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Some Diophantine statistics at the boundary

Consider values of a degree-d polynomial Zd → Z. For d = 2,

#{|n| ≤ x : ∃|a|, |b| ≤ x1/2, a2+b2 = n} ∼ cLandau–Ramanujan x

(log x)1/2

by [Landau 1908], and if δ := 1− 1+log log 2
log 2

then by [Ford 2008]

#{|n| ≤ x : ∃|a|, |b| ≤ x1/2, ab = n} ≍ x

(log x)δ(log log x)3/2
.

But is there a (homogeneous or non-cylindrical, to avoid cheap
examples like P = a + b2 + c3) cubic P ∈ Z[a, b, c] for which

#{|n| ≤ x : ∃|a|, |b|, |c | ≤ x1/3, P(a, b, c) = n} ≍ x?

This is expected for P ∈ {a3 +b3 + c3, a2 +b2 + c2 − abc}. For
larger variables, a3 + b3 + c3 = n is soluble affinely in n ∈ Fq[t]
for most q [Vaserstein 1991], and a2 + b2 + c2 − abc = n is
soluble in a, b, c ≪ |n|1/2 for a density 1 of n ∈ Z satisfying
necessary local conditions [Ghosh–Sarnak 2017].
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Cubic Weyl sums (and diagonal cubic equations)

Let S(α,B) :=
∑

|x |≤B e2πiαx3
, or a smoothed variant.

▶ Let gcd(a, r) = 1, where B ≤ r ≤ B2. Classically, by AA
or B process, S(α,B) ≪ϵ B

3/4+ϵ for |rα− a| ≤ 1/r .
▶ By BAAB [Heath-Brown 2009], if r = r1r2r3 ≍ B3/2 where

r1 ≍ B3/7, r2 ≍ B5/14, and r3 ≍ B5/7 are pairwise coprime
with r3 square-free, then S(α,B) ≪ϵ B

5/7+ϵ.
▶ By singularity bounds [Sawin 2024], if |r | ≍ B3/2 and Fq[t]

has characteristic ≫ϵ 1, then SFq [t](α,B) ≪q,ϵ B
5/8+ϵ.

Let Ms(B) := #{|xi | ≤ B :
∑s

i=1 x
3
i = 0} =

∫ 1

0
S(α,B)s dα.

▶ #{x , y , z ≪ B : x3 + y 3 + z3 = n} ≪ϵ B
1+ϵ.

▶ By [Heath-Brown 1997], M4(B) = cB2 + Oϵ(B
4/3+ϵ).

▶ By [Vaughan 1986, 2020], M6(B) ≪ϵ B
7/2(logB)ϵ−5/2.

Proving ∃δ > 0 with M6(B) ≪ B7/2−δ is equivalent to
proving ∃δ > 0 with Pr[|S(α,B)| ≥ B3/4−δ] ≪ B−1−δ.

▶ Sharper bounds on M6 exist for smooth xi (Wooley), or
under GRH (Hooley et al.), or in Fq[t] (Glas–Hochfilzer).
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Let Ms(B) := #{|xi | ≤ B :
∑s

i=1 x
3
i = 0} for s ≥ 4. In Fq[t]

of characteristic ≥ 5, dimension and Bézout-type degree bounds

for morphism spaces imply M
Fq [t]
s (B)− cB21s=4 ≪ B s−3+logq 27.

(Dimension estimates are proven inductively via [Mori 1979]’s
bend-and-break. See [Harris–Roth–Starr 2004, Coskun–Starr
2009, Beheshti–Lehmann–Riedl–Tanimoto 2023, Glas 2025].
An asymptotic would then require finer information about the
morphism spaces.)

Alternatively, via the circle method or its
variants [Duke–Friedlander–Iwaniec 1993, Heath-Brown 1996]:
▶ By [Hooley 1986, Heath-Brown 1998], M6(B) ≪ϵ B

3+ϵ

under automorphy and GRH for Hasse–Weil L-functions of∑6
i=1 x

3
i =

∑6
i=1 cixi = 0. By [Glas–Hochfilzer 2022], this

is unconditional in Fq[t] of characteristic ̸= 3.
▶ By [W. 2021], M6(B) ∼ (ν1 + ν2)B

3 under automorphy,
GRH, and the Ratios and Square-free Sieve Conjectures.
By [Browning–Glas–W. 2024], in Fq[t] of characteristic
≥ 5 the Ratios Conjecture suffices.

