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Integer points on log K3 surfaces

The Markov-type surface x> + y? + z2 — xyz = k is log
Calabi-Yau. We are interested in solutions (x, y, z) € Z3.

» Heuristically, expect only Ok((log B)?) solutions with
max(|x|, |y|,|z]) < B, as B — oco. More generally, see
conjectures of [Browning-Wilsch 2024].

» Such Diophantine equations lie at the boundary between
heuristic solubility and paucity. Any integer solutions only
barely exist (on average)!
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The Markov-type surface x> + y? + z2 — xyz = k is log
Calabi-Yau. We are interested in solutions (x, y, z) € Z3.

» Heuristically, expect only Ok((log B)?) solutions with
max(|x|, |y|,|z]) < B, as B — oco. More generally, see
conjectures of [Browning-Wilsch 2024].

» Such Diophantine equations lie at the boundary between
heuristic solubility and paucity. Any integer solutions only
barely exist (on average)!

» Another, infamous, example of a log K3 surface is the sum
of 3 cubes problem x> + y3 4 z3 = k. For k = 42 the only
known solution [Booker—Sutherland 2019] is

(—80538738812075974)3-+(80435758145817515)3+ (126021232

» These problems test the limits of our understanding.
» They are directly adjacent to undecidable problems.
(3 undecidable quartic equations over Z.)



Solubility of Markov-type surfaces

The polynomial M = x? + y? + z2 — xyz is fixed by a group

[ C Aut(M), where I is formed by Ss, sign changes +1, and
Vieta involutions (x, y,z) — (x,y,xy — z). Let hy(k) be the
number of [-orbits of the set {(x,y,z) € Z* : M = k}.

Theorem (Ghosh—Sarnak 2017)

We have hy (k) — oo along a density 1 of admissible® k € Z.

In particular, the integral Hasse principle holds for almost all
k e Z.

9k %3 mod 4 and k % +£3 mod 9
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The polynomial M = x? + y? + z2 — xyz is fixed by a group

[ C Aut(M), where I is formed by Ss, sign changes +1, and
Vieta involutions (x, y,z) — (x,y,xy — z). Let hy(k) be the
number of [-orbits of the set {(x,y,z) € Z* : M = k}.

Theorem (Ghosh—Sarnak 2017)

We have hy (k) — oo along a density 1 of admissible® k € Z.

In particular, the integral Hasse principle holds for almost all
k e Z.

9k %3 mod 4 and k % +£3 mod 9

Theorem (Mishra 2024; lower bound is new)

Fix € > 0. The inequality (log |k|)*=¢ < hu(k) < (log |k|)***
holds for a density 1 of admissible k € 7.

(Upper bound < Ghosh-Sarnak + Markov's inequality.)



For all k < 0 (and for all “generic” k > 5), Ghosh—Sarnak
construct a fundamental domain Fj for the action of [ on
{(x,y,2) € Z®: x> + y> + 2> — xyz = k}. Let ry(k) be the
number of points in a well-chosen region F, C Fy.
» For Ghosh—Sarnak, F satisfies |x| < |yz| < |k|*/? and
|z| < |k|°. Real density of solutions: 0., (k) < €log |k|.
» For Mishra, F is part of a G-torus |xyz| < |k|, with
KPP < [x/y] < K|0Jz] < [k Here o.c(k) = (log k|)?



For all k < 0 (and for all “generic” k > 5), Ghosh—Sarnak
construct a fundamental domain Fj for the action of [ on
{(x,y,2) € Z®: x> + y> + 2> — xyz = k}. Let ry(k) be the
number of points in a well-chosen region F, C Fy.
» For Ghosh—Sarnak, F satisfies |x| < |yz| < |k|*/? and
|z| < |k|°. Real density of solutions: 0., (k) < €log |k|.
» For Mishra, F is part of a G-torus |xyz| < |k|, with
[kI” < Ix/y| < |k|7|z] < |k[?*. Here oo (k) =< (log [K|)%.
One then expands and upper-bounds an arithmetic variance

Var(K, A) ==Y " (ru(k) — riy* (k; A))>.

k<K

» The sum >, ru(k)? counts solutions in a region to
X2+y2—|—z2_—xyz: v+ v 4 w? — uvw.

» Here rio(k; A) is roughly a truncated L-function at 1.
Ghosh—Sarnak (resp. Mishra) use a multiplicative
(resp. additive) truncation.

» Some of this generalizes to sums of three cubes.



Let L(s, c) be the L-function of V. : 53 + -+ +x2 =c-x =0,
where ¢ = (¢, ..., ¢) € Fy[t]°, with ged(g,6) = 1 and
Ac) =disc(Vo) = [[(? + &P+ £ %) #0.

