_{N_{e}}$
- Local neural network is used to represent the solution in each subdomain
- Continuity conditions of basis functions and derivatives are enforced
- Main steps in the algorithm:

1 Selecting collocation points in subdomains Ω_{s}
2 Evaluating the equations at interior points and boundary/continuity conditions at (sub-)boundary points
3 Solving the least-squares problem

Illustration

Domain [0, 8] with $N=4$ subdomains

- Equation at all points
- Boundary conditions at $x=0$ and $x=8$
- Continuity conditions at $x=2, x=4$ and $x=6$

Exponential convergence for Helmholtz equation

N	L^{∞} error	L^{2} error
4	$8.76 \mathrm{E}-2$	$2.31 \mathrm{E}-2$
8	$4.06 \mathrm{E}-7$	$1.20 \mathrm{E}-7$
16	$3.52 \mathrm{E}-10$	$1.14 \mathrm{E}-10$
32	$1.73 \mathrm{E}-11$	$5.99 \mathrm{E}-12$

Timoshenko beam: Loss of exponential accuracy

$N_{x} * N_{y}$	$Q_{x} * Q_{y}$	u error	v error	σ_{x} error	$\tau_{x y}$ error
$2 * 2$	$5^{*} 5$	$5.22 \mathrm{E}-3$	$4.90 \mathrm{E}-3$	$1.33 \mathrm{E}-2$	$2.39 \mathrm{E}-2$
	$10^{*} 10$	$1.55 \mathrm{E}-4$	$5.25 \mathrm{E}-5$	$1.44 \mathrm{E}-4$	$1.02 \mathrm{E}-4$
	$20^{*} 20$	$6.36 \mathrm{E}-4$	$3.47 \mathrm{E}-4$	$6.55 \mathrm{E}-4$	$7.26 \mathrm{E}-4$
	$40 * 40$	$1.76 \mathrm{E}-3$	$1.64 \mathrm{E}-3$	$1.93 \mathrm{E}-3$	$2.57 \mathrm{E}-3$
$4 * 4$	$5^{*} 5$	$8.50 \mathrm{E}-2$	$4.04 \mathrm{E}-2$	$7.72 \mathrm{E}-2$	$4.19 \mathrm{E}-2$
	$10 * 10$	$1.32 \mathrm{E}-5$	$6.19 \mathrm{E}-6$	$3.25 \mathrm{E}-5$	$4.22 \mathrm{E}-5$
	$20^{*} 20$	$1.33 \mathrm{E}-3$	$1.12 \mathrm{E}-3$	$1.31 \mathrm{E}-3$	$1.04 \mathrm{E}-3$
	$40 * 40$	$6.42 \mathrm{E}-4$	$1.91 \mathrm{E}-4$	$1.18 \mathrm{E}-3$	$1.38 \mathrm{E}-3$

Comparison with Spectral Element Method

Local ELM	SEM
Strong form	Weak form
Domain decomposition	Mesh generation
Extreme learning machine	Polynomial
$M \neq N$	$M=N$
Spectral accuracy	Spectral accuracy
Geometry more friendly	Geometry friendly
Basis do not satisfy BC	Basis satisfy BC

Local ELM does not work well for anisotropy/elasticity problems

Accuracy vs Efficiency

Is there a way to combine the advantages of traditional and machine learning-based methods?

The Random Feature Method (RFM) ${ }^{7}$

- Strong form: collocation points
- Approximation space: random feature functions

1 Partition of unity and local random feature models
2 Multi-scale basis
3 Adaptive basis

- Soft boundary condition: Basis functions do not satisfy BC
- A linear convex optimization problem with easy-tuning parameters (balance the contributions from the PDE terms and the boundary conditions in the loss function)
- $M \neq N$

Simple, mesh-free, spectral accuracy, easy to handle complex geometries and boundary conditions

${ }^{7}$ RFM.

