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Introduction

Supervised learning: Approximating functions using samples

Goal: Approximate f ∗ with respect to µ. (f ∗ : Rd → R1. µ is a prob measure on Rd).

Given: a set of samples from µ, {xj}nj=1, and {yj = f ∗(xj)}nj=1

Strategy: Construct some “hypothesis space” (space of functions) Hm (m ∼ the
dimension of Hm). Minimize the “empirical risk”:

R̂n(θ) =
1

n

∑
j

(f (xj)− yj)2 =
1

n

∑
j

(f (xj)− f ∗(xj))2

two important parameters m and n.

Main questions:
1 Optimization: can gradient descent find good minima?
2 Generalization: does the solution found generalize (is the population risk small) ?

R(θ) = E(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

Key words: High dimension and over-parametrization (m > n)
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Introduction

Over-parametrization and curse of dimensionality

Hm = {f =

m∑
k=1

akφk}

m > n, {φk} are linearly independent functions.

Given a data set {xj, yj; j = 1, · · ·n}, one can interpolate the data
(f (xj) = yj, j = 1, · · · , n)

Ga = y, G = (φk(xj))

Yet there is curse of dimensionality

sup
‖f‖B1

≤1

inf
h∈Hm

‖f − h‖L2(D0) ≥
C

dm1/d

m ∼ ε−d
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Introduction

How do we choose the hypothesis space?

linear regression: f (x) = β · x + β0

generalized linear models: f (x) =
∑m

k=1 ckφk(x), where {φk} are linearly independent
functions.

two-layer neural networks: f (x) =
∑

k akσ(bk · x + ck), where σ is some nonlinear
function, e.g. σ(z) = max(z, 0).

deep neural networks (DNN) : compositions of functions of the form above.
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Introduction

f (x, θ) = WLσ ◦ (WL−1σ ◦ (· · ·σ ◦ (W0x))), θ = (W0,W1, · · · ,WL)

σ is a scalar function.

σ(x) = max(x, 0), the ReLU (rectified linear units) function.

σ(x) = (1 + e−x)−1, the “sigmoid function”.

σ(x) = cos(x)

“◦” means acting on each components, the W ’s are matrices.
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Introduction

Dynamical system (ODE) viewpoint to deep learning

Constructing nonlinear approximations through the flow map of a dynamical system
(E (2017, Comm Math Stats), Chen et al (NeurIPS 2018, “Neural ODE”)):

dz(x, t)

dt
= F (z(x, t)), z(0,x) = V x

The flow map x→ z(x, 1) is a nonlinear mapping.

Simplest choice of (nonlinear) F :

F (z;U ,W ) = Uσ ◦ (Wz)

Choose the optimal U ,W (·), α to approximate f ∗ by

f ∗(x) ∼ α · z(x, 1)

This is related to residual neural networks.

z0,L(x) = V x,

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)), l = 0, 1, · · · , L− 1
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Solving high dimensional PDEs

Solving PDEs in very high dimensions

Nonlinear parabolic PDEs

∂u

∂t
+

1

2
∆u +∇u · µ + f

(
u,∇u

)
= 0.

Terminal condition: u(T, x) = g(x).

To fix ideas, we are interested in the solution at t = 0, x = ξ for some vector ξ ∈ Rd.

Example: Black-Scholes Equation with Default Risk:

f = −(1− δ)Q(u)u−Ru
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Solving high dimensional PDEs

Connection between PDE and BSDE

Backward stochastic differential equations (Pardoux and Peng 1992): Find an adapted
process {(Xt, Yt, Zt)}t∈[0,T ] such that

Xt = ξ +

∫ t

0

µ(s,Xs) ds + dWt

Yt = g(XT ) +

∫ T

t

f (Ys, Zs) ds−
∫ T

t

(Zs)
T dWs

Connection to the PDEs (nonlinear Feynman-Kac formula):

Yt = u(t,Xt), Zt = ∇u(t,Xt)

