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PDEs and fundamental laws of physics

PDEs and fundamental laws of physics

Navier-Stokes equations
Boltzmann equation
Schrödinger equation
......
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PDEs and fundamental laws of physics

Dirac’s claim (1929)

”The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much too complicated to be soluble. ”

For most practical applications, the difficulty is not in the fundamental laws of physics, but in
the mathematics.

July 16, 2019 5 / 58



Period 1: Solving differential equations numerically
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Period 1: Solving differential equations numerically

Numerical methods: 50’s-80’s

finite difference

finite element

spectral methods

......

These have completely changed the way we do science, and to an even greater extend,
engineering.

gas dynamics

structural analysis

radar, sonar, optics

control of flight vehicles, satellites

......

If the finite difference method was invented today, the shock wave that it will generate would
be just as strong as the one generated by deep learning.
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Period 1: Solving differential equations numerically

Many difficult problems remain

many-body problems (classical and quantum, in molecular science)

quantum control

first principle-based drug and materials design

protein folding

turbulence, weather forecasting

transitional flows in gas dynamics

polymeric fluids

plasticity

control problems in high dimensions

......

Common feature of these problems: Dependence on many variables.

Curse of dimensionality: As the dimension grows, the complexity (or computational cost)
grows exponentially.
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Period 2: Multiscale, multi-physics modeling

Multiscale, multi-physics modeling: 90’s till now

works well when the macro- and micro-scales are very well separated

not very effective when there are no separation of scales (e.g. turbulence problem)

July 16, 2019 10 / 58



Period 2: Multiscale, multi-physics modeling

Status summary

Solved: low dimensional problems (few dependent variables)

Unsolved: high dimensional problems (many dependent variables)

Machine learning, particularly deep learning, seems to be a powerful tool for high dimensional
problems.
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Outline

1 PDEs and fundamental laws of physics

2 Period 1: Solving differential equations numerically

3 Period 2: Multiscale, multi-physics modeling

4 Period 3: Integrating machine learning with physical modeling
Molecular modeling
Kinetic model for gas dynamics
Economics and Finance
Linguistics

5 Mathematical theory of machine learning
Example 1: Random feature model
Example 2: Two-layer neural networks
Example 3. Deep residual networks

July 16, 2019 12 / 58



Period 3: Integrating machine learning with physical modeling Molecular modeling

Example 1: Molecular dynamics

Traditional dilemma: accuracy vs cost.

E = E(x1,x2, ...,xi, ...,xN),

mi
d2xi
dt2

= Fi = −∇xiE.

Two ways to calculate E and F :

Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive:

E = 〈Ψ0|HKS
e |Ψ0〉, µφ̈i = HKS

e φi +
∑
j

Λijφj.

Empirical potentials: efficient but unreliable. The Lennard-Jones potential:

Vij = 4ε[(
σ

rij
)12 − (

σ

rij
)6], E =

1

2

∑
i 6=j

Vij.
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Period 3: Integrating machine learning with physical modeling Molecular modeling

How can we represent (approximate) a function of many variables?

New paradigm:

quantum mechanics model – data generator

machine learning – parametrize (represent) the model

molecular dynamics – simulator

Issues (different from usual AI applications):

preserving physical symmetries (translation, rotation, permutation)

getting the “optimal data set”
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Deep potential

The whole sub-network consists of an encoding net Di(Ri) and a fitting net Ei(Di).

(Rotation: R̃i(R̃i)T , permutation: (Gi1)TR̃i and (R̃i)TGi2.)
DeepPot-SE (arxiv: 1805.09003, NIPS 2018), see also Behler and Parrinello, PRL 2007.
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Period 3: Integrating machine learning with physical modeling Molecular modeling

DP-GEN: active learning for uniformly accurate model

Indicator: ε = maxi
√
〈‖fi − f̄i‖2〉, f̄i = 〈fi〉 ”Active Learning of Uniformly Accurate Inter-atomic Potentials

for Materials Simulation.” arXiv:1810.11890 (2018).
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Period 3: Integrating machine learning with physical modeling Molecular modeling

In addition, initialize the exploration with a variety of different initial configurations.

