Statistics of random hypersurfaces (mod p)

Victor Wang

January 4, 2021 Tea

Last modified: 2021-09-19

LTF: Point counts vs. (co-)homology actions

- Note that $X(F_p) = Fix \left[Frob_p \mid X(\overline{F_p}) \right]$.
- So, we can count points using the (Grothendieck–)Lefschetz fixedpoint formula (LTF): $Fix[-] = \sum (-1)^i \cdot Tr \left(Frob_p \mid H_c^i(X \times \overline{F_p}) \right).$
- Why (co-)homology? To visualize fixed points, we can intersect the "graph" of *Frob*, with the "diagonal":
- $Fix\left[Frob_p \mid X\left(\overline{F_p}\right)\right] = \{(x, y): y = Frob_p(x)\} \cap \{(x, y): x = y\}.$
- If you imagine "wiggling" or "deforming" $Frob_p$, then the RHS should stay the same. This is morally why (co-)homology comes up in the LTF.

Assumption for rest of talk: Projectivity

- For simplicity, I will always work with projective varieties (this is morally a "compactness" assumption; cf. topological spaces).
- In principle, non-projective cases can be reduced to projective cases.
- Ex: Counting points on $x^2 + y^2 = 1$ boils down to $x^2 + y^2 = z^2$ plus a separate analysis of $x^2 + y^2 = 0$. (The latter two are projective.)
- (Whereas a smooth projective conic always has exactly p + 1 points $mod \ p$, the answer for a smooth affine conic is messier.)

Role of smoothness in Weil conjectures (given projectivity)

- (*Neither* is important for "rationality" of the local zeta function.)
 - (Point counts for a variety over F_p , F_{p^2} , ... always satisfy a linear recurrence. The LTF always applies in some form.)
- "Comparing" cohomology of X_{F_p} and X_C , if X has an integral model.
 - Non-example: $x^2 y^2 + (pz)^2 = 0$ is irred./*C*, but not /*F_p* (for odd *p*). So, dim H^2 's differ, either by an indirect point-counting argument, or in principle directly...
- Poincare "duality".
 - Morally, "diff. forms" only "pair cleanly" on smooth (i.e., locally "≈ linear") spaces.
- "Purity" of the action of $Frob_q \mid H^i\left(X \times \overline{F_q}\right)$: eigenvalues are all size $q^{\frac{t}{2}}$.
 - Morally, the elements of H^i have "units" of dim. *i*, which could "drop" for sing. X...
- Consequence of "purity" (+ "comparison"): naïve square-root cancellation when counting points <u>on certain classes of varieties</u>.

What if we drop smoothness? (Abstract generalities)

- For singular X/F_p , our current understanding of ℓ -adic cohomology is poor.
- Morally, H^* should only depend on "concrete geometry" like point counts.
- But it remains open (?) in general that dim $H^*(X \times \overline{F_p})$ is independent of the (auxiliary!) choice of ℓ .
- See D. Wan, "Algorithmic theory of zeta functions over finite fields" (2008): https://www.math.leidenuniv.nl/~psh/ANTproc/17wan.pdf
- If the Hasse–Weil zeta function (defined "naively" as $\prod \zeta_p(s, X_p)$ over almost all primes p) is meromorphic for all cubic hypersurfaces X/Q(possibly singular!), then it is meromorphic for all varieties X/Q.
- Moral: Singular stuff can be interesting, but poorly understood in general.

What if we drop smoothness? (Concrete point counting)

- For the rest of the talk, focus on (projective) hypersurfaces F = 0.
- Let m be the number of variables: x_1, x_2, \dots, x_m . (Assume $m \ge 3$.)
- So $V \coloneqq \{F = 0\}$ is a hypersurface in P^{m-1}/F_q . (Assume $F \neq 0$.)
- Let $d = \deg(F)$.
- Level 1: Points on linear hypersurfaces.
 - If d = 1, then $V(F_q)$ (e.g., $x_m = 0$) has exactly $|P^{m-2}(F_q)| = \frac{q^{m-1}-1}{q-1} = q^{m-2} + q^{m-3} + \dots + q + 1$ points.
- Fix m, d. Naïve heuristic: F = 0 has $|P^{m-2}(F_q)| + O\left(q^{\frac{m-2}{2}}\right)$ points.
 - Always true (by Lang–Weil) if m = 3 and F is absolutely irreducible.

What if we drop smoothness? (Point counting, cont'd)

- Let m be the number of variables: x_1, x_2, \dots, x_m . (Assume $m \ge 3$.)
- So $V \coloneqq \{F = 0\}$ is a hypersurface in P^{m-1}/F_q .
- Let $d = \deg(F)$.
- Fix m, d. Naïve heuristic: F = 0 has $|P^{m-2}(F_q)| + O\left(q^{\frac{m-2}{2}}\right)$ points.
- For m ≥ 4, this is *false in general*, even if F is absolutely irreducible.
 Lang–Weil would only give an error term of O (q^{m-3}/₂ · q^{m-2}/₂).
- But the **exceptional** F occur with probability **at most** $O(q^{-1})$.
 - Such F must be singular (so $\nabla F: \overline{F_q}^m \to \overline{F_q}^m$ must have a nontrivial zero).[#]

Level 2: Points on quadratic hypersurfaces

- Let $V \coloneqq \{F = 0\} \subset P^{m-1}/F_q$, with F a **quadratic form** in x_1, \dots, x_m .
- Fix *m*. Naïve heuristic: F = 0 has $|P^{m-2}(F_q)| + O\left(q^{\frac{m-2}{2}}\right)$ points.
- Assume $p \neq 2$. This lets us *complete the square*:
- WLOG $F = a_1 x_1^2 + \dots + a_r x_r^2$, with $r \coloneqq rank(F)$ and $a_1, \dots, a_r \in F_q^{\times}$.
- For such "diagonal" F, Weil (1949) computed $|V(F_q)|$ explicitly (when r = m) as evidence when formulating the Weil conjectures.