In other words, given the stochastic process satisfying

Xt = ξ +

∫ t

0

µ(s,Xs) ds + Wt,

the solution of PDE satisfies the following SDE

u(t,Xt)− u(0, X0) = −
∫ t

0

f (u(s,Xs),∇u(s,Xs))ds +

∫ t

0

∇u(s,Xs)dWs.
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Solving high dimensional PDEs

Neural Network Approximation
Deep BSDE method

(Jiequn Han, Arnulf Jentzen and Weinan E (2017))

Key step: approximate the function x 7→ ∇u(t, x) at each discretized time step t = tn
by a feedforward neural network (a subnetwork)

∇u(tn, Xtn) ≈ ∇u(tn, Xtn|θn)

where θn denotes neural network parameters.

Observation: after time discretization, we can stack all the subnetworks together to
form a deep neural network (DNN) as a whole:

Xtn+1 −Xtn ≈ µ(tn, Xtn) ∆tn + ∆Wn

u(tn+1, Xtn+1)− u(tn, Xtn) ≈ −f (u(tn, Xtn),∇u(tn, Xtn))∆tn +∇u(tn, Xtn)∆Wn.
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Solving high dimensional PDEs

Figure: Each column corresponds to a subnetwork at time t = tn

L(θ) = E
[∣∣g(XtN )− û

(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣2].
Open-source code on https://github.com/frankhan91/DeepBSDE

August 3, 2019 13 / 54

https://github.com/frankhan91/DeepBSDE


Solving high dimensional PDEs

Example for d=100

HJB equation:
∂u

∂t
+ ∆u− λ‖∇u‖2

2 = 0

u(t, x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.
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Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0)) when λ = 1, which achieves 0.17% in a runtime of

330 seconds. Right: u(t=0, x=(0)) for different λ.
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Solving high dimensional PDEs

Black-Scholes Equation with Default Risk for d=100

“exact” solution at t = 0 x = (100, . . . , 100) computed by the multilevel Picard method.

Figure: Approximation of u(t=0, x=(100, . . . , 100)) against number of iteration steps. The deep BSDE method

achieves a relative error of size 0.46% in a runtime of 617 seconds.

Has been applied to the pricing of basket options and path-dependent options.
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Solving high dimensional PDEs

Other applications

molecular modeling (molecular dynamics, coarse-grained molecular dynamics, reinforced
dynamics, ...)

gas dynamics and kinetic equation

turbulence models (large eddy simulation)

image search and identification
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Theoretical issues
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Theoretical issues

Why neural networks?

Difference between linear and nonlinear approximations:

Linear: f (x) ≈ fm(x) =
∑m ak cos(2πk · x),x ∈ [0, 1]d

inf ‖f − fm‖2 ≥ C(f )m−1/d

“Curse of dimensionality”: number of parameters needed goes up exponentially fast as a
function of the accuracy requirement.

Nonlinear: f (x) ≈ fm(x) =
∑m ak cos(2πbk · x),x ∈ [0, 1]d (two-layer neural network,

with cos(x) as the activation function).

inf ‖f − fm‖2 ≤ C(f )m−1/2

This is the best one can hope for.
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Theoretical issues

Classical numerical analysis (approximation theory)

Define a “well-posed” math model (the hypothesis space, the loss function, etc)
splines: hypothesis space = C1 piecewise cubic polynomials the data

In(f ) =
1

n

n∑
j=1

(f (xj)− yj)2 + λ

∫
|D2f (x)|2dx

finite elements: hypothesis space = C0 piecewise polynomials

Identify the right function spaces, e.g. Sobolev/Besov spaces
direct and inverse approximation theorem (Bernstein and Jackson type theorems):

f can be approximated by trig polynomials in L2 to order s iff f ∈ Hs, ‖f‖2
Hs =

∑s
k=0 ‖∇kf‖2

L2
.

functions of interest are in the right spaces (PDE theory, real analysis, etc).

Optimal error estimates
A priori estimates (for piecewise linear finite elements, α = 1/d, s = 2)

‖fm − f ∗‖H1 ≤ Cm−α‖f ∗‖Hs

A posteriori estimates (say in finite elements):

‖fm − f ∗‖H1 ≤ Cm−α‖fm‖h

We will adopt a similar strategy, but aim for high dimensions.
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Theoretical issues

Another benchmark: High dimensional integration

Monte Carlo: X = [0, 1]d, {xj, j = 1, · · · , n} is uniformly distributed in X .