▶ Statistical results on x3 + y 3 + z3 = n follow.
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The square-root barrier

Let S(α,B) :=
∑

|x |≤B e2πiαx3
, or a smoothed variant. Let

Ms(B) := #{|xi | ≤ B :
∑s

i=1 x
3
i = 0} =

∫ 1

0
S(α,B)s dα.

In view of Plancherel’s theorem and square-root heuristics, an
asymptotic M6(B) ∼ νB3 should reflect some cancellation over
α on the minor arcs. We need formulas, not just bounds!

In
1981, Vaughan observed that Poisson summation implies

S(α,B) ≪ϵ r
−1/3B + r 1/2+ϵ(1 + B3|α− a/r |)1/2,

which for B3/4 ≤ r ≤ B3/2 and |rα− a| ≤ 1/B3/2 recovers the
bound S(α,B) ≪ϵ B

3/4+ϵ. [Hooley 1986, Heath-Brown 1998]
obtained square-root cancellation over a mod r via Deligne’s
bounds and over r via GRH, for “good” square-free r , giving

M6(B) ≪ϵ (B
3/4+ϵ)6−2 = B3+4ϵ,

after accounting for small r , “bad” r , and square-full r .
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More details on Hooley et al., say in Fq[t]

Let F (x) :=
∑6

i=1 x
3
i and gcd(q, 6) = 1. Let L(s, c) be the

L-function of Vc : F (x) = c · x = 0, where c ∈ Fq[t]
6 and

∆(c) := disc(Vc) =
∏
(c

3/2
1 ± c

3/2
2 ± · · · ± c

3/2
6 ) ̸= 0.

Let
|r | := qdeg r . By Poisson summation a la Vaughan,

M
Fq [t]
6 (B) =

∑
c≪B1/2

∑
r≪B3/2

Sc(r) · Ic(r),

where Ic(r) is an oscillatory integral and Sc(r) is an exponential
sum (for a suitable additive character ψ on Fq[[t

−1]])

Sc(r) :=
1

|r |7/2

∑′

a mod r

∑
x1,...,x6 mod r

ψ

(
aF (x) + c · x

r

)
,

which is multiplicative in r and behaves differently at primes
π ∤ ∆(c) versus π | ∆(c). If π ∤ ∆(c) and ℜ(s) ≥ ϵ, then∑

l≥0

Sc(π
l) |π|−ls = (1 + Oϵ(|π|−s−1/2 + |π|−2s)) Lπ(s, c)−1.
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Igusa local zeta function

Hasse–Weil local factor
=

∑
l≥0 Sc(π

l) |π|−ls

Lπ(s, c)−1
,

and L(s, c)−1 itself. (Other ideas are required for ∆(c) = 0.)

▶ GRH controls L(s, c)−1 for ℜ(s) > 1
2
.

▶ The local errors are controlled in part by ∆(c), which
measures the extent to which Vc is singular.

▶ Eventually, the bound M6(B) ≪ϵ B
3+ϵ follows. Sources of

ϵ include GRH, local errors, and dyadic summation over r .
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Theorem (Glas–Hochfilzer 2022)

Unconditionally, M
Fq [t]
6 (B) ≪q,ϵ B

3+ϵ.

There are several critical sources of ϵ in the argument, including
the locus ∆(c) = 0 we have not yet discussed.

Theorem (Browning–Glas–W. 2024; unconditional)

The full main term (ν1 + ν2)B
3 conjectured by Hooley, Manin,

et al. arises from the locus ∆(c) = 0 in the circle method.