∼0.005% configurations explored by DeePMD are selected for labeling.
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Case 1: accuracy is comparable to the accuracy of the data
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Case 2: structural information of DFT water

Radial and angular distribution function of liquid water (PI-AIMD):

Distribution of the Steinhardt order parameter Q̄6:
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Period 3: Integrating machine learning with physical modeling Molecular modeling

DeePMD-kit

Towards realization of a general platform for ML-based PES modeling.

interfacing state-of-the-art deep learning and MD packages: TensorFlow, LAMMPS, i-PI;

parallelization: MPI/GPU support.

Comp. Phys. Comm., 2018: 0010-4655 (https://github.com/deepmodeling/deepmd-kit))
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Period 3: Integrating machine learning with physical modeling Molecular modeling

1 physical/chemical problems

understanding water (phase diagram of water, including reactive regions; phase transition: ice to

water, ionic liquid to super-ionic ice; nuclear quantum effect: collective tunneling, isotope effect;

reactive event: dissociation and recombination; water surface and water/TiO2 interface; spectra:

infra-red; Raman; X-ray Absorption; exotic properties: dielectric constant; density anomaly, etc.

physical understanding of different systems that require long-time large-scale simulation with high

degrees of model fidelity ( high-pressure iron: fractional defect; phase boundary; high-pressure

hydrogen: exotic phases)

catalysis (Pt cluster on MoS2 surface; CO molecules on gold surface, etc.)

2 materials science problems

battery materials (diffusion of lithium in LGePS, LSGeSiPS, etc.; diffusion of Se in Cu2Se alloy)

high entropy/high temperature alloy (CoCrFeMnNi alloy; Ni-based alloy)

3 organic chemistry/bio problems

crystal structure prediction of molecular crystals;

protein-ligand interaction;

protein folding.
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Example 2: Modeling gas dynamics

Kn =
mean free path

macroscopic length

1.1 Some History and Background 1 CONTINUUM MODELS

Kn10¡2 10¡1 1.0 10.0

½ ½

Euler�Eqn

equilibrium non-equilibrium

NSF�Eqn kinetic�regime free�flight
transition
regime

½ ½½

! !!!

Figure 1: Overview of the range of Knudsen number and various model regimes.

the moment systems lead to stable hyperbolic equations. However, in practical explicit
systems hyperbolicity is given only in a finite range due to linearization. In Junk (1998)
and Junk (2002) it is shown that the fully nonlinear maximum-entropy approach has
sever drawbacks and singularities. Furthermore, the hyperbolicity leads to discontinuous
sub-shock solutions in the shock profile. A variant of the moment method has been
proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum-entropy
10-moment system has been used by Suzuki and van Leer (2005).

Both fundamental approaches of kinetic theory, Chapman-Enskog and Grad, exhibit
severe disadvantages. Higher order Chapman-Enskog expansions are unstable and Grad’s
method introduces subshocks and show slow convergence. It seems to be desirable to
combine both methods in order to remedy their disadvantages. Such an hybrid approach
have already been discussed by Grad in a side note in Grad (1958). He derives a variant
of the regularized 13-moment equations given below, but surprisingly he neither gives any
details nor is he using or investigating the equations. In the last fifty years the paper Grad
(1958) was cited as standard source for introduction into kinetic theory, but, apparently,
this specific idea got entirely lost and seems not to be known in present day literature.

The Chapman-Enskog expansion is based on equilibrium and the corrections describe
the non-equilibrium perturbation. A hybrid version which uses a non-equilibrium as basis
is discussed in Karlin et al. (1998). They deduced linearized equations with unspecified
coefficients. Starting from Burnett equations Jin and Slemrod (2001) derived an extended
system of evolution equations which resembles the regularized 13-moment system. It is
solved numerically in Jin et al. (2002). However, the tensorial structure of their relations
is not in accordance with Boltzmann’s equation. Starting from higher moment systems
Müller et al. (2003) discussed a parabolization which includes higher order expressions
into hyperbolic equations.