I(g) =

∫
X

g(x)dµ, In(g) =
1

n

∑
j

g(xj)

E(I(g)− In(g))2 =
1

n
Var(g)

Var(g) =
∫
X g

2(x)dx− (
∫
X g(x)dx)2

The O(1/
√
n) rate is the best we can hope for.

However, Var(g) can be very large in high dimension. That’s why variance reduction is
important!
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Theoretical issues

But we only have finite number of data

R̂n(θ) =
1

n

∑
j

(f (xj)− f ∗(xj))2, θ̂ = argminR̂n(θ)

R(θ) =

∫
Rd

(f (x)− f ∗(x))2dµ

”Estimation error” = R̂(θ̂)− R̂n(θ̂) = I(g)− In(g), g(x) = (f (x, θ̂)− f ∗(x))2

I(g) =

∫
g(x)dµ, In(g) =

1

n

∑
j

g(xj)

For Lipschitz functions (Wasserstein distance)

sup
‖h‖Lip≤1

|I(h)− In(h)| ∼ 1

n1/d

For functions in Barron space, to be defined later

sup
‖h‖B≤1

|I(h)− In(h)| ∼ 1√
n
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Theoretical issues

Rademacher complexity

Let H be a set of functions, and S = (x1,x2, ...,xn) be a set of data points. Then, the
Rademacher complexity of H with respect to S is defined as

R̂S(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

Given a function class H, for any δ ∈ (0, 1), with probability at least 1− δ over the random
samples S = (x1, · · · ,xn),

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ 2R̂S(H) + sup
h∈H
‖h‖∞

√
log(2/δ)

2n
.

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≥ 1

2
R̂S(H)− sup

h∈H
‖h‖∞

√
log(2/δ)

2n
.
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Theoretical issues

Two types of machine learning models

(1). Models that suffer from the curse of dimensionality:

generalization error = O(m−α/d + n−β/d)

piecewise polynomial approximation

wavelets with fixed wavelet basis

(2). Models that don’t suffer from the curse of dimensionality:

generalization error = O(γ1(f ∗)/m + γ2(f ∗)/
√
n)

random feature models: {φ(·, ω), ω ∈ Ω} is the set of “features”. Given any realization
{ωj}mj=1, i.i.d. with distribution π, Hm({ωj}) = {fm(x,a) = 1

m

∑m
j=1 ajφ(x;ωj).}.

two layer neural networks Hm = { 1
m

∑m
j=1 ajσ(bTj x + cj)}

residual neural networks HL = {f (·, θ) = α · zL,L(·)}

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)), z0,L(x) = V x
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Random feature model

Outline

1 Introduction

2 Solving high dimensional PDEs

3 Theoretical issues

4 Random feature model

5 Shallow neural networks

6 Deep neural networks

7 Gradient descent dynamics

8 Summary

August 3, 2019 24 / 54



Random feature model

Random feature model

{φ(·;ω)}: collection of random features. π: prob distribution of the random variable ω.

Hypothesis space: Given any realization {ωj}mj=1, i.i.d. with distribution π

Hm({ωj}) = {fm(x,a) =
1

m

m∑
j=1

ajφ(x;ωj).}.

Looking for the right function space: Consider functions of the form

Hk = {f : f (x) =

∫
a(ω)φ(x;ω)dπ(ω)}, ‖f‖2

Hk = Eω∼π[|a(ω)|2]

This is related to the reproducing kernel Hilbert space (RKHS) with kernel:

k(x,x′) = Eω∼π[φ(x;ω)φ(x′;ω)]
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Random feature model

A priori estimates of the regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖H, θ̂n = argmin Ln(θ)

where

‖θ‖H =

 1

m

m∑
j=1

|aj|2
1/2

Theorem
Assume that the target function f ∗ : [0, 1]d 7→ [0, 1] ∈ Hk. There exist constants C0, C1, C2,
such that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of
training set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

Hk
m

+ ‖f ∗‖Hk

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.
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Shallow neural networks
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Shallow neural networks

Barron spaces

Two-layer neural networks:
1

m

m∑
j=1

ajσ(bTj x + cj)

Consider the function f : D0 = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc), x ∈ D0

Ω = R1 × Rd × R1, ρ is a probability distribution on Ω.