Proof idea.
Whereas Sc(π) ≪ 1 for π ∤ ∆(c), it turns out that if ∆(c) = 0,
then typically Sc(π) = |π|1/2 + O(1) for most primes π, thanks
to delicate results of [Beauville 1977] on quadric surface and
conic bundles. Since the main term |π|1/2 is independent of c
(a conductor-dropping phenomenon), we may eventually replace
the integral Ic(r) with a suitable c-average thereof.
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To prove M
Fq [t]
6 (B) ≪ B3, say, it remains to show that∑

c≪B1/2

∆(c )̸=0

∑
r≪B3/2

Sc(r) · Ic(r) ≪ B3.

We want to control the LHS using the Ratios Conjecture for
L(s, c). A beautiful symmetry observation of Glas–Hochfilzer
shows that Ic(r) is constant on dyadic ranges |r | = N . Let

Σ(B ,N0,N1) :=
∑

c≪B1/2

∆(c )̸=0

Ic(t
logq N)

∑
|r0|=N0

r0|∆(c)∞

Sc(r0)
∑

|r1|=N1

gcd(r1,∆(c))=1

Sc(r1),

for N0N1 ≪ B3/2.

By Glas–Hochfilzer, Σ(B ,N0,N1) ≪ϵ B
3+ϵ.

If N∞ := B3/2/(N0N1), we [Browning–Glas–W.] further prove

Σ(B ,N0,N1) ≪ B3N−δ
0 N−δ

∞ .

When N0 and N∞ are tiny, we mainly use Ratios and other
L-function techniques, but in general we also need other ideas,
based on the size and factorization of ∆(c).
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If for instance N0 → ∞, then we need a suitable geometric
analog of the Sarnak–Xue Density Hypothesis to control failures
of square-root cancellation in max|r0|=N0

|Sc(r0)|. (These are like
failures of a Ramanujan-type conjecture.)

Proposition (Browning–Glas–W.; unconditional)

Let N0 ≪ B3/2. Let λ > 0. As c ≪ B1/2 varies,

Pr[max|r0|=N0
|Sc(r0)| ≥ λ · N1/2−δ

0 ] ≪ λ−2.

Here δ > 0 depends only on the characteristic of Fq[t].

▶ This result would fail if we replaced x3
1 + · · ·+ x3

6 with
x2

1 + · · ·+ x2
6 ; the fact deg F ≥ 3 is crucial.

▶ The proof uses results and ideas of Hooley (on square-root
cancellation for mildly singular varieties), Busé–Jouanolou
(putting discriminants in square ideals), Poonen (on large
square divisors), and Ekedahl (on the geometric sieve).
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The Ratios Conjecture is used as follows. By Poincaré duality
and a large sieve, we have a very good approximation∑

gcd(r1,∆(c))=1

Sc(r1)|r1|−s ≈ 1

L(s, c)P(s)

on average over c , where P(s) = ζFq [t](2s)L(s +
1
2
, {F = 0}).

Multiplying the (0, 2) case of the Ratios Conjecture (
∑

1
LL
),

Ec≪B1/2

∆(c )̸=0

[
1∏2

j=1 P(sj)L(sj , c)

]
= A(s1, s2)(ζFq [t](s1+s2)+O(B−3β)),

by N s1+s2
1 ≪ (B3/2)ℜ(s1+s2−1)N1,

and averaging over the lines
ℜ(si) = 1

2
+ β, we get (by a contour shifting argument)

Ec≪B1/2

∆(c )̸=0

∣∣∣∣ ∑
|r1|=N1

gcd(r1,∆(c))=1

Sc(r1)

∣∣∣∣2 ≪ N1.

This is perfect (log-free) square-root cancellation!
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Theorem (Browning–Glas–W. 2024)

Assume the Ratios Conjecture for
∑

c∈Fq [t]6: deg(ci )≤Z
1

L(s1,c)L(s2,c)

for ∆(c) ̸= 0, as Z → ∞. Then M
Fq [t]
6 (B) ≪q B3. Moreover,

x3 + y 3 + z3 = n is soluble in monic elements x , y , z ∈ Fq[t] of
degree exactly 1

3
deg n for a positive density of n ∈ Fq[t].