The regularized 13-moment-equations presented below were rigorously derived from
Boltzmann’s equation in Struchtrup and Torrilhon (2003). The key ingredient is a Chapman-
Enskog expansion around a pseudo-equilibrium which is given by the constitutive relations
of Grad for stress tensor and heat flux. The final system consists of evolution equations
for the fluid fields: density, velocity, temperature, stress tensor and heat flux. The closure
procedure adds second order derivatives to Grad’s evolution equations of stress and heat
flux, thus regularizes the former hyperbolic equations into a mixed hyperbolic-parabolic
system with relaxation. The relaxational and parabolic part is only present in the equa-
tions of stress and heat flux and models the multi-scale dissipation of Boltzmann’s equa-
tion, see Struchtrup and Torrilhon (2003). Like the Boltzmann equation the R13 system
is derived for monatomic gases and all the results in this chapter are restricted to this
case. The extension to poly-atomic gases or mixtures is future work. The text book by
Struchtrup (2005b) provides an introduction to approximation methods in kinetic theory

RTO-EN-AVT-194 10 - 5 
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Boltzmann Equation

One-particle density function f (x,v, t)

∂tf + v · ∇xf =
1

ε
Q(f ), v ∈ R3, x ∈ Ω ⊂ R3,

ε = Knudsen number and Q is the collision operator.

Macroscopic state variables: ρ, u and T (density, bulk velocity and temperature)

ρ =

∫
f dv, u =

1

ρ

∫
fv dv, T =

1

3ρ

∫
f |v − u|2 dv.

When ε� 1, Boltzmann can be approximated by Euler:

∂tU +∇x · F (U ) = 0,

with p = ρT , E = 1
2ρu

2 + 3
2ρT ,

U = (ρ, ρu, E)T

F (U ) = (ρu, ρu⊗ u + pI, (E + p)u)T
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Machine learning-based moment method

Objective: construct an uniformly accurate (generalized) moment model using machine
learning.

Step 1: Learn the Moments through Autoencoder
Find an encoder Ψ that maps f (·,v) to generalized moments W ∈ RM and a decoder Φ
that recovers the original f from U ,W

W = Ψ(f ) =

∫
wf dv, Φ(U ,W )(v) = h(v;U ,W ).

The goal is essentially to find optimal w and h parametrized by neural networks through
minimizing

E
f∼D
‖f − Φ(Ψ(f ))‖2 + λη(η(f )− hη(U ,W ))2.

η(f ) denotes entropy.
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Step 2: Learn the Fluxes and Source Terms in the PDE

Recall the general conservative form of the moment system{
∂tU +∇x · F (U ,W ; ε) = 0,

∂tW +∇x ·G(U ,W ; ε) = R(U ,W ; ε).

Rewrite it into (variance reduction){
∂tU +∇x · [F0(U ) + F̃ (U ,W ; ε)] = 0,

∂tW +∇x · [G0(U ) + G̃(U ,W ; ε)] = R(U ,W ; ε).

F0(U ),G0(U ) are the fluxes of the moments U ,W under the Maxwellian distribution.

Our goal is to obtain ML models for F̃ , G̃,R from the original kinetic equation.

Issues: (1) physical symmetries (e.g. Galilean invariance); (2) data generation (active
learning algorithm); (3) locality vs. non-locality of the model
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Numerical results for transitional flows

ε varies from 10−3 to 10 in the domain. W ∈ R6.
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Figure: Profiles of ρ, ρu, E (from left to right) at t = 0, 0.05, 0.1 (from top to bottom)
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Numerical results

Learned functions w(v) as generalized moments
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Possible applications

transitional flow in gas dynamics (e.g. reentry of space-craft)

plasma dynamics (e.g. tokomak)

complex fluids (colloids, polymer fluids, etc)

Most importantly, these kinds of ideas provide a very promising way of doing multiscale
modeling in the absence of scale separation.
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Example 3: Economics and finance

Nonlinear parabolic PDEs

∂u

∂t
+

1

2
∆u +∇u · µ + f

(
u,∇u

)
= 0.

Terminal condition: u(T, x) = g(x).

To fix ideas, we are interested in the solution at t = 0, x = ξ for some vector ξ ∈ Rd.

Example: Black-Scholes Equation with Default Risk:

f = −(1− δ)Q(u)u−Ru
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Connection between PDE and BSDE

Backward stochastic differential equations (Pardoux and Peng 1992): Find an adapted
process {(Xt, Yt, Zt)}t∈[0,T ] such that

Xt = ξ +

∫ t

0

µ(s,Xs) ds + dWt

Yt = g(XT ) +

∫ T

t

f (Ys, Zs) ds−
∫ T

t

(Zs)
T dWs

Connection to the PDEs (nonlinear Feynman-Kac formula):

Yt = u(t,Xt), Zt = ∇u(t,Xt)

In other words, given the stochastic process satisfying

Xt = ξ +

∫ t

0

µ(s,Xs) ds + Wt,

the solution of PDE satisfies the following SDE

u(t,Xt)− u(0, X0) = −
∫ t

0

f (u(s,Xs),∇u(s,Xs))ds +

∫ t

0

∇u(s,Xs)dWs.
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Neural Network Approximation

Key step: approximate the function x 7→ ∇u(t, x) at each discretized time step t = tn
by a feedforward neural network (a subnetwork)

∇u(tn, Xtn) ≈ ∇u(tn, Xtn|θn)

where θn denotes neural network parameters.

