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Integer points on log K3 surfaces

The Markov-type surface x2 + y 2 + z2 − xyz = k is log
Calabi–Yau. We are interested in solutions (x , y , z) ∈ Z3.
▶ Heuristically, expect only Ok((logB)

2) solutions with
max(|x |, |y |, |z |) ≤ B , as B → ∞. More generally, see
conjectures of [Browning–Wilsch 2024].

▶ Such Diophantine equations lie at the boundary between
heuristic solubility and paucity. Any integer solutions only
barely exist (on average)!

▶ Another, infamous, example of a log K3 surface is the sum
of 3 cubes problem x3 + y 3 + z3 = k . For k = 42 the only
known solution [Booker–Sutherland 2019] is

(−80538738812075974)3+(80435758145817515)3+(12602123297335631)3 = 42.

▶ These problems test the limits of our understanding.
▶ They are directly adjacent to undecidable problems.

(∃ undecidable quartic equations over Z.)
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Solubility of Markov-type surfaces

The polynomial M = x2 + y 2 + z2 − xyz is fixed by a group
Γ ⊆ Aut(M), where Γ is formed by S3, sign changes ±1, and
Vieta involutions (x , y , z) 7→ (x , y , xy − z). Let hM(k) be the
number of Γ-orbits of the set {(x , y , z) ∈ Z3 : M = k}.

Theorem (Ghosh–Sarnak 2017)

We have hM(k) → ∞ along a density 1 of admissiblea k ∈ Z.
In particular, the integral Hasse principle holds for almost all
k ∈ Z.

ak ̸≡ 3 mod 4 and k ̸≡ ±3 mod 9

Theorem (Mishra 2024; lower bound is new)

Fix ϵ > 0. The inequality (log |k |)2−ϵ ≤ hM(k) ≤ (log |k |)2+ϵ

holds for a density 1 of admissible k ∈ Z.

(Upper bound ⇐ Ghosh–Sarnak + Markov’s inequality.)
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For all k < 0 (and for all “generic” k ≥ 5), Ghosh–Sarnak
construct a fundamental domain Fk for the action of Γ on
{(x , y , z) ∈ Z3 : x2 + y 2 + z2 − xyz = k}. Let rM(k) be the
number of points in a well-chosen region F ′

k ⊆ Fk .
▶ For Ghosh–Sarnak, F ′

k satisfies |x | ≍ |yz | ≍ |k |1/2 and
|z | ≤ |k |ϵ. Real density of solutions: σ∞(k) ≍ ϵ log |k |.

▶ For Mishra, F ′
k is part of a G2

m-torus |xyz | ≍ |k |, with
|k |δ ≤ |x/y | ≤ |k |−δ|z | ≤ |k |2δ. Here σ∞(k) ≍ (log |k |)2.

One then expands and upper-bounds an arithmetic variance

Var(K ,A) :=
∑
k≤K

(rM(k)− r locM (k ;A))2.

▶ The sum
∑

k≤K rM(k)2 counts solutions in a region to
x2 + y 2 + z2 − xyz = u2 + v 2 + w 2 − uvw .

▶ Here r locM (k ;A) is roughly a truncated L-function at 1.
Ghosh–Sarnak (resp. Mishra) use a multiplicative
(resp. additive) truncation.

▶ Some of this generalizes to sums of three cubes.
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Let L(s, c) be the L-function of Vc : x3
1 + · · ·+ x3

6 = c · x = 0,
where c = (c1, . . . , c6) ∈ Fq[t]

6, with gcd(q, 6) = 1 and

∆(c) := disc(Vc) =
∏
(c

3/2
1 ± c

3/2
2 ± · · · ± c

3/2
6 ) ̸= 0.

Theorem (Browning–Glas–W. 2024)

Assume sufficient progress on moments of 1
L(s,c)

for ∆(c) ̸= 0.

Then x3 + y 3 + z3 = n is soluble in elements x , y , z ∈ Fq[t] of
degree ∼ 1

3
deg n for a density 1 of elements n ∈ Fq[t].

Builds on ideas of many authors, such as the following:
▶ Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
▶ Kloosterman, Hooley 1986, Heath-Brown,
▶ Beauville (quadric bundles over P2), Getz, Tran,
▶ Rubinstein–Sarnak (Chebyshev’s bias via prime squares),
▶ Deligne (GRH), Hooley 1994 (singular cubics),
▶ Huang (≈ Q-points), Busé–Jouanolou (∆ ∈ (f , (f ′)2)),
▶ Bhargava (Ekedahl sieve), Poonen (square-free sieve),
▶ Kisin (local constancy of L-factors).
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What kind of progress on L-functions?