The proof combines biases and cancellations “beyond the Weil
conjectures” (loosely speaking):
▶ Local biases on the boundary ∆ = 0. This uses [Beauville].
▶ Local cancellations near the boundary. Here there are

significant traces of boundary biases, handled by an
eclectic collection of inputs (including [Huang, Hooley,
Busé–Jouanolou, Poonen, Ekedahl]).

▶ Global cancellations when ∆ is close to square-free and
maximal size. This uses Ratios, Poincaré duality, and a
large sieve.
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Theorem (Browning–Glas–W. 2024)

Assume sufficient progress on moments of 1
L(s,c)

for ∆(c) ̸= 0.

Then M
Fq [t]
6 (B) ∼ (ν1 + ν2)B

3. Moreover, x3 + y 3 + z3 = n is
soluble in elements x , y , z ∈ Fq[t] of degree ∼ 1

3
deg n for a

density 1 of elements n ∈ Fq[t].

The proof builds on ideas of many authors, e.g. the following:

▶ Ghosh–Sarnak, Diaconu (log-K3 variance analysis),

▶ Kloosterman, Hooley 1986, Heath-Brown,

▶ Beauville (quadric bundles over P2), Getz, Tran,

▶ Rubinstein–Sarnak (Chebyshev’s bias via prime squares),

▶ Deligne (GRH), Hooley 1994 (singular cubics),

▶ Huang (≈ Q-points), Busé–Jouanolou (∆ ∈ (f , (f ′)2)),

▶ Bhargava (Ekedahl sieve), Poonen (square-free sieve),

▶ Kisin (local constancy of L-factors).
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A deformation along the square-root barrier

Browning, Munshi, and I (joint work in progress) seek to use the
[Duke–Friedlander–Iwaniec 1993, Heath-Brown 1996] version of
the circle method to prove an unconditional asymptotic over Q
for the singular 6-variable homogeneous cubic equation

x1y
2
1 + x2y

2
2 + x3y

2
3 = 0

of Perazzo type (singular along the plane y1 = y2 = y3 = 0).

This can be viewed as a deformation of
∑6

i=1 x
3
i = 0. Whereas

L-functions turn out to be less important here, certain divisor
problems play a more prominent role (which we handle via
Hooley ∆-functions and a uniform, multivariate-polynomial
Nair–Tenenbaum bound of [de la Bretèche–Tenenbaum 2024]).
Sums like

∑
m,n≪T ∆(G (m,n)) turn out to be useful, where

G := 2
∑3

i=1 m
2
i n

4
i − (

∑3
i=1 min

2
i )

2 is dual to
∑3

i=1 xiy
2
i with

respect to the pairing (m,n) · (x , y) =
∑3

i=1(mixi + niyi).
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Comparison with other 6-variable cubic forms

Given a hypersurface V = {F = 0}, let V ∨ be its dual variety:
the image of V under the Gauss map x 7→ ∇F (x). Roughly,
deg(V ∨) is a global curvature measure of V .

1. Via multiplicative harmonic analysis [Batyrev–Tschinkel
1998] or torsors [Salberger 1998], Manin’s conjecture is
proven for toric varieties, including the Perazzo primal
x1x2x3 = y1y2y3. This is self-dual, so deg(V ∨) = 3.

2. Via torsors and lattices, [Blomer–Brüdern–Salberger 2014]
treated x1y2y3 + x2y1y3 + x3y1y2 = 0 (think

∑3
i=1

xi
yi
= 0).

This is self-dual, so deg(V ∨) = 3.
3. Via a geometric reduction to [Schmidt 1995], [Derenthal

2025] treated det(S) = 0 in symmetric 3× 3 matrices S .
This is dual to the Veronese surface, so deg(V ∨) = 4.

4. Our
∑3

i=1 xiy
2
i = 0 is dual to a degree-6 hypersurface.

5. For
∑6

i=1 x
3
i = 0, we have deg(V ∨) = deg(∆) = 48.
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Direct approach?