Observation: after time discretization, we can stack all the subnetworks together to
form a deep neural network (DNN) as a whole:

Xtn+1 −Xtn ≈ µ(tn, Xtn) ∆tn + ∆Wn

u(tn+1, Xtn+1)− u(tn, Xtn) ≈ −f (u(tn, Xtn),∇u(tn, Xtn))∆tn +∇u(tn, Xtn)∆Wn.

July 16, 2019 31 / 58



Period 3: Integrating machine learning with physical modeling Economics and Finance

Figure: Each column corresponds to a subnetwork at time t = tn

L(θ) = E
[∣∣g(XtN )− û

(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣2].
Open-source code on https://github.com/frankhan91/DeepBSDE
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Period 3: Integrating machine learning with physical modeling Economics and Finance

LQG (linear quadratic Gaussian) Example for d=100

dXt = 2
√
λmt dt +

√
2 dWt,

Cost functional: J({mt}0≤t≤T ) = E
[ ∫ T

0 ‖mt‖2
2 dt + g(XT )

]
.

HJB equation:
∂u

∂t
+ ∆u− λ‖∇u‖2

2 = 0

u(t, x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.
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4.0
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u
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Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0)) when λ = 1, which achieves 0.17% in a runtime of

330 seconds. Right: u(t=0, x=(0)) for different λ.
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Black-Scholes Equation with Default Risk for d=100

“exact” solution at t = 0 x = (100, . . . , 100) computed by the multilevel Picard method.

Figure: Approximation of u(t=0, x=(100, . . . , 100)) against number of iteration steps. The deep BSDE method

achieves a relative error of size 0.46% in a runtime of 617 seconds.

Has been applied to the pricing of basket options and path-dependent options.
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Period 3: Integrating machine learning with physical modeling Linguistics

Example 4: Mathematical principles of natural languages

Diversity and universality of human languages at different scales:

words

sentences

inter-sentences
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Period 3: Integrating machine learning with physical modeling Linguistics

What is semantics? Semantics are invariants under translation
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Period 3: Integrating machine learning with physical modeling Linguistics

Summary

Common features:

multi-scale

classical multi-scale methods have trouble to deal with them

new machine learning models seem to be of big help in overcoming the
curse of dimensionality.
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Mathematical theory of machine learning

Supervised learning: Approximating functions using samples

Object of interest: (f ∗, µ), where f ∗ : Rd → R1, µ is a prob measure on Rd.

Given a set of samples from µ, {xj}nj=1, and {yj = f ∗(xj)}nj=1

Task: Approximate f ∗ using S = {(xj, yj)}nj=1.

Strategy: Construct some “hypothesis space” (space of functions) Hm (m ∼ the
dimension of Hm).

linear regression: f (x) = β · x + β0

generalized linear models: f (x) =
∑m

k=1 ckφk(x), where {φk} are linearly independent functions.

two-layer neural networks: f (x) =
∑

k akσ(bk · x + ck), where σ is some nonlinear function, e.g.

σ(z) = max(z, 0).

deep neural networks (DNN) : compositions of functions of the form above.

Minimize the “empirical risk”:

R̂n(θ) =
1

n

∑
j

(f (xj)− yj)2 =
1

n

∑
j

(f (xj)− f ∗(xj))2
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Mathematical theory of machine learning

Classical numerical analysis (approximation theory)

Define a “well-posed” math model (the hypothesis space, the loss function, etc)
splines: hypothesis space = C1 piecewise cubic polynomials the data

In(f ) =
1

n

n∑
j=1

(f (xj)− yj)2 + λ

∫
|D2f (x)|2dx

finite elements: hypothesis space = C0 piecewise polynomials

Identify the right function spaces, e.g. Sobolev/Besov spaces
direct and inverse approximation theorem (Bernstein and Jackson type theorems):

f can be approximated by trig polynomials in L2 to order s iff f ∈ Hs, ‖f‖2
Hs =

∑s
k=0 ‖∇kf‖2

L2
.

functions of interest are in the right spaces (PDE theory, real analysis, etc).