Let 2 ∤ q. Let µ(r) be the Möbius function over Fq[t], and let
χm(r) = ( r

m
) be the Jacobi symbol over Fq[t].

Theorem (Bergström–Diaconu–Petersen–Westerland,
Miller–Patzt–Petersen–Randal-Williams, W. 2024)

If 1 ≤ M = 2g + 1 and 1 ≤ R ≤ αM, and q ≫α 1, then∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2
≪ q−0.001M+O(1),

where the sums over m and r run through square-free, monic
m, r ∈ Fq[t] with degm = M and deg r = R, respectively.

Theorem (Same papers; new for q = p ≡ 1 mod 4)

The set {m : L(1
2
, χm) = 0} has upper density oq→∞(1).
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Deterministic versus random behavior

Many problems in analytic number theory concern the behavior
of families of arithmetic sums, such as the family

χ 7→
∑

1≤n≤x

χ(n)

indexed by Dirichlet characters χ modulo a prime r , for some
set of x . Defining properties of χ are multiplicativity

χ(mn) = χ(m)χ(n), χ(1) = 1, χ(0) = 0,

and periodicity
χ(n + r) = χ(n).

There are |(Z/rZ)×| = r − 1 characters χ mod r . If r is large,
then one might expect {χ mod r} to exhibit random behavior.
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Deterministic versus random behavior (cont’d)

There are |(Z/rZ)×| = r − 1 characters χ mod r . If r is large,
then one might expect {χ mod r} to exhibit random behavior.
A useful random model (Steinhaus) for {χ mod r} is the family
of random multiplicative functions f : N → C,

f (mn) = f (m)f (n), f (1) = 1, |f (p)| = 1,

with f (p) randomly (iid) drawn from S1 ⊂ C for each prime p.

The advantage of random multiplicative functions (rmf) is that

Ef f (m)f (n) = 1m=n

(orthogonality) holds for all m, n ≥ 1, whereas (by periodicity)

Eχ mod rχ(m)χ(n) = 1m=n

holds only in ranges such as 1 ≤ m, n < r .
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Mixed character sums

Fix a smooth function w : R → R, supported on [0, 1], with∫ 1

0
w(t)2 dt > 0. We consider the mixed character sum

S(χ, θ; x) :=
∑
n∈Z

χ(n)e(nθ)w(n/x) =
∑

1≤n≤x

χ(n)e(nθ)w(n/x),

featuring a multiplicative character χ mod r and an additive
character e(nθ) := exp(2πinθ).

Question
Fix θ ∈ R. Assume 1 ≤ x ≤ r . How does S(χ, θ; x) behave as
χ mod r varies?

[Harper 2023] (building on [Harper 2020]) implies, for θ ∈ Q,

Eχ mod r |S(χ, θ; x)| = O(x1/2/(log logmin(x , r/x))1/4) = o(x1/2)

if min(x , r/x) → ∞, even for piecewise continuous w . I will
discuss joint work with Max Xu (2024) concerning θ /∈ Q.
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Mixed character sums (rmf model)

For random multiplicative f let

S ♯(f , θ; x) :=
∑

1≤n≤x

f (n)e(nθ).

Fix θ ∈ R. How does S ♯(f , θ; x) behave as f varies?

Theorem (Harper 2020)

If θ ∈ Q and x → ∞, then Ef |S ♯(f , θ; x)| = o(x1/2).

Theorem (Soundararajan–Xu 2023)

Suppose ∥qθ∥ := mina∈Z|qθ − a| ≫ exp(−q1/50) for all
q ∈ N.a Then as x → ∞, the random variable S ♯(f , θ; x)/x1/2

converges in distribution to the standard complex Gaussian
CN (0, 1). Moreover, Ef |S ♯(f , θ; x)| ∼ cx1/2 (c > 0).

aThis is satisfied for most θ ∈ R, including π, e, and any algebraic
irrational θ. For most θ ∈ R, we have ∥qθ∥ ≫ q−1−ϵ for all q ∈ N. 10



Mixed character sums (deterministic)

Fix a smooth function w : R → R, supported on [0, 1], with∫ 1

0
w(t)2 dt > 0. For characters χ mod r let

S(χ, θ; x) :=
∑
n∈Z

χ(n)e(nθ)w(n/x) =
∑

1≤n≤x

χ(n)e(nθ)w(n/x).