Our main goal in [Browning–Munshi–W. 2025+] is to break the
square-root barrier for a specific cubic form, unconditionally, in
the circle method. However, it is worth pointing out that∑3

i=1 xiy
2
i = 0

has the structure of both a conic bundle and a linear bundle,
and thus could potentially yield to other (difficult) methods.

[Le Boudec 2015], using uniform bounds on conics by
[Browning–Swarbrick Jones 2014], showed that

#{(x , y) ∈ (Z3
̸=0)

2
prim : |x |2|y | ≤ B ,

∑3
i=1 xiy

2
i = 0} ≍ B logB .

[Browning–Heath-Brown 2018] proved Manin’s conjecture for∑4
i=1 xiy

2
i = 0 in (P3)2; [Dehnert 2019] treats

∑8
i=1 xiy

3
i = 0.

They combine lattice methods with the circle method.
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Better than square-root cancellation or not

Fix F ∈ Z[x1, . . . , xs ], irreducible over C. Let

Tc(p) :=
1

p(s−1)/2

∑
F (x)≡0 mod p

e2πic·x/p.

Then Ec∈Fs
p
[|Tc(p)|2] = 1

ps−1#{F (x) ≡ 0 mod p} ∼ 1.
▶ Call T focused if there exists a nonzero G ∈ Z[c1, . . . , cs ]

such that Ec∈Fs
p
[|Tc(p)|21G(c)=0] ∼ 1.

▶ Call T balanced if for every nonzero G ∈ Z[c1, . . . , cs ], we
have Ec∈Fs

p
[|Tc(p)|21G(c)=0] ≪G p−1/2.

T is focused if F =
∑3

i=1 xiy
2
i , and balanced if F =

∑6
i=1 x

3
i .

In the former case, primes p | G are more significant than p ∤ G .
In the latter case, p ∤ ∆ are more significant than p | ∆.
(Inspired in part by correspondence with Hooley, [Katz 1989]
defined an A-number. If A = 0, then Ec∈Fs

p
[|Tc(p)|] ≪ p−1/2,

so T is focused by [Fouvry–Katz 2001]. If A ̸= 0, then at least
if F = 0 is smooth then T is balanced by [Fouvry–Katz 2001].)
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Dyadic analysis

Let G := 2
∑3

i=1 m
2
i n

4
i − (

∑3
i=1 min

2
i )

2 and c := (m,n) ∈ Z6.

The circle method for
∑3

i=1 xiy
2
i = 0 leads to the sums

Σ(B ,N0,N1) :=
∑

c≪B1/2

G(c )̸=0

Ic(N0N1)
∑
r0≍N0

r0|G(c)∞

Sc(r0)
∑
r1≍N1

gcd(r1,G(c))=1

Sc(r1)

for N0N1 ≪ B3/2. It is relatively straightforward to show that

Σ(B ,N0,N1) ≪ϵ B
3+ϵ.

If N∞ := B3/2/(N0N1), we [Browning–Munshi–W.] prove

Σ(B ,N0,N1) ≪ϵ B
3(logB)ϵ(logN1)

−1/ϵN−δ
∞

for some absolute δ > 0, where (logB)ϵ comes from using the
Hooley ∆-function to control divisors in dyadic ranges ≪ N0,
where logN1 comes from bounds on ζ(s)−1 for ℜ(s) ≈ 1, and
where N∞ comes from cancellation over arcs à la [Huang 2020].
Summing over N1,N∞ ≥ 1 leaves B3(logB)ϵ.

18



Dyadic analysis

Let G := 2
∑3

i=1 m
2
i n

4
i − (

∑3
i=1 min

2
i )

2 and c := (m,n) ∈ Z6.

The circle method for
∑3

i=1 xiy
2
i = 0 leads to the sums

Σ(B ,N0,N1) :=
∑

c≪B1/2

G(c )̸=0

Ic(N0N1)
∑
r0≍N0

r0|G(c)∞

Sc(r0)
∑
r1≍N1

gcd(r1,G(c))=1

Sc(r1)

for N0N1 ≪ B3/2. It is relatively straightforward to show that

Σ(B ,N0,N1) ≪ϵ B
3+ϵ.