Optimal error estimates
A priori estimates (for piecewise linear finite elements, α = 1/d, s = 2)

‖fm − f ∗‖H1 ≤ Cm−α‖f ∗‖Hs

A posteriori estimates (say in finite elements):

‖fm − f ∗‖H1 ≤ Cm−α‖fm‖h
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Mathematical theory of machine learning

Difference between ML and classical approximation theory

high dimensionality

finite amount of data

Empirical risk vs. population risk:

R̂n(θ) =
1

n

∑
j

(f (xj)− yj)2 =
1

n

∑
j

(f (xj)− f ∗(xj))2

R(θ) = E(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ
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Mathematical theory of machine learning

Another benchmark: High dimensional integration

Monte Carlo: X = [0, 1]d, {xj, j = 1, · · · , n} is uniformly distributed in X .

I(g) =

∫
X

g(x)dµ, In(g) =
1

n

∑
j

g(xj)

E(I(g)− In(g))2 =
1

n
Var(g)

Var(g) =
∫
X g

2(x)dx− (
∫
X g(x)dx)2

The O(1/
√
n) rate is the best we can hope for.

However, Var(g) can be very large in high dimension. That’s why variance reduction is
important!
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Mathematical theory of machine learning

Estimating the generalization gap

”Generalization gap” = R̂(θ̂)− R̂n(θ̂) = I(g)− In(g), g(x) = (f (x, θ̂)− f ∗(x))2

I(g) =

∫
X=[−1,1]d

g(x)dµ, In(g) =
1

n

∑
j

g(xj)

For fixed g = h, we have

|I(h)− In(h)| ∼ 1√
n

For Lipschitz functions (Wasserstein distance)

sup
‖h‖Lip≤1

|I(h)− In(h)| ∼ 1

n1/d

For functions in Barron space, to be defined later

sup
‖h‖B≤1

|I(h)− In(h)| ∼ 1√
n
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Mathematical theory of machine learning

Rademacher complexity

Let H be a set of functions, and S = (x1,x2, ...,xn) be a set of data points. Then, the
Rademacher complexity of H with respect to S is defined as

R̂S(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

Given a function class H, for any δ ∈ (0, 1), with probability at least 1− δ over the random
samples S = (x1, · · · ,xn),

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ 2R̂S(H) + sup
h∈H
‖h‖∞

√
log(2/δ)

2n
.

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≥ 1

2
R̂S(H)− sup

h∈H
‖h‖∞

√
log(2/δ)

2n
.
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If H = unit ball in Barron space: R̂S(H) ∼ O(1/
√
n)

If H = unit ball in Lipschitz space: R̂S(H) ∼ O(1/n1/d)

If H = unit ball in C0: R̂S(H) ∼ O(1)
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Two types of machine learning models

(1). Models that suffer from the curse of dimensionality:

generalization error = O(m−α/d + n−β/d)

piecewise polynomial approximation

wavelets with fixed wavelet basis

(2). Models that don’t suffer from the curse of dimensionality:

generalization error = O(γ1(f ∗)/m + γ2(f ∗)/
√
n)

random feature models: {φ(·, ω), ω ∈ Ω} is the set of “features”. Given any realization
{ωj}mj=1, i.i.d. with distribution π, Hm({ωj}) = {fm(x,a) = 1

m

∑m
j=1 ajφ(x;ωj).}.

two layer neural networks Hm = { 1
m

∑m
j=1 ajσ(bTj x + cj)}

residual neural networks HL = {f (·, θ) = α · zL,L(·)}

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)), z0,L(x) = V x
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Example 1: Random feature model

{φ(·;ω)}: collection of random features. π: prob distribution of the random variable ω.

Hypothesis space: Given any realization {ωj}mj=1, i.i.d. with distribution π

Hm({ωj}) = {fm(x,a) =
1

m

m∑
j=1

ajφ(x;ωj).}.