Fix θ ∈ R. Assume 1 ≤ x ≤ r .

Theorem (Harper 2023)

If θ ∈ Q, then Eχ mod r |S(χ, θ; x)| = o(x1/2) as
min(x , r/x) → ∞, even for piecewise continuous w.

Theorem (W.–Xu 2024)

Suppose ∥qθ∥ := mina∈Z|qθ − a| ≫ exp(−q1/4) for all q ∈ N.
If x ≫ 1, then x1/2 ≪ Eχ mod r |S(χ, θ; x)| ≪ x1/2.

11



Second moment

For 1 ≤ x ≤ r , orthogonality over {χ mod r} implies that

Eχ|
∑

1≤n≤x

χ(n)e(nθ)w(n/x)|2 =
∑

1≤n≤min(x ,r−1)

w(n/x)2

∼ x

∫ 1

0

w(t)2 dt ≍ x ,

provided that x is sufficiently large (in terms of w).

Thus

Eχ mod r |S(χ, θ; x)| = Eχ|
∑

1≤n≤x

χ(n)e(nθ)w(n/x)| ≪ x1/2

by Cauchy–Schwarz over {χ mod r}. Thus the desired upper
bound in [W.–Xu 2024] holds without any Diophantine
condition on θ ∈ R. The lower bound is the interesting part.
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Fourth moment

By Hölder’s inequality,

(Eχ|S(χ, θ; x)|)2(Eχ|S(χ, θ; x)|4) ≥ (Eχ|S(χ, θ; x)|2)3 ≫ x3,

so the desired lower bound Eχ|S(χ, θ; x)| ≫ x1/2 will follow if
we can show that

Eχ|S(χ, θ; x)|4 ≪ x2.

If x ≤ r 1/2, then orthogonality over χ gives (for some smooth
weight W , which is not important)

Eχ|S(χ, θ; x)|4 =
∑

1≤m1,m2,n1,n2≤x
m1m2=n1n2

e((m1 +m2 − n1 − n2)θ)W

= Ef |S(f , θ; x)|4 ≪ x2,

by the methods of [Soundararajan–Xu 2023]. (Parameterize
solutions; combinatorially decompose into geometric series.)
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If x ≥ r 1/2, then m1m2 ≡ n1n2 mod r is no longer equivalent to
m1m2 = n1n2. Thus, we choose not to directly compute the
fourth moment as we did for x ≤ r 1/2. Instead, we study a dual
problem, with r/x replacing x .

Write θ = k
r
+ θ′, where

k = ⌊rθ⌋ ∈ Z and 0 ≤ θ′ < 1/r . We define

fr ,χ(n) := χ(n)e(
kn

r
), f∞(n) := w(

n

x
)e(nθ′).

Then S(χ, θ; x) may be written as∑
n∈Z

χ(n)e(nθ)w(
n

x
) =

∑
n∈Z

fr ,χ(n)f∞(n) =
∑
m∈Z

f̂r ,χ(
m

r
)f̂∞(

m

r
)

by Poisson summation in (Z/rZ)× R, where

f̂r ,χ(
m

r
) =

1

r

∑
a∈Z/rZ

χ(a)e

(
(k +m)a

r

)
and f̂∞(m

r
) =

∫
R w( t

x
)e((θ′ − m

r
)t)dt.
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Fourier coefficients

We now estimate the Fourier coefficients f̂r ,χ(
m
r
) and f̂∞(m

r
). If

k +m ̸≡ 0 mod r , then by standard properties of Gauss sums,

f̂r ,χ(
m

r
) =

1

r

∑
a∈Z/rZ

χ(a)e

(
(k +m)a

r

)
= χ(k +m)−1C (χ)

r 1/2
,

where |C (χ)| ≤ 1 and C (χ) depends only on χ. Moreover,
integration by parts over t ∈ R gives

f̂∞(
m

r
) =

∫
R
w(

t

x
)e((θ′−m

r
)t)dt ≪A x

(
1+

x max(|m| − 1, 0)

r

)−A

for all A ≥ 0, using smoothness of w .

Plugging this into
S(χ, θ; x) =

∑
m∈Z f̂r ,χ(

m
r
)f̂∞(m

r
), we morally get

|S(χ, θ; x)| ≈ |
∑

|m|≤2+r/x
m ̸≡−k mod r

χ(k +m)−1

r 1/2
x |.
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Orthogonality after duality

We are essentially left with proving that

Eχ|
∑

|m|≤2+r/x
m ̸≡−k mod r

χ(k +m)−1

r 1/2
x |4 ≪ x2.

