MOP 2018: POWER SERIES AND *p*-ADIC INTEGERS (06/13, K)

VICTOR WANG

1. Power series, actual or formal

Definition 1.1 (Power series, formal power series).

Definition 1.2 (Laurent series, formal Laurent series, residue, formal residue).

Definition 1.3 (Puiseux series, Hahn series).

Problem 1.4 (Abel?). Prove that $\sum_{k\geq 1} \frac{z^k}{k}$ converges for all $z \in \mathbb{C} \setminus \{1\}$ with $|z| \leq 1$.

Problem 1.5 (Putnam 1972). The polynomial p(x) has all coefficients 0 or 1, and p(0) = 1. Show that if the complex number z is a root, then $|z| \ge (\sqrt{5} - 1)/2$.

Problem 1.6 (SFTB, Proposition 9.A.21). If $a_1, a_2, \dots \in \mathbb{Z}$, then formally

$$\exp\left(\sum_{n\geq 1}\frac{a_n}{n}T^n\right) = 1 + \sum_{n\geq 1}b_nT^n = \prod_{n\geq 1}(1-T^n)^{c_n} \in \mathbb{Q}[[T]]$$

for unique numbers $b_1, c_1, b_2, c_2, \dots \in \mathbb{Q}$. Furthermore, $b_n \in \mathbb{Z}$ for all n if and only if $c_n \in \mathbb{Z}$ for all n; if and only if $\sum_{d|n} \mu(\frac{n}{d})a_d \equiv 0 \pmod{n}$ for all n.

Problem 1.7. Prove that $\exp(T) = \prod_{n \ge 1} (1 - T^n)^{-\mu(n)/n} \in \mathbb{Q}[[T]]$ (formally).

Problem 1.8 (USAMO 1988/5; AoPS). For certain integers $b_k > 0$, the polynomial product

$$(1-z)^{b_1}(1-z^2)^{b_2}(1-z^3)^{b_3}(1-z^4)^{b_4}(1-z^5)^{b_5}\cdots(1-z^{32})^{b_{32}}$$

has the surprising property that if we multiply it out and discard all terms involving z to a power larger than 32, what is left is just 1 - 2z. Determine, with proof, b_{32} .

Problem 1.9 (MIT Problem-Solving Seminar). Let $f(x) = a_0 + a_1x + \cdots \in \mathbb{Z}[[x]]$ be a formal power series with $a_0 \neq 0$. Suppose that $f'(x)f(x)^{-1} \in \mathbb{Z}[[x]]$. Prove or disprove that $a_0 \mid a_n$ for all $n \geq 0$.

Problem 1.10 (Calvin Deng). Is $\mathbb{R}[x]/(x^2+1)^2$ isomorphic to $\mathbb{C}[y]/y^2$ as an \mathbb{R} -algebra?

2. p-ADICS

Reference: Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions.

Problem 2.1. By analogy with (formal) power series and Laurent series, define the *p*-adic integers, \mathbb{Z}_p , and the *p*-adic rationals, \mathbb{Q}_p , in every way you can. You can draw looser inspiration from [-1, 1] and \mathbb{R} as well, if you like.

Question 2.2. Should p^{9001} be considered larger or smaller, *p*-adically, than p^{666} ?

Problem 2.3. Restate "Hensel lifting" in terms of \mathbb{Z}_p -solutions.

Problem 2.4. Characterize \mathbb{Z} in \mathbb{Z}_p and \mathbb{Q} in \mathbb{Q}_p . Also characterize \mathbb{Z}_p in \mathbb{Q}_p in every way you can.

Problem 2.5 (Automorphisms of \mathbb{Q}_p). Find all functions $f: \mathbb{Q}_p \to \mathbb{Q}_p$ such that f(1) = 1, f(xy) = f(x)f(y), and f(x+y) = f(x) + f(y). What if \mathbb{Q}_p is replaced by \mathbb{R} ?

Problem 2.6. Guess how to define the 10-*adic integers*, and find a pair of nonzero 10-adic integers multiplying (10-adically) to zero.

Problem 2.7. Prove that $v_2(\sum_{k=1}^n \frac{2^k}{k}) \to \infty$ as $n \to \infty$.

Problem 2.8 (Dwork's lemma). Let $F(x) = \sum a_i x^i \in \mathbb{Q}_p[[x]]$ with $a_0 = 1$. Prove that $a_i \in \mathbb{Z}_p$ for all *i* if and only if $\frac{F(x^p)}{F(x)^p} \equiv 1 \pmod{p}$.

Problem 2.9 (Artin–Hasse exponential). Prove that the coefficients of

$$E_p(x) = \exp\left(x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \frac{x^{p^3}}{p^3} + \cdots\right) \in \mathbb{Q}[[x]]$$

are rational numbers with denominators coprime to p.

Problem 2.10. Prove that $E_p(x) = \prod_{\substack{n \ge 1 \\ \gcd(n,p)=1}} (1-x^n)^{-\mu(n)/n} \in \mathbb{Q}[[x]]$ (formally).

Theorem 2.11 (Skolem–Mahler–Lech theorem). The set of zeros $\{n : a_n = 0\}$ of a linear recurrence a_0, a_1, a_2, \ldots valued in \mathbb{C} , or any other field containing \mathbb{Q} , is eventually periodic.

3. Global picture

For the sake of remaining completely elementary, the following statements are not optimized for mathematical aesthetics or generality.

Proposition 3.1. A nonzero integer a is a perfect square if and only if a > 0 and $x^2 \equiv ay^2 \pmod{p^k}$ has a nonzero integer solution (x, y), with gcd(x, y) = 1, for every prime power p^k .

This is obvious by prime factorization, but it puts the following result into context.

Theorem 3.2 (Three-variable Hasse-Minkowski theorem over \mathbb{Q}). Let a, b, c be nonzero integers. Let $Q = ax^2 + by^2 + cz^2$. Then Q = 0 has a nonzero integer solution (x, y, z) if and only if both of the following conditions hold:

- Q = 0 has a nonzero real solution (x, y, z); and
- $Q \equiv 0 \pmod{p^k}$ has a nonzero integer solution (x, y, z), with gcd(x, y, z) = 1, for every prime power p^k .

Remark 3.3. See Serre, A *Course in Arithmetic*, for a better formulation of the result, as well as a generalization to any number of variables.

Problem 3.4 (Ostrowski's theorem). Find all functions $f: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ such that:

- f vanishes precisely at 0 (and is positive elsewhere);
- f is multiplicative, i.e. f(ab) = f(a)f(b) for all a, b; and
- f satisfies the triangle inequality, i.e. $f(a+b) \leq f(a) + f(b)$ for all a, b.¹

Problem 3.5 (Asked by Ting-Chun Lin after MOP 2018; see answer here). Determine whether or not there exists a *non-rational* function $f: \mathbb{Q} \to \mathbb{Q}$ that is continuous in both the real sense and the *p*-adic sense for all primes *p*.

¹Such functions are called *absolute values*.