• This implies
$$|V(F_q)| = |P^{m-r-1}(F_q)| + q^{m-r} \cdot \left(|P^{r-2}(F_q)| \pm \mathbf{1}_{2|r}q^{\frac{r-2}{2}} \right).$$

• Sign ("bias"): $\left(\frac{(-1)^{\frac{r}{2}}a_1 \cdots a_r}{F_q} \right) = \left(\frac{(-1)^{\frac{r}{2}}\det(F)}{F_q} \right)$, e.g., +1 for $x_1^2 - x_2^2 + x_3^2 - x_4^2 = 0$.

Level 2: Quadratic hypersurfaces (summary)

- Fix *m*. Naïve heuristic: F = 0 has $|P^{m-2}(F_q)| + O\left(q^{\frac{m-2}{2}}\right)$ points.
- Rigorously: If $p \neq 2$ and $r \coloneqq rank(F) \in [1, m]$, then

•
$$|V(F_q)| = |P^{m-2}(F_q)| \pm q^{\frac{m-r}{2}} \mathbf{1}_{2|r} \cdot q^{\frac{m-2}{2}}.$$

- So, if m is odd, then the "naïve heuristic" fails with probability $\approx q^{-1}$.
- Or, if m is even, then fails with probability $\ll q^{-2}$.
- (Calculations for "diagonal" F. But similar flavor for the "full" family.)
- What's next? Any guesses for what happens for cubic hypersurfaces?
- (As a power of q^{-1} , how often should the "naïve heuristic" fail?)

Level 3: Points on cubic hypersurfaces

- We could again discuss "universal families" of hypersurfaces.
- But for certain reasons, I want to focus on a different, smaller family.
- Fix $F_0 \coloneqq x_1^3 + x_2^3 + x_3^3 + x_4^3$ in 4 variables.
- For $\mathbf{c} \in F_q^4 \{0\}$, let $V_{\mathbf{c}} \coloneqq \{F_0 = \mathbf{c} \cdot \mathbf{x} = 0\}$ be "basically in 3 variables".
- If $V_c \times \overline{F_q}$ ("basically a plane cubic") is <u>irreducible</u>, then $||V_c(F_q)| |P^1(F_q)|| \le 18(3+3)^3 \cdot q^{\frac{1}{2}}$ (Lang–Weil, but with a lazily chosen constant).
- **Observation**: Here $V_c \times \overline{F_q}$ is <u>reducible</u> if and only if
- ... $V_c \times \overline{F_q}$ contains a line over $\overline{F_q}$, if and only if
- ... *c* is <u>orthogonal</u> to some line on $\{F_0 = 0\}$ (a cubic surface) over $\overline{F_q}$, if and only if
- ... $c_i^3 c_j^3 = c_k^3 c_l^3 = 0$ for some permutation (i, j, k, l) of [4].

Level 3: Cubic hypersurfaces (conjecturally)

- Note: $c_i^3 c_j^3 = c_k^3 c_l^3 = 0$ is a "codimension 2" condition.
- What if we increase the number of variables? (But keep the parity the same...)
- Fix $F_0 \coloneqq x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^3$ in 6 variables.
- For $\mathbf{c} \in F_q^6 \{0\}$, let $V_{\mathbf{c}} \coloneqq \{F_0 = \mathbf{c} \cdot \mathbf{x} = 0\}$ be "basically in 5 variables".
- Conjecture/Challenge (W., 2020): \exists closed $E \subset A_Z^6$, with $\operatorname{codim}(E_Q, A_Q^6) \ge 4$, ...
- ... such that for any given prime power q and tuple $c \in F_q^6 E(F_q)$, we have
- $||V_c(F_q)| |P^3(F_q)|| \le 18(3+3)^5 \cdot q^{\frac{3}{2}}$, or else
- $c_i^3 c_j^3 = c_k^3 c_l^3 = c_m^3 c_n^3 = 0$ for some permutation (i, j, k, l, m, n) of [6].
- Prelim. evidence: https://github.com/wangyangvictor/singular_cubic_threefolds

Final remarks

- Possible moral/heuristic: "Randomness increases with $\deg(F)$ ".
 - Holds in our deg 2 & 3 examples, at least. (Ignore the triv./degen. deg 1 case.)
- There seems to be much left to explore, for deg(F) = 3, 4, ...
 - The role of $m \pmod{2}$ also deserves more thought.
- Recent works of a similar statistical flavor:
 - Lindner, *Hypersurfaces with defect* ('20): <u>https://arxiv.org/abs/1610.04077</u>
 - Slavov, [... rand(slicing) to count pts...] ('17): https://arxiv.org/abs/1703.05062
 - Poonen & —, [Excep. locus in Bert...] ('20): <u>https://arxiv.org/abs/2001.08672</u>
 - ???
- Thanks for your time!