Loss function

Examples include the elliptic problem, the linear elasticity problem, and the Stokes flow problem when $d \leq 3$

$$
\begin{cases}\mathcal{L} u(x)=\boldsymbol{f}(\boldsymbol{x}) & \boldsymbol{x} \in \Omega \\ \mathcal{B} \boldsymbol{u}(\boldsymbol{x})=\boldsymbol{g}(\boldsymbol{x}) & \boldsymbol{x} \in \partial \Omega\end{cases}
$$

where $\boldsymbol{x}=\left(x_{1}, \cdots, x_{d}\right)^{T}$, and Ω is bounded and connected domain in \mathbb{R}^{d}

Loss $=\sum_{x_{i} \in C_{l}} \sum_{k=1}^{K_{1}} \lambda_{i i}^{k}\left\|\mathcal{L}^{k} \boldsymbol{u}\left(\boldsymbol{x}_{i}\right)-\boldsymbol{f}^{k}\left(\boldsymbol{x}_{i}\right)\right\|_{l^{2}}^{2}+\sum_{x_{j} \in C_{B}} \sum_{\ell=1}^{K_{B}} \lambda_{B j}^{\ell}\left\|\mathcal{B}^{\ell} \boldsymbol{u}\left(\boldsymbol{x}_{j}\right)-\boldsymbol{g}^{\ell}\left(\boldsymbol{x}_{j}\right)\right\|_{l^{2}}^{2}$
Different penalty parameters at different collocation points are allowed

Collocation points

Two sets of collocation points: C_{I} in Ω and C_{B} on $\partial \Omega$

Figure: Collocation points for a square domain: C_{l}, interior points in orange and blue; C_{B}, boundary points in green.

Approximation space

A linear combination of M network basis functions $\left\{\phi_{m}\right\}$ over Ω as

$$
\begin{aligned}
u_{M}(\boldsymbol{x}) & =\sum_{m=1}^{M} u_{m} \phi_{m}(\boldsymbol{x}) \\
\phi_{m}(\boldsymbol{x}) & =\sigma\left(\boldsymbol{k}_{m} \cdot \boldsymbol{x}+b_{m}\right)
\end{aligned}
$$

where σ is some scalar nonlinear function, $\boldsymbol{k}_{m}, b_{m}$ are some random but fixed parameters

Partition of unity

A set of points $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{M_{p}} \subset \Omega$ with \boldsymbol{x}_{n} the center for a component in the partition

Figure: Visualization of $\psi^{a}(x)$ and $\psi^{b}(x)$.

High-dimensional PoU: $\psi_{n}(\boldsymbol{x})=\prod_{k=1}^{d} \psi_{n}\left(x_{k}\right)$

Local random feature functions

$$
\tilde{\boldsymbol{x}}=\frac{1}{\boldsymbol{r}_{n}}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right), \quad n=1, \cdots, M_{p}
$$

where $\boldsymbol{r}_{n}=\left(r_{n 1}, r_{n 2}, \cdots, r_{n d}\right)$ and $\left\{\boldsymbol{r}_{n}\right\}$ are preselected

- Construct J_{n} random feature functions by

$$
\phi_{n j}(\boldsymbol{x})=\sigma\left(\boldsymbol{k}_{n j} \cdot \tilde{\boldsymbol{x}}+b_{n j}\right), \quad j=1, \cdots, J_{n}
$$

where the feature vectors $\left\{\left(\boldsymbol{k}_{n j}, b_{n j}\right)\right\}$ are often chosen randomly, such as $k_{n j} \sim \mathbb{U}\left(\left[-R_{n j}, R_{n j}\right]^{d}\right)$ and $b_{n j} \sim \mathbb{U}\left(\left[-R_{n j}, R_{n j}\right]\right)$

- Approximate solution

$$
u_{M}(\boldsymbol{x})=\sum_{n=1}^{M_{p}} \psi_{n}(\boldsymbol{x}) \sum_{j=1}^{J_{n}} u_{n j} \phi_{n j}(\boldsymbol{x})
$$

Multi-scale basis

$$
u_{M}(\boldsymbol{x})=u_{g}(\boldsymbol{x})+\sum_{n=1}^{M_{p}} \psi_{n}(\boldsymbol{x}) \sum_{j=1}^{J_{n}} u_{n j} \phi_{n j}(\boldsymbol{x})
$$

where u_{g} is a global random feature function

Adaptive basis

- Some (incomplete) information about the spectral distribution of the solution in the precomputing stage
- A spectral analysis of the forcing term for example
- Selection of the spectral distribution of the feature vectors
- Particularly useful when sin/cos is used as the activation function