By orthogonality, LHS = x4

r2 N4(2 + r/x), where N4(T ) counts
integer solutions

(m1,m2, n1, n2) ∈ {|m| ≤ T : m ̸≡ −k mod r}4

to the congruence

(k +m1)(k +m2) ≡ (k + n1)(k + n2) mod r .

This congruence is equivalent to

k(m1 +m2 − n1 − n2) ≡ n1n2 −m1m2 mod r .

We want to prove N4(T ) ≪ T 2 for 3 ≤ T ≤ 2 + r 1/2.
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Write S = m1 +m2 − n1 − n2 and P = n1n2 −m1m2.

Lemma (Almost a parameterization of solutions)

There exists a linear map Φ: Z4 → Z3 such that if S ,P ∈ Z,
then Φ maps the set A injectively into the set B, where

A := {(m1,m2, n1, n2) ∈ Z4 : m1 +m2 − n1 − n2 = S ,

n1n2 −m1m2 = P},
B := {(a, b, c) ∈ Z3 : ab + 2cS = S2 − 4P}.

Proof.
Let Φ(m1,m2, n1, n2) := (a, b, c) where

(a, b, c) := (n1 − n2 +m1 −m2, n1 − n2 −m1 +m2,m1 +m2).

Then ab + c2 = (c − S)2 − 4P . Therefore, Φ maps A into B.
Moreover, this map is injective, because the linear forms
a, b, c , S are linearly independent over Q.
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Fibering N4(T ) over (S ,P)

We want to prove N4(T ) ≪ T 2 for 3 ≤ T ≤ 2 + r 1/2, where
N4(T ) counts certain solutions to the congruence

kS ≡ P mod r .

By the lemma, we have

N4(T ) ≤
∑

|S |≤4T , |P|≤2T 2

kS≡P mod r

NS ,P(T ),

where

NS,P(T ) := #{a, b, c ≪ T : ab + 2cS = S2 − 4P}.

The equation ab + 2cS = S2 − 4P implies that

ab + 4P ≡ 0 mod S , ab + 4P ≪ TS + S2 ≪ TS ,

since c ≪ T and S ≪ T . Therefore,

NS ,P(T ) ≤ #{a, b ≪ T : S | ab + 4P , ab + 4P ≪ TS}.
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Lemma (Hyperbolic summation in a residue class)

Suppose 1 ≤ u, v ≤ S ≪ T. Then∑
a,b≪T

(a,b)≡(u,v) mod S

1ab+4P≪TS ≪ T

S
log(2 +

T

S
).

Proof idea.
Given a, we may accurately count integers b ≡ v mod S in any
interval of length min(T ,TS/|a|) ≫ S , since a ≪ T .

For any S ≪ T with S ̸= 0, the lemma implies

NS,P(T ) ≤
∑

a,b≪T

1S |ab+4P1ab+4P≪TS ≪ T

|S |
log(2+

T

|S |
)N(−4P , S),

where N(d , q) := #{(a, b) ∈ (Z/qZ)2 : ab ≡ d mod q}.
19



We bound N(d , q) := #{(a, b) ∈ (Z/qZ)2 : ab ≡ d mod q}.

Lemma (Counting residue classes)

Let d ∈ Z and q ∈ N. Then N(d , q) ≤ τ(gcd(d , q))q, where
τ(·) is the divisor function.

Proof.
It suffices to prove the lemma when q is a prime power. Say
q = pt and gcd(d , q) = pm. Then clearly t ≥ m ≥ 0. If m = 0,
then

N(d , q) = ϕ(q) ≤ q.

If m = 1, then N(d , q) = 2ϕ(q) + 1t=1 ≤ 2q. If m ≥ 2, then

N(d , q) = 2ϕ(q) + p2N(d/p2, q/p2).

By induction on m, it follows that N(d , q) ≤ (m + 1)q.