‖f‖Bp = inf
ρ

(
Eρ[|a|p(‖b‖1 + |c|)p]

)1/p

Bp = {f ∈ C0 : ‖f‖Bp <∞}
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Shallow neural networks

What kind of functions admit such a representation?

Theorem (Barron and Klusowski (2016)): If
∫
Rd ‖ω‖

2
1|f̂ (ω)|dω <∞, where f̂ is the

Fourier transform of f , then f can be represented as

f̃ (x) = f (x)− (f (0) + x · ∇f (0)) =

∫
Ω

aσ(bTx + c)ρ(da, db, dc)

where σ(x) = max(0, x). Moreover f ∈ B∞. Furthermore, we have

‖f̃‖B∞ ≤ 2

∫
Rd
‖ω‖2

1|f̂ (ω)|dω
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Shallow neural networks

Theorem (Direct Approximation Theorem)
There exists an absolute constant C0 such that

‖f − fm‖L2(D0) ≤
C0‖f‖B2√

m

Theorem (Inverse Approximation Theorem)
For p > 1, let

Np,C
def
= { 1

m

m∑
k=1

akσ(bTkx + ck) :
1

m

m∑
k=1

|ak|p(‖bk‖1 + ck)
p ≤ C,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ Np,C such that

fm(x)→ f ∗(x)

for all x ∈ D0, then there exists a probability distribution ρ on Ω, such that

f ∗(x) =

∫
aσ(bTx + c)ρ(da, db, dc),

for all x ∈ D0.
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Shallow neural networks

Complexity estimates

Theorem
Let FQ = {f ∈ B1, ‖f‖B1 ≤ Q}. Then we have

R̂n(FQ) ≤ 2Q

√
2 ln(2d)

n
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Shallow neural networks

Barron space and RKHS

Equivalent formulation (taking conditional expectation with respect to w = (b, c)):

f ∗(x) =

∫
a(w)σ(wTx)π(dw), x = (x, 1)

Define:
kπ(x,x′) = Ew∼πσ(wTx)σ(wTx′)

We can write
B2 =

⋃
π

Hkπ

Shallow neural network can be understood as kernel method with adaptive (learned) kernel.

The ability to learn the right kernel is VERY important.
For example, SVM would be perfect if the right kernel was known.
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Shallow neural networks

A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =
1

m

m∑
k=1

|ak|(‖bk‖1 + |ck|) (= ‖f (·; θ)‖B1)

Theorem
Assume that the target function f ∗ : [0, 1]d 7→ [0, 1] ∈ B2. There exist constants C0, C1, C2,
such that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of
training set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

B2

m
+ ‖f ∗‖B2

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.
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Shallow neural networks

Traditional results: A posteriori estimates

|R(θ)− R̂n(θ)| ≤ C1(9θ 9 +1)

√
log(2d)

n
+ C2

√
log(4C2(1 + 9θ9))2/δ)

n

where 9θ9 is some norm of θ (see e.g. Behnam Neyshabur, Zhiyuan Li, et al. Towards
Understanding the Role of Over-Parametrization in Generalization of Neural Networks
(2018)).

August 3, 2019 34 / 54



Deep neural networks
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Deep neural networks

Main steps for the analysis

find probablistic interpretation of the machine learning model (expressed in some law of
large numbers)

prove the corresponding ”central limit theorem”. This gives the convergence rate for the
approximation error.

study the Rademacher complexity. This gives control for the estimation error.
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Deep neural networks

Compositional law of large numbers

Consider the following compositional scheme:

z0,L(x) = V x,

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)),

(Ul,Wl) are i.i.d. sampled from a distribution ρ.