Optimization: A least-squares problem

Parameter tuning is fully automatic!!!
Penalty coefficients in the loss functions are chosen as

$$
\begin{array}{ll}
\lambda_{l i}^{k}=\frac{\max _{1 \leq n \leq M_{p} 1 \leq j^{\prime} \leq J_{1} 1 \leq k^{\prime} \leq K_{l}} \max _{l}\left|\mathcal{L}^{k}\left(\phi_{n j^{\prime}}^{k^{\prime}}\left(\boldsymbol{x}_{i}\right) \psi_{n}\left(\boldsymbol{x}_{i}\right)\right)\right|}{c} & \boldsymbol{x}_{i} \in C_{l}, k=1, \cdots, K_{l} \\
\lambda_{B j}^{\ell}=\frac{c}{\max _{1 \leq n \leq M_{p} 1 \leq j^{\prime} \leq J_{n} 1 \leq \ell^{\prime} \leq K_{l}} \max ^{\max ^{\prime}\left|\mathcal{B}^{\ell}\left(\phi_{n j^{\prime}}^{\ell^{\prime}}\left(\boldsymbol{x}_{j}\right) \psi_{n}\left(\boldsymbol{x}_{j}\right)\right)\right|}} \quad \boldsymbol{x}_{j} \in C_{B}, \ell=1, \cdots, K_{B}
\end{array}
$$

where $c=100$ is a universal constant

Collocation points

- Explicit representation of boundary

Uniform grid over the computational domain
Uniform grid in the parameter space

- Implicit representation of boundary

Easily identify interior points
Define an energy function for finding a point on the boundary

Numerical setup

- Select a set of points $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{M_{p}}$ and construct the PoU
- Construct J_{n} random feature functions with radius r_{n} for each x_{n}
- Sample Q collocation points
- Total number of random feature functions M
- Total number of conditions N
- Typically $N>M$ due to the geometric complexity and the limited computational resource

Partition of unity and local random feature models

Table: Comparison of the RFM and PINN for the one-dimensional Helmholtz equation

M	ψ^{a}		ψ^{b}		PINN	
	N	L^{∞} error	N	L^{∞} error	N	L^{∞} error
200	208	$8.76 \mathrm{E}-2$	202	$2.51 \mathrm{E}-2$	202	$2.59 \mathrm{E}-2$
400	416	$5.89 \mathrm{E}-7$	402	$5.18 \mathrm{E}-7$	402	$6.77 \mathrm{E}-3$
800	832	$4.44 \mathrm{E}-10$	802	$6.61 \mathrm{E}-10$	802	$1.35 \mathrm{E}-2$
1600	1664	$8.84 \mathrm{E}-12$	1602	$1.18 \mathrm{E}-11$	1602	$8.94 \mathrm{E}-3$

- Error in PINN is around $1 E-3$ without notable further improvement \leftarrow Optimization error
- RFM for different PoU functions has exponential convergence \leftarrow representability of random feature functions
- RFM has exponential convergence for all problems tested when $d=1,2,3$

Figure: Convergence of RFM and PINN for Helmholtz equation in the semi-log scale

Different choice of PoU

Figure: Error distribution of the RFM with different choices of PoU for Poisson equation

Multi-scale basis

Table: Comparison of PoU-based local basis and multi-scale basis functions for Poisson equation with the explicit solution

Solution frequency	M	N	PoU-based basis	Multi-scale basis
Low	1200	1920	$1.93 \mathrm{E}-8$	$3.28 \mathrm{E}-9$
	2700	4320	$3.62 \mathrm{E}-9$	$6.42 \mathrm{E}-10$
	4800	7680	$8.61 \mathrm{E}-10$	$3.05 \mathrm{E}-10$
High	1200	1920	$6.42 \mathrm{E}-6$	$9.36 \mathrm{E}-7$
	2700	4320	$1.34 \mathrm{E}-7$	$3.58 \mathrm{E}-8$
	4800	7680	$4.16 \mathrm{E}-8$	$1.75 \mathrm{E}-8$
Mixed	1200	1920	$3.22 \mathrm{E}-6$	$4.68 \mathrm{E}-7$
	2700	4320	$6.54 \mathrm{E}-8$	$1.80 \mathrm{E}-8$
	4800	7680	$2.06 \mathrm{E}-8$	$8.92 \mathrm{E}-9$