If N∞ := B3/2/(N0N1), we [Browning–Munshi–W.] prove

Σ(B ,N0,N1) ≪ϵ B
3(logB)ϵ(logN1)

−1/ϵN−δ
∞

for some absolute δ > 0, where (logB)ϵ comes from using the
Hooley ∆-function to control divisors in dyadic ranges ≪ N0,
where logN1 comes from bounds on ζ(s)−1 for ℜ(s) ≈ 1, and
where N∞ comes from cancellation over arcs à la [Huang 2020].
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Tentative theorem

Theorem (Browning–Munshi–W. 2025+)

Let F (x , y) :=
∑3

i=1 xiy
2
i . Let w : (R3)2 → R be smooth, and

supported on a compact subset of R3 × (R×)3. Then∑
x ,y∈Z3

F (x ,y)=0

w
(x , y

B

)
= c(w)B3 logB + Ow ,ϵ(B

3(logB)ϵ).

In order to remove the (logB)ϵ term, one would want an
asymptotic (or a sharp upper bound) for sums like∑

m,n≪B1/2

∑
r0≍B3/2

1r0|G(m,n)̸=0 ≈
∑

m,n≪B1/2

∑
a≍b≍B3/2

1G(m,n)=±ab,

where G := 2
∑3

i=1 m
2
i n

4
i − (

∑3
i=1 min

2
i )

2. The divisor |G |/r0 is
usually ≍ r0, since degG = 6; it would be smaller if degG ≤ 5.
RHS is a divisor problem that might be interesting over Fq[t]?
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Recent progress on geometric L-functions

Let 2 ∤ q. Let µ(r) be the Möbius function over Fq[t], and let
χd(r) = (d

r
) be the Jacobi symbol over Fq[t].

Theorem (Bergström–Diaconu–Petersen–Westerland,
Miller–Patzt–Petersen–Randal-Williams, W. 2024)

If 1 ≤ D = 2g + 1 and 1 ≤ R ≤ αD, and q ≫α 1, then∑
|d |=qD

∑
|r |=qR µ(r)χd(r)

qDqR/2
≪ qOα(1)

qD/38.1
,

where the sums over d and r run through square-free, monic
d , r ∈ Fq[t] with deg d = D and deg r = R, respectively.

Theorem (Same papers; new for q = p ≡ 1 mod 4)

The set {d : L(1
2
, χd) = 0} has upper density oq→∞(1).
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First steps of [BDPW, MPPRW]

The proof begins as the Ratios Recipe does, using the functional
equation to expand the product of L-functions in the numerator.
But then instead of directly working with Dirichlet coefficients,
one expands a given dyadic sum of coefficients in terms of
L-function zeros, taking into account natural symmetries of
orthogonal or symplectic type.

On each irreducible piece of the
resulting decomposition, one uses the Grothendieck–Lefschetz
trace formula to pass from a sum over Fq to a sum of traces of
Frobq ∈ Gal(Fq/Fq) on Fq-objects, the first few being the most
important in view of Deligne’s and Betti bounds. Ultimately,
reduce to proving uniform twisted homological stability,

k + 1 ≪ n ⇒ Hk(Xn,SSp
λ Vn)

∼=−→ Hk(Xn+1,SSp
λ Vn+1),

where Xn ⊆ Cn consists of monic square-free polynomials of
degree n, and rankVn ∼ n ∼ logq-conductor of L(s, χd) for

deg d = n, and SSp
λ ⊆ V

⊗|λ|
n is a symplectic Schur functor.
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Statistical topology and homological stability

In a 2004 Abel interview, Singer predicted “a new subject of
statistical topology” in which “rather than count the number of
holes, Betti-numbers, etc., one will be more interested in the
distribution of such objects on noncompact manifolds as one
goes out to infinity” and “insights will come from condensed
matter physics as to what, statistically, the topology might look
like as one approaches infinity”.

Some such limiting behavior may boil down to monodromy.
Examples of interesting families (before puncturing objects):
1. Smooth hypersurfaces of degree 2g → ∞ in P(g , 1, 1).

There are 3g + 2 affine parameters and 2g zeros, with
homological stability established by [BDPW, MPPRW].