Looking for the right function space: Consider functions of the form

Hk = {f : f (x) =

∫
a(ω)φ(x;ω)dπ(ω)}, ‖f‖2

Hk = Eω∼π[|a(ω)|2]

This is related to the reproducing kernel Hilbert space (RKHS) with kernel:

k(x,x′) = Eω∼π[φ(x;ω)φ(x′;ω)]
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A priori estimates of the regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖H, θ̂n = argmin Ln(θ)

where

‖θ‖H =

 1

m

m∑
j=1

|aj|2
1/2

Theorem
Assume that the target function f ∗ : [0, 1]d 7→ [0, 1] ∈ Hk. There exist constants C0, C1, C2,
such that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of
training set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

Hk
m

+ ‖f ∗‖Hk

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.
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Example 2: Two-layer neural networks

Hm = { 1

m

m∑
j=1

ajσ(bTj x + cj)}

Consider functions f : X = [−1, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc), x ∈ X

Ω = R1 × Rd × R1, ρ is a probability distribution on Ω.

‖f‖Bp = inf
ρ

(
Eρ[|a|p(‖b‖1 + |c|)p]

)1/p

Bp = {f ∈ S ′ : ‖f‖Bp <∞}
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What kind of functions admit such a representation?

Theorem (Barron and Klusowski (2016)): If
∫
Rd ‖ω‖

2
1|f̂ (ω)|dω <∞, where f̂ is the

Fourier transform of f , then f can be represented as

f̃ (x) = f (x)− (f (0) + x · ∇f (0)) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc)

where σ(x) = max(0, x). Moreover f ∈ B∞. Furthermore, we have

‖f̃‖B∞ ≤ 2

∫
Rd
‖ω‖2

1|f̂ (ω)|dω
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Direct and inverse approximation theorems

Theorem (Direct Approximation Theorem)
There exists an absolute constant C0 such that

‖f − fm‖L2(X) ≤
C0‖f‖B2√

m

Theorem (Inverse Approximation Theorem)
For p > 1, let

Np,C = { 1

m

m∑
k=1

akσ(bTkx + ck) :

(
1

m

m∑
k=1

|ak|p(‖bk‖1 + ck)
p

)1/p

≤ C,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ Np,C such that

fm(x)→ f ∗(x)

for all x ∈ X . Then there exists a probability distribution ρ on Ω, such that

f ∗(x) =

∫
aσ(bTx + c)ρ(da, db, dc),

for all x ∈ X .
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Complexity estimates

Theorem
Let FQ = {f ∈ B1, ‖f‖B1 ≤ Q}. Then we have

R̂n(FQ) ≤ 2Q

√
2 ln(2d)

n
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A priori estimates for regularized model

where the path norm is defined by:

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

‖θ‖P =
1

m

m∑
k=1

|ak|(‖bk‖1 + |ck|) (= ‖f (·; θ)‖B1)

Theorem (Weinan E, Chao Ma, Lei Wu, submitted)

Assume that the target function f ∗ : [0, 1]d 7→ [0, 1] ∈ B2. There exist constants C0, C1, C2,
such that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of
training set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

B2

m
+ ‖f ∗‖B2

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.
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Traditional results: A posteriori estimates

|R(θ)− R̂n(θ)| ≤ C1(9θ 9 +1)

√
log(2d)

n
+ C2

√
log(4C2(1 + 9θ9))2/δ)

n

where 9θ9 is some norm of θ (see e.g. Behnam Neyshabur, Zhiyuan Li, et al. Towards
Understanding the Role of Over-Parametrization in Generalization of Neural Networks
(2018)).
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Deep residual networks

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)),

z0,L(x) = V x, f (x, θ) = α · zL,L(x)

compositional law of large numbers (express target function as a compositional
expectation)

compositional function spaces (Barron space is embedded in compositional function
spaces)

direct and inverse approximation theorem

optimal scaling for the Rademacher complexity

optimal a priori estimates for the regularized model
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Conclusion

We are at the verge of a new scientific revolution that will impact mathematics and applied
mathematics in fundamental ways.

Integrating machine learning (Keplerian paradigm) with first principle based physical
modeling (Newtonian paradigm) opens up a new (and powerful) paradigm for scientific
research.
Applied mathematics is the most natural platform for this integration.

Theoretical foundation of machine learning = high dimensional numerical analysis
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MSML 2020

A new NIPS or ICML style annual conference, which also serves as a venue for publications:
Mathematical and Scientific Machine Learning (MSML)

First meeting:

Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)

Time: July 15-17, 2020

Location: Princeton

Submission deadline: November 30, 2019

website: http://msml-conf.org
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