Inclusion of global basis functions improves the accuracy when the solution has a significant low-frequency component

Adaptive basis

Table: Results of using adaptive random feature functions for the two-dimensional Poisson equation

R_{m}	tanh		sin	
	$\mathbb{U}\left[-R_{m}, R_{m}\right]$	Equally spaced	$\mathbb{U}\left[-R_{m}, R_{m}\right]$	Equally spaced
0.5	$4.92 \mathrm{E}-9$	$1.01 \mathrm{E}-9$	$2.55 \mathrm{E}-3$	$6.05 \mathrm{E}-4$
1.0	$2.91 \mathrm{E}-8$	$9.36 \mathrm{E}-9$	$8.96 \mathrm{E}-7$	$2.58 \mathrm{E}-5$
1.5	$1.33 \mathrm{E}-6$	$5.95 \mathrm{E}-7$	$1.79 \mathrm{E}-9$	$1.47 \mathrm{E}-6$
2.0	$8.75 \mathrm{E}-5$	$7.85 \mathrm{E}-5$	$3.30 \mathrm{E}-12$	$4.29 \mathrm{E}-7$
2.5	$8.16 \mathrm{E}-4$	$4.70 \mathrm{E}-5$	$2.86 \mathrm{E}-12$	$7.66 \mathrm{E}-6$
3.0	$2.06 \mathrm{E}-2$	$5.27 \mathrm{E}-4$	$7.32 \mathrm{E}-12$	$2.17 \mathrm{E}-5$
3.5	$1.53 \mathrm{E}-3$	$3.95 \mathrm{E}-3$	$6.10 \mathrm{E}-12$	$7.45 \mathrm{E}-5$
4.0	$2.66 \mathrm{E}-3$	$1.27 \mathrm{E}-3$	$6.10 \mathrm{E}-12$	$5.59 \mathrm{E}-5$
4.5	$5.39 \mathrm{E}-3$	$1.76 \mathrm{E}-2$	$2.29 \mathrm{E}-11$	$1.24 \mathrm{E}-3$
5.0	$1.29 \mathrm{E}-2$	$5.16 \mathrm{E}-2$	$2.17 \mathrm{E}-11$	$6.72 \mathrm{E}-3$

Best results: sin activation function with $R_{m} \geq k$ and random initialization

Timoshenko beam problem: Elasticity problem in two dimension

Table: Comparison of RFM and locELM

Method	M	N	u error	v error	σ_{x} error	$\tau_{x y}$ error
		400	$1.36 \mathrm{E}-2$	$3.43 \mathrm{E}-3$	$1.40 \mathrm{E}-2$	$1.63 \mathrm{E}-2$
RFM	800	1200	$7.14 \mathrm{E}-6$	$7.98 \mathrm{E}-7$	$8.93 \mathrm{E}-6$	$7.45 \mathrm{E}-6$
		4000	$6.41 \mathrm{E}-11$	$4.34 \mathrm{E}-11$	$6.41 \mathrm{E}-11$	$6.58 \mathrm{E}-11$
		14400	$8.16 \mathrm{E}-12$	$1.01 \mathrm{E}-12$	$1.07 \mathrm{E}-11$	$1.03 \mathrm{E}-11$
locELM		400	$5.22 \mathrm{E}-3$	$4.90 \mathrm{E}-3$	$1.33 \mathrm{E}-2$	$2.39 \mathrm{E}-2$
	800	1200	$1.55 \mathrm{E}-4$	$5.25 \mathrm{E}-5$	$1.44 \mathrm{E}-4$	$1.02 \mathrm{E}-4$
		4000	$6.36 \mathrm{E}-4$	$3.47 \mathrm{E}-4$	$6.55 \mathrm{E}-4$	$7.26 \mathrm{E}-4$
		14400	$1.76 \mathrm{E}-3$	$1.64 \mathrm{E}-3$	$1.93 \mathrm{E}-3$	$2.57 \mathrm{E}-3$

Rescaling strategy restores the spectral accuracy

Two-dimensional elasticity problem with a complex geometry

Figure: Complex domain with a cluster of holes that are nearly touching

Rescaling

Error in locELM is around $10^{-3} \sim 10^{-2}$, while RFM still maintains spectral accuracy