2. Smooth hypersurfaces of degree e → ∞ in Pr . Here,(
e+r
r

)
∼ er

r !
parameters and (e−1)r−(−1)r

e/(e−1)
∼ er zeros.

3. Smooth hypersurfaces in P1 × VP5(x3
1 + · · ·+ x3

6 ) of
bi-degree (n, 1). Here, ∼ 6n parameters and ∼ 48n zeros.
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Interesting local systems on a family Xn

Examples of interesting families (before puncturing objects):
1. Smooth hypersurfaces of degree 2g → ∞ in P(g , 1, 1).

After completing the square, these are y 2 = d(t), where
deg d = 2g . Stability holds by [BDPW, MPPRW].

2. Smooth hypersurfaces of degree e → ∞ in Pr . Here,(
e+r
r

)
∼ er

r !
parameters and (e−1)r−(−1)r

e/(e−1)
∼ er zeros.

3. Smooth hypersurfaces in P1 × VP5(x3
1 + · · ·+ x3

6 ) of
bi-degree (n, 1), i.e.

∑6
i=1 ci(t, u)xi = 0 with deg ci = n.

Let f ∈ Xn and let Yf be the variety indexed by f in the family.
At least two natural kinds of local systems Vn exist.
▶ The local system Vn = H∗(Yf ,Q) is relevant to the

statistics of L(s, f ) ∈ {L(s, χd), L(s, c), . . . }.
▶ If Yf fibers over t ∈ P1, let ν : X ′

n → Xn be the natural SN

cover, where N = degt(discFq(t)(Yf )). Then Vn = Qν−1(f )

is relevant to divisor statistics, prime values, etc. of
discFq(t)(Yf ) ∈ {d(t),∆(c),G (m,n), . . . }.
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Ingredients in [BDPW, MPPRW] for a family Xn

1. Bounds on twisted Betti numbers of Xn, exponential in n.
2. Gluing maps (Xm, ∗m)× (Xn, ∗n) → (Xm+n, ∗m+n) and

Vm ⊕ Vn → Vm+n of a semi-algebraic nature.
3. A loop in (Xm+n, ∗m+n) that conjugates π1(Xm × ∗n) into
π1(∗n × Xm). (A braiding on the groups π1(X•).)

4. Surjectivity of a monodromy representation π1(Xn) → Qn,
where Qn ⊂ GL((Vn)∗n) is a classical arithmetic group.

5. High connectivity of two cell complexes, one associated
with the sequence π1(Xn) and one with the sequence Qn.

6. An efficient construction of Q[π1(Xm)]-module cells for Qn

(Galatius–Kupers–Randal-Williams), and for (X̃n, ∗̃n).
7. Classical representation theory of the Zariski closure Qn(C)

(Cauchy, Schur, Weyl, Littlewood, et al.).
8. Automorphic representation theory of Qn(R) (Matsushima,

Borel, Vogan–Zuckerman, Franke, et al.).
9. Algebraic versions of the topological inputs 1 and 2.
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Role of gluing and braiding for a family Xn

Stability of Hk(Xn) is equivalent to
∂
∂n
Hk(Xn) = 0. If we induct,

comparing first derivatives naturally leads to diagrams like

π1(Xn) π1(Xn+b)

π1(Xn+1) π1(Xn+1+b = Xn+b+1),

×gb

×g1 ×g1

×gb

which only commutes up to braiding. (The other diagram, with
vertical maps g1× in place of ×g1, does commute. In practice,
a stability proof requires both sorts of diagrams.)

If Xn consisted of ordered configurations of n distinct points,
then |Xn(Fq)|

qn
= q(q−1)···(q−n+1)

qn
= 1−

(
n
2

)
1
q
+ On(

1
q2 ). The Xn

glue without braiding. The H1(Xn) do not stabilize.
If we (algebraically) mod out Xn by Sn, then we get the monic
square-free polynomials of degree n, whose fundamental groups
are the braid groups, which glue with braiding. Stable 1− 1

q
.