Theorem
Assume that

Eρ‖|U ||W |‖2
F <∞

where for a matrix A, |A| means taking element-wise absolute value for A. Define z(x, t)
by

z(x, 0) = V x,
d

dt
z(x, t) = E(U ,W )∼ρUσ ◦ (Wz(x, t)).

Then we have
zL,L(x)→ z(x, 1)

almost surely as L→ +∞.
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Deep neural networks

Extension

Let {ρt} be a family of prob distributions (for (U ,W )) such that Eρtg(U ,W ) is integrable
as a function of t for any continuous function g. Define:

z(x, 0) = V x,
d

dt
z(x, t) = E(U ,W )∼ρtUσ ◦ (Wz(x, t))

We can also define compositional space for this case, e.g. we define
fα,{ρt},V (x) = αTz(x, 1) and

d

dt
N(t) = Eρt|U ||W |N(t),

N(0) = I

‖f‖D1 = inf
f=fα,{ρt},V

‖α‖1 ‖N(1)‖1,1 ‖V ‖1,1,

‖ · ‖D2 is defined similarly.
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Deep neural networks

Barron space and the compositional function space

Theorem
B2 ⊂ D2. There exists constant C > 0, such that

‖f‖D2 ≤
√
d + 1‖f‖B2

holds for any f ∈ B2,
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Deep neural networks

Inverse approximation theorem

Let f ∈ L2(D0). Assume that there is a sequence of residual networks {fL(x)}∞L=1 with
increasing depth such that ‖f (x)− fL(x)‖ → 0. Assume further that the parameters are
(entry-wise) bounded, then there exists α, {ρt} and V such that

f (x) = fα,{ρt},V (x).

Theorem (Direct approximation theorem)

Let f ∈ L2(D0) ∩ D2. There exists a residue-type neural network fL(·; θ̃) of input dimension
d + 1 and depth L such that ‖fL‖P . ‖f‖3

c1
and∫

D0

|f (x)− fL((x, 1); θ̃)|2dx→ 0 .
‖f‖2

c2

L

Furthermore, if f = fα,{ρt},V and ρt is Lipschitz continuous in t, then∫
D0

|f (x)− fL((x, 1); θ̃)|2dx .
‖f‖2

D2

L
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Deep neural networks

Complexity control

Rademacher complexity bound for path norm

Let FL,Q = {fL : ‖fL‖D1 ≤ Q}. Assume xi ∈ [−1, 1]d. Then, for any data set
S = (x1, ...,xn), we have

R̂S(FL,Q) ≤ 3Q

√
2 log(2d)

n
.
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Deep neural networks

Regularized model and a priori estimates

Regularized loss function:

J(θ) = L̂(θ) + λ(‖θ‖D1 + 1)

√
2 log(2d)

n
.

Theorem (A-priori estimate)

Assume that f ? : [−1, 1]d → [−1, 1] such that f ∗ ∈ D2. Let

θ̂ = argmin θJ(θ)

then if λ is larger than some constant, and the depth L is sufficiently large, for any δ > 0,
with probability at least 1− δ,

L(θ̂) .
‖f ∗‖2

D2

L
+ λ(‖f ∗‖3

D1
+ 1)

√
log(2d)

n
+

√
log(1/δ)

n
.

August 3, 2019 42 / 54



Gradient descent dynamics
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Gradient descent dynamics

”Implicit optimization”

Observations about what happens in practice:

the kind of regularizations we studied were not used

the generalization properties depend heavily on parameter tuning (with a lot of
parameter tuning, one can get good results)

over-parametrized networks are easier to train (easier for GD or SGD to converge to
global minima)

SGD solutions usually perform better than GD solutions
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Gradient descent dynamics

Escape phenomenon (Wu and Zhu)
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Figure: Fast escape phenomenon in fitting corrupted FashionMNIST. When the optimization algorithm is

switched from GD to SGD with the same learning rate, though the GD iterations is reasonably close to a global

minimum, one observes a fast escape from that global minimum and subsequent convergence to another global

minimum. As shown by the right figure, the ultimate global minimum found by SGD generalizes better for this

example than the one that GD was about to converge to.
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Gradient descent dynamics