M	N	u error	v error	σ_{x} error	σ_{y} error	$\tau_{x y}$ error
3200	1784	$4.96 \mathrm{E}-1$	$8.37 \mathrm{E}-1$	$1.09 \mathrm{E}+0$	$3.52 \mathrm{E}+0$	$5.24 \mathrm{E}-1$
	4658	$5.82 \mathrm{E}-3$	$7.12 \mathrm{E}-3$	$1.04 \mathrm{E}-2$	$5.47 \mathrm{E}-2$	$3.85 \mathrm{E}-3$
	13338	$1.69 \mathrm{E}-5$	$1.19 \mathrm{E}-5$	$2.89 \mathrm{E}-5$	$6.40 \mathrm{E}-5$	$8.18 \mathrm{E}-6$
	42820	$1.39 \mathrm{E}-5$	$1.55 \mathrm{E}-5$	$4.92 \mathrm{E}-5$	$6.16 \mathrm{E}-5$	$1.29 \mathrm{E}-5$
	6578	$9.11 \mathrm{E}-2$	$6.41 \mathrm{E}-2$	$1.03 \mathrm{E}-1$	$2.46 \mathrm{E}-1$	$2.95 \mathrm{E}-2$
	17178	$2.35 \mathrm{E}-4$	$2.10 \mathrm{E}-4$	$3.02 \mathrm{E}-4$	$7.56 \mathrm{E}-4$	$8.93 \mathrm{E}-5$
	50500	$5.46 \mathrm{E}-7$	$4.98 \mathrm{E}-7$	$8.45 \mathrm{E}-7$	$2.03 \mathrm{E}-6$	$2.67 \mathrm{E}-7$
	165184	$2.32 \mathrm{E}-7$	$1.89 \mathrm{E}-7$	$9.28 \mathrm{E}-8$	$2.32 \mathrm{E}-7$	$2.43 \mathrm{E}-8$

Figure: Numerical solution by the random feature method for the elasticity problem

Difference between the RFM and FEM solutions is about 1\%

Method	Reference	M	N	u error	v error	σ_{χ} error	σ_{y} error	$\tau_{x y}$ error
RFM	RFM $N=490176$	16000	40326	$1.28 \mathrm{E}+0$	$1.12 \mathrm{E}+0$	$1.29 \mathrm{E}+0$	$9.37 \mathrm{E}-1$	$1.03 \mathrm{E}+0$
			135442	$1.12 \mathrm{E}-1$	$1.16 \mathrm{E}-1$	$1.13 \mathrm{E}-1$	$1.03 \mathrm{E}-2$	$1.20 \mathrm{E}-1$
			285472	6.52E-4	$6.98 \mathrm{E}-4$	$1.03 \mathrm{E}-3$	3.01E-5	$1.88 \mathrm{E}-3$
RFM	FEM $M=153562$	16000	40326	$1.30 \mathrm{E}+0$	$1.12 \mathrm{E}+0$	$1.28 \mathrm{E}+0$	9.37E-1	$1.03 \mathrm{E}+0$
			135442	$7.65 \mathrm{E}-2$	$8.55 \mathrm{E}-2$	$1.16 \mathrm{E}-1$	$1.31 \mathrm{E}-1$	$1.25 \mathrm{E}-1$
			285472	3.94E-2	$3.36 \mathrm{E}-2$	$6.59 \mathrm{E}-3$	$5.95 \mathrm{E}-2$	$2.31 \mathrm{E}-2$
			490176	4.00E-2	3.43E-2	$6.20 \mathrm{E}-3$	5.92E-2	$2.30 \mathrm{E}-2$
FEM	FEM $M=153562$	3716	3716	3.15E-4	4.54E-4	$1.41 \mathrm{E}-2$	5.81E-2	$3.35 \mathrm{E}-2$
		10438	10438	$1.20 \mathrm{E}-4$	$1.81 \mathrm{E}-4$	$9.39 \mathrm{E}-3$	3.61E-2	$2.13 \mathrm{E}-2$
		40054	40054	$2.88 \mathrm{E}-5$	3.93E-5	$4.65 \mathrm{E}-3$	1.62E-2	$9.40 \mathrm{E}-3$
FEM	RFM $N=490176$	3716	3716	3.87E-2	3.36E-2	$1.43 \mathrm{E}-2$	8.93E-2	3.86E-2
		10438	10438	$3.86 \mathrm{E}-2$	$3.34 \mathrm{E}-2$	$1.05 \mathrm{E}-2$	7.29E-2	$2.99 \mathrm{E}-2$
		40054	40054	$3.85 \mathrm{E}-2$	$3.32 \mathrm{E}-2$	7.19E-3	$6.33 \mathrm{E}-2$	$2.44 \mathrm{E}-2$
		153562	153562	$3.85 \mathrm{E}-2$	3.32E-2	6.22E-3	$6.01 \mathrm{E}-2$	$2.31 \mathrm{E}-2$