20



Dyadic fibering over gcd

For any S ≪ T with S ̸= 0, the lemma implies

NS ,P(T ) ≪ T

|S |
log(2 +

T

|S |
)N(−4P , S)

≪ T log(2 +
T

|S |
)τ(gcd(P , S)),

Upon writing (S ,P) = (gS ′, gP ′) with g = gcd(S ,P) ≥ 1, and
summing τ(g) over dyadic intervals [G/2,G ), we get (ignoring
the S = 0 contribution, which is easy to deal with)

N4(T ) ≤
∑

|S |≤4T , |P|≤2T 2

kS≡P mod r

NS ,P(T )

≪
∑

G∈{2,4,8,...}
G≪T

∑
S ′≪T/G , P′≪T 2/G

kS ′≡P′ mod r

T log(2 +
T

|GS ′|
)(G logG ).
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Lemma (Pigeonhole counting bound)

Assume |qθ − a| ≫ Υ(q) for all (a, q) ∈ Z× N, where Υ is a
decreasing, nonnegative function. If r

2
> M ≥ N ≥ 1, then

Υ

(
N

#{(S ′,P ′) ∈ [1,N]× [−M ,M] : kS ′ ≡ P ′ mod r}

)
≪ M

r
.

Proof.
By pigeonhole, there exists (q, d) ∈ [1,N]× [−2M , 2M] such
that kq ≡ d mod r and q ≤ N

#{(S ′,P′)∈[1,N]×[−M,M]:kS ′≡P′ mod r} .

For such a pair (q, d), we have kq = d + ra for some a ∈ Z.
But by definition of k , we have |rθ − k | < 1. Therefore,

|qrθ− ra| ≤ |qrθ− kq|+ |kq− ra| < q+ |d | ≤ N +2M ≤ 3M ,

whence |qθ− a| ≤ 3M/r . Yet by assumption, |qθ− a| ≫ Υ(q).
Since Υ(q) is decreasing, the lemma follows.
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Applying the lemma

If r
2
> M ≥ N ≥ 1 and Υ(q) = exp(−q1/3), then

#{S ′ ≪ N , P ′ ≪ M : kS ′ ≡ P ′ mod r} ≪ N

(log(2 + r/M))3

by the lemma; this is also trivially true if M ≍ r .

Thus

N4(T ) ≪
∑

G∈{2,4,8,...}
G≪T

∑
S ′≪T/G , P′≪T 2/G

kS ′≡P′ mod r

T log(2 +
T

|GS ′|
)(G logG )

≪
∑

G ,N∈{2,4,8,...}
GN≪T

T log(2 +
T

|GN |
)(G logG )

N

(log(2 + rG/T 2))3

≪
∑

G ,N∈{2,4,8,...}
GN≪T

T (
T

|GN |
)0.1(G logG )

N

(logG )3
≪ T 2

for 3 ≤ T ≤ 2 + r 1/2, by summing over N and then over G .
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Final moments

We thus obtain the following result:

Theorem (W.–Xu 2024)

Suppose ∥qθ∥ := mina∈Z|qθ − a| ≫ exp(−q1/4) for all q ∈ N.
If x ≫ 1, then Eχ mod r |S(χ, θ; x)|b ≍ xb/2 for all 0 ≤ b ≤ 4.

(Setting of the theorem: Fix a smooth function w : R → R,
supported on [0, 1], with

∫ 1

0
w(t)2 dt > 0. Let

S(χ, θ; x) :=
∑
n∈Z

χ(n)e(nθ)w(n/x) =
∑

1≤n≤x

χ(n)e(nθ)w(n/x),

Fix θ ∈ R. Assume 1 ≤ x ≤ r .)
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Some interesting behavior

Shala used work of Matomäki (Diophantine approximation with
prime denominators), the Burgess bound, and properties of
Gauss sums, to prove the following result:

Theorem (Shala 2024)

There is a sequence of prime r → ∞ such that the distribution
of 1√

r

∑
1≤n≤r χ(n)e(n

√
2) tends to the uniform distribution on

the unit circle. (In particular, not Gaussian!)

(Thanks to Bober, Klurman, and Shala for informing us of this
result.)
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Comparison with [Heap–Sahay 2024]

Recently we learned of the following result, concerning the
periodic zeta function (dual to the Hurwitz zeta function)

P(s, θ) =
∑
n≥1

e(nθ)

ns
,

which uses related Diophantine approximation techniques.

Theorem (Heap–Sahay 2024, in Crelle 2025)

Suppose ∥qθ∥ := mina∈Z|qθ − a| ≫ 1/q2−δ for all q ∈ N, for
some δ > 0.a Then for 0 ≤ b ≤ 4 and large T , we have∫ 2T

T

|P(1
2
+ it, θ)|b ≍ T (logT )b/2.

aEquivalently, the irrationality measure µ(θ) of θ is < 3.

Can our methods be used to relax their Diophantine condition?
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