One-dimensional case

Consider the one-dimensional problem:

f (x) =
1

2n

n∑
i=1

aix
2, ai ≥ 0 ∀i ∈ [n] (1)

The SGD iteration is given by,

xt+1 = xt − ηaξxt = (1− ηaξ)xt, (2)

So after one step update, we have

Ext+1 = (1− ηa)Ext, (3)

Ex2
t+1 =

[
(1− ηa)2 + η2s2

]
Ex2

t , (4)

where a = 1
n

∑n
i=1 ai, s =

√
1
n

∑n
i=1 a

2
i − a2.

a: sharpness s: non-uniformity.
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Gradient descent dynamics

Over-parametrized two-layer neural networks

Du et al. It does optimize (GD converges to global min exponentially fast)

E, Ma and Wu: It does not generalize (the GD path is uniformly close to that of a
(linear) random feature model, therefore its generalization properties is no better than
that of the random feature model)

To look for ”implicit regularization”, one has to look at non-over-parametrized regimes.
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Gradient descent dynamics

Convergence behavior

Poisson Equation: A Finite Difference Approach

−∂2
xu(x) = g(x), u(0) = u(1) = 0.

The finite difference scheme

−u(xj+1)− 2u(xj) + u(xj−1)

h2
= g(xj)

yields a linear system
Au = g,

where

A =
1

h2


−1 2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

 .

Iterative solver: lower frequency converges slower.
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Gradient descent dynamics

Poisson Equation: DNN Approach

A 1d Poisson equation on (0, 1) with Dirichlet boundary condition,

−∆u(x) = g(x), u(0) = u(1) = 0.

u(x) can be solved by the following variational problem,

min
u∈H1(0,1)

∫ 1

0

(
1

2
|∂xu(x)|2 − g(x)u(x)

)
dx + β

(
u(0)2 + u(1)2

)
.

Here we can parametrize u(x) using deep neural network (DNN):

Input: x.

Output: u(x) = uNet(x).

Train: stochastic gradient decent.

E, Yu, The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems, Communications

in Mathematics and Statistics, 2018
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Gradient descent dynamics

F-Principle

g(x) = sin(x) + 4 sin(4x)− 8 sin(8x) + 16 sin(24x).

(a) Jacobi (b) DNN

F-Principle: A DNN tends to learn a target function from low to high frequencies during
the training. See (c,d), red: small relative error.

Xu, Zhang, Luo, Xiao, Ma, Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks, 1901.06523, 2019
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Gradient descent dynamics

Linear F-Principle Dynamics

h(x,θ) =
∑m

i=1 aiReLU (wi(x + bi)) is hypothesis function, f (x) is target function, and
u(x) = h(x,θ)− f (x). In the kernel regime, we can get the following dynamics of u in the
frequency domain,

∂tû(ξ, t) = −
(
‖a‖2 + ‖w‖2

|ξ|4
+ 4π

‖a�w‖2

|ξ|2

)
ûρ(ξ, t).

Here � is the Hadamard product, uρ = uρ, ρ is the sample distribution.
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0.5
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neuron num: 16000

samples
final-nn
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Zhang, Xu, Luo, Ma, Explicitizing an Implicit Bias of the

Frequency Principle in Two-layer Neural Networks, 1905.10264,

2019
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Summary

Concluding remarks

Analogy with Monte Carlo

(I(g)− In(g))2 ∼ γ(g)

n

γ(g) = some kind of variance of g, depending on the details of the Monte Carlo algorithm.

For the ML models considered

R(θ) ≤ γ1(f ∗)

m
+
γ2(f ∗)√

n

Papers can be found on my webpage.
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Summary

MSML 2020

A new NIPS or ICML style annual conference, which also serves as a venue for publications:
Mathematical and Scientific Machine Learning (MSML)

First meeting:

Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)

Time: July 15-17, 2020

Location: Princeton

Submission deadline: November 30, 2019

website: http://msml-conf.org
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