Table: Comparison of RFM and FEM

Figure: Numerical solution by the random feature method for the two-dimensional elasticity problem over a complex geometry

Mesh generation in FEM is difficult

Removal of the cluster leads to an L^{∞} error of about 50% for σ_{x} RFM shows a clear trend of numerical convergence

M	N	u error	v error	σ_{x} error	σ_{y} error	$\tau_{x y}$ error
14400	195146	$2.30 \mathrm{E}-1$	$1.30 \mathrm{E}-1$	$6.64 \mathrm{E}-2$	$1.72 \mathrm{E}-1$	$1.71 \mathrm{E}-1$
	226132	$8.97 \mathrm{E}-2$	$1.23 \mathrm{E}-1$	$5.60 \mathrm{E}-2$	$1.41 \mathrm{E}-1$	$1.32 \mathrm{E}-1$
	259400	$6.47 \mathrm{E}-2$	$6.94 \mathrm{E}-2$	$3.66 \mathrm{E}-2$	$9.04 \mathrm{E}-2$	$8.15 \mathrm{E}-2$
	294878	$7.30 \mathrm{E}-2$	$6.68 \mathrm{E}-2$	$3.46 \mathrm{E}-2$	$7.13 \mathrm{E}-2$	$7.05 \mathrm{E}-2$

Table: Numerical results of the RFM with $N=332606$ as the reference

Multi-scale problems

Figure: Random feature method for the elliptic homogenization problem

Table: Convergence of RFM

M	N	u error	u_{x} error	u_{y} error	
	25554	$1.42 \mathrm{E}+0$	$8.68 \mathrm{E}+0$	$8.73 \mathrm{E}+0$	
25600	91339	$3.13 \mathrm{E}-2$	$3.54 \mathrm{E}-2$	$3.62 \mathrm{E}-2$	
	197360	$3.48 \mathrm{E}-3$	$6.45 \mathrm{E}-3$	$7.18 \mathrm{E}-3$	
	343586	Reference			

Stokes flow

Two-dimensional channel flows with the inhomogeneous boundary condition

$$
\left.(u, v)\right|_{\partial \Omega}= \begin{cases}(y(1-y), 0) & \text { if } x=0 \\ (y(1-y), 0) & \text { if } x=1 \\ (0,0) & \text { otherwise }\end{cases}
$$

Figure: Velocity field (u, v) generated by the random feature method

Pressure diagram for four sets of complex obstacles

- Spurious pressure mode arises due to the rank deficiency of the discrete systems in spectral methods $M=N^{8}$
- RFM automatically bypass this issue by looking for the minimal-norm solution $M \neq N$

(a)

(b)

(c)

(d)

[^1]
Discussions

Three key components of RFM
1 Loss function: least-squares (strong) formulation of the PDEs on collocation points
2 Approximate solution: linear combination of random feature functions
3 Optimization: least-squares problem with automatic parameter tuning

- Traditional algorithms are robust but lack of flexibility
- Machine-learning algorithms are flexible but lack of robustness
- RFM seems to have both
- Deep neural networks have strong representative power but the parameters are difficult to optimize
- Random feature functions seem to also have strong representative power and the parameters are "easy" to optimize
- Classical methods $M=N$: Efficient linear solvers
- Random feature method $M \neq N$: Least square framework with large condition number

Further developments

- Choice of basis functions: Probability distribution for the feature vector
- Choice of collocation points: Three dimensional domains when the boundary is a surface
- Training: Preconditioning and reformulation techniques
- Time-dependent problems
- Applications

[^0]: ${ }^{5}$ huang2006extreme.
 ${ }^{6}$ dong2021local.

[^1]: ${ }^{8}$ schumack1991spectral.