25



Role of gluing and braiding for a family Xn

Stability of Hk(Xn) is equivalent to
∂
∂n
Hk(Xn) = 0. If we induct,

comparing first derivatives naturally leads to diagrams like

π1(Xn) π1(Xn+b)

π1(Xn+1) π1(Xn+1+b = Xn+b+1),

×gb

×g1 ×g1

×gb

which only commutes up to braiding. (The other diagram, with
vertical maps g1× in place of ×g1, does commute. In practice,
a stability proof requires both sorts of diagrams.)
If Xn consisted of ordered configurations of n distinct points,
then |Xn(Fq)|

qn
= q(q−1)···(q−n+1)

qn
= 1−

(
n
2

)
1
q
+ On(

1
q2 ). The Xn

glue without braiding. The H1(Xn) do not stabilize.
If we (algebraically) mod out Xn by Sn, then we get the monic
square-free polynomials of degree n, whose fundamental groups
are the braid groups, which glue with braiding. Stable 1− 1

q
. 25



Betti bounds for a class of geometric families

Let P ∈ Z[t, x1, . . . , xs ], e.g. P ∈ {d ,∆(c),G (m,n)}. Let
Xn(R) := {(f1, . . . , fs) ∈ R[t]sn,1 : P(f1, . . . , fs) ∈ R[t]n deg P,1,

disct(P(f1, . . . , fs)) ∈ R×},
where R[t]n,1 is the set of monic degree-n polynomials in R[t].

Proposition (W. 2025+)

For every local system L on Xn(C) of C-vector spaces,∑
i≥0

dimHi(Xn(C),L) ≤ exp(OP,s(n + 1)) rankL.

Proof idea.
O(1)1+n deg P+2n deg PO(1+deg P)(n+1)s+2n deg PO(n deg P)n deg P (Dwork theory)

(n deg P)! (cover theory)
≤

OP,s(1)
n+1en deg P , by Stirling’s formula.
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Gluing for homogeneous P ∈ Z[x1, . . . , xs ]
Again, this includes the options P ∈ {d ,∆(c),G (m,n)}. Let
Xn(R) := {(f1, . . . , fs) ∈ R[t]sn,1 : P(f1, . . . , fs) ∈ R[t]n deg P,1,

disct(P(f1, . . . , fs)) ∈ R×},
where R[t]n,1 is the set of monic degree-n polynomials in R[t].

Lemma (W. 2025+)

Let k = k. If (j1, . . . , js) ∈ Xm(k) and (f1, . . . , fs) ∈ Xn(k),
then (j1(t + ϵ−1)f1(t), . . . , js(t + ϵ−1)fs(t)) ∈ Xm+n(k) for all ϵ
in a punctured neighborhood of 0 ∈ k.

Proof idea.
Rouché’s theorem over C, or vϵ analysis in general, produces a
disjoint union of two ϵ−1-separated sets of roots of P(· · ·).

(A braiding is ≈ given by a 180◦ rotation of t about t + 1
2
ϵ−1.)
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Addendum to the talk

[Heath-Brown 1992] conjectured #{a3 + b3 + c3 = n} = ∞ if
n ̸≡ ±4 mod 9. For further background on sums of cubes, see
https://en.wikipedia.org/wiki/Sums_of_three_cubes.

The Ratios Conjecture, building on the Moments Conjecture of
[Conrey–Farmer–Keating–Rubinstein–Snaith 2005], is due to
[Conrey–Farmer–Zirnbauer 2008]. The function-field versions
were stated by [Andrade–Keating 2014]. For random matrices,
the Moments and Ratios Theorems were proved most generally
using supersymmetry, by [Conrey–Farmer–Zirnbauer 2005] and
[Huckleberry–Püttmann–Zirnbauer 2007]. Alternative proofs in
restricted ranges were given by [Conrey–Forrester–Snaith 2005]
and [Bump–Gamburd 2006]. All four proofs work for random
N × N matrices with N large enough in terms of the number of
characteristic polynomials appearing in the numerator and
denominator of the ratio in question, but the supersymmetry
proofs apply in a wider range than the other two proofs do.
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