MOP 2018: POLYNOMIALS (06/04, B; 06/08, BK)

VICTOR WANG

1. General business: analogies from number theory

Problem 1.1. What would Euclid do?

- (1) Prove that \mathbb{Z} has a *division algorithm* (using the notion of *size*). In other words, \mathbb{Z} is a *Euclidean domain*.
- (2) Prove *Bézout's identity*: if m, n are integers, then the set of integer linear combinations of m, n coincides with the set of integer multiples of some integer g. Conclude that g divides m and n, so that $g = \pm \gcd(m, n)$.
- (3) Prove that if a positive integer p > 1 is *irreducible* (cannot be nontrivially factored), and $p \nmid a$, then a is *invertible* modulo p, i.e. there exists $r \in \mathbb{Z}$ with $ar \equiv 1 \pmod{p}$.
- (4) Prove *Euclid's lemma*: if a positive integer p > 1 is irreducible, and $p \mid ab$ for some integers a, b, then either $p \mid a$ or $p \mid b$.
- (5) Prove the *fundamental theorem of arithmetic*: every nonzero integer has a factorization into irreducible elements, *unique* up to *units* (invertible elements).
- (6) Prove the *Chinese remainder theorem* [1].
- (7) Repeat the above for one-variable polynomials over a field (such as \mathbb{Q} , \mathbb{R} , or \mathbb{C}). How is the Chinese remainder theorem related to Lagrange interpolation?
- (8) Disprove Bézout's identity when \mathbb{Z} ("integers") is replaced by $\mathbb{Z}[x]$ ("integer-coefficient polynomials"). However, show that if P(x), Q(x) are two integer-coefficient polynomials sharing no complex roots, then the set

 $\{p \in \mathbb{Z} \text{ prime} : p \mid \gcd(P(n), Q(n)) \text{ for some integer } n\}$

is finite.

(9) Disprove Bézout's identity when \mathbb{Z} ("integers") is replaced by $\mathbb{C}[t, x]$ ("two-variable polynomials over a field", or " $\mathbb{C}[t]$ -coefficient polynomials").

Remark 1.2. In fact, $\mathbb{Z}[x]$ and $\mathbb{C}[t, x]$ still have unique factorization.¹

Problem 1.3 (NT analog of USA TSTST 2016/1). Let $A, B \in \mathbb{Z}[x]$ be polynomials. Suppose that $\frac{A}{B}$ is a polynomial in x modulo infinitely many primes p. Prove that A = CB for some polynomial $C \in \mathbb{Q}[x]$.

Problem 1.4. Guess the statement of USA TSTST 2016/1.

Problem 1.5 (Polynomial Thue: USA TSTST 2014/4). Let $F = \mathbb{R}$. Let $M \in F[x]$ be a nonzero polynomial of degree $d \ge 0$, and $C \in F[x]$ a polynomial relatively prime to M. Prove that there exist $A, B \in F[x]$ of degree at most $\frac{d}{2}$ such that $\frac{A(x) - C(x)B(x)}{M(x)} \in F[x]$.

¹For a proof sketch, see Wikipedia on Gauss's lemma (polynomial).

VICTOR WANG

2. Real business: continuity, differentiation, and real roots

Problem 2.1. To find the first *n* derivatives of a polynomial, look modulo $(x - a)^{n+1}$.

IVT and Rolle's theorem can often help to locate real roots [2, 3].

Problem 2.2 (Interlacing polynomials). Let $P, Q \in \mathbb{R}[x]$ be polynomials of degrees n, n-1 with all real roots $r_1 \leq \cdots \leq r_n$ and $s_1 \leq \cdots \leq s_{n-1}$, respectively. We say that P, Q are *interlaced* if $r_i \leq s_i \leq r_{i+1}$ for $i = 1, \ldots, n-1$. Prove that P, Q are interlaced if and only if every \mathbb{R} -linear combination sP + tQ has all real roots.

Problem 2.3 (Putnam 2014). Show that for each positive integer *n*, all the roots of the polynomial $\sum_{k=0}^{n} 2^{k(n-k)} x^k$ are real numbers.

Problem 2.4 (Descartes' rule of signs). For a polynomial $p \in \mathbb{R}[x]$, let z(p) denote the number of positive zeros and v(p) the number of sign changes.

- (1) Show that 2 | z(p) v(p).
- (2) Prove that $z(p) \le v(p)$ by writing p = (x r)q for some positive real root r of p(x) and inducting on deg p.
- (3) Prove that $z(p) \leq v(p)$ by considering the derivative p'(x) (assuming WLOG that $p(0) \neq 0$) and inducting on deg p.

Problem 2.5 (MOP 2001). Let P(x) be a real-valued polynomial with P(n) = P(0). Show that there exist at least *n* distinct (unordered) pairs of distinct real numbers $\{x, y\}$ such that $x - y \in \mathbb{Z}$ and P(x) = P(y).

Problem 2.6. Read about the Kadison–Singer problem if you're interested [3].

3. Complex business, real or fake

Problem 3.1. Let n be a positive integer. Find the number of pairs $P, Q \in \mathbb{R}[X]$ such that $P^2 + Q^2 = X^{2n} + 1$ and deg $P > \deg Q$.

Problem 3.2 (Putnam 1983 B6). Given a positive integer n, find polynomials $p, q \in \mathbb{Z}[X]$ such that $p^2 + q^2 \equiv -1 \pmod{X^{2^n} + X^{2^n-1} + \cdots + X + 1}$.

Problem 3.3 (MOP 1999). Given z_1, \ldots, z_n on the unit circle C such that $\prod |z - z_i| \le 2$ for all $z \in C$, prove that the z_i must be vertices of a regular *n*-gon.

Problem 3.4 (MOP 2007). Let *a* be a real number. Prove that every nonreal root of $f(x) = x^{2n} + ax^{2n-1} + \cdots + ax + 1$ lies on the unit circle and *f* has at most 2 real roots.

Problem 3.5 (Gauss-Lucas theorem). The roots of a complex polynomial's derivative lie in the convex hull of the roots of the polynomial itself.

Problem 3.6 (Evan O'Dorney, ESL 2011, technical?). If $a + b + c = a^n + b^n + c^n = 0$ for some positive integer n and complex a, b, c, then two of a, b, c have the same magnitude.

References

- [1] http://web.evanchen.cc/handouts/CRT/CRT.pdf [Cited on page 1.]
- [2] HroK's blog: https://artofproblemsolving.com/community/c2032 [Cited on page 2.]
- [3] https://www.quantamagazine.org/20151124-kadison-singer-math-problem/ [Cited on page 2.]