Theorem (Browning—Glas—W. 2024)

Assume sufficient progress on moments of ﬁ for A(c) # 0.

Then x* + y* + 23 = n is soluble in elements x,y,z € F[t] of
degree ~ % deg n for a density 1 of elements n € Fy[t].




Let L(s, c) be the L-function of V. : 53 + -+ +x2 =c-x =0,
where ¢ = (¢, ..., ¢) € Fy[t]°, with ged(g,6) = 1 and
Ac) =disc(Vo) = [[(? + &P+ £ %) #0.

Theorem (Browning—Glas—W. 2024)

Assume suftficient progress on moments of for A(c) #0.

Then x3 —|— y®+ 23 = n is soluble in e/ements X ¥,z € Fylt] of
degree ~ % deg n for a density 1 of elements n € Fy[t].

Builds on ideas of many authors, such as the following:

» Ghosh-Sarnak, Diaconu (log-K3 variance analysis),
Kloosterman, Hooley 1986, Heath-Brown,
Beauville (quadric bundles over P?), Getz, Tran,
Rubinstein-Sarnak (Chebyshev's bias via prime squares),
Deligne (GRH), Hooley 1994 (singular cubics),
Huang (= Q-points), Busé—Jouanolou (A € (f,(f')?)),
Bhargava (Ekedahl sieve), Poonen (square-free sieve),
Kisin (local constancy of L-factors).
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What kind of progress on L-functions?

Let 21 q. Let u(r) be the Mobius function over Fy[t], and let
Xm(r) = (%) be the Jacobi symbol over F,[t].

Theorem (Bergstrom—Diaconu—Petersen—Westerland,
Miller—Patzt—Petersen—Randal-Williams, W. 2024)
If1<M=2g+1and1 < R<aM, and g >, 1, then

Zlmlzq”’ Z/I\;I=;;2M(r)x’"(r) < g 000M+0()
arq

where the sums over m and r run through square-free, monic
m, r € Fy[t] with degm = M and degr = R, respectively.

Theorem (Same papers; new for ¢ = p = 1 mod 4)

The set {m: L(3, xm) = 0} has upper density 04, (1).




Deterministic versus random behavior

Many problems in analytic number theory concern the behavior
of families of arithmetic sums, such as the family

X Y x(n)

1<n<x

indexed by Dirichlet characters xy modulo a prime r, for some
set of x. Defining properties of x are multiplicativity

x(mn) = x(m)x(n),  x(1)=1,  x(0)=0,

and periodicity



Deterministic versus random behavior

Many problems in analytic number theory concern the behavior
of families of arithmetic sums, such as the family

X Y x(n)

1<n<x

indexed by Dirichlet characters xy modulo a prime r, for some
set of x. Defining properties of x are multiplicativity

x(mn) =x(m)x(n),  x(1)=1,  x(0)=0,
and periodicity
x(n+r) = x(n).

There are |(Z/rZ)*| = r — 1 characters x mod r. If r is large,
then one might expect {x mod r} to exhibit random behavior.



Deterministic versus random behavior (cont’d)

There are |(Z/rZ)*| = r — 1 characters x mod r. If r is large,
then one might expect {x mod r} to exhibit random behavior.
A useful random model (Steinhaus) for {x mod r} is the family
of random multiplicative functions f: N — C,

f(mn) = f(m)f(n),  f(1)=1,  |f(p)l =1,

with f(p) randomly (iid) drawn from S* C C for each prime p.



Deterministic versus random behavior (cont’d)

There are |(Z/rZ)*| = r — 1 characters x mod r. If r is large,
then one might expect {x mod r} to exhibit random behavior.
A useful random model (Steinhaus) for {x mod r} is the family
of random multiplicative functions f: N — C,

f(mn) = f(m)f(n),  f(1)=1,  |f(p)l =1,

with f(p) randomly (iid) drawn from S* C C for each prime p.
The advantage of random multiplicative functions (rmf) is that

Eff(m)f(n) = 1,
(orthogonality) holds for all m, n > 1, whereas (by periodicity)
Ex mod rX(m)X(n) = 1=y

holds only in ranges such as 1 < m,n <'r.



Mixed character sums

Fix a smooth function w: R — R, supported on [0, 1], with

fol w(t)?dt > 0. We consider the mixed character sum

S(x0:%) = 3 x(n)e(n)wln/x) = 3 x(n)e(nb)w(n/x).
neZ 1<n<x
featuring a multiplicative character xy mod r and an additive
character e(nf) := exp(2mind).



Mixed character sums

Fix a smooth function w: R — R, supported on [0, 1], with

fol w(t)?dt > 0. We consider the mixed character sum

S(x.0:x) =) _x(n)e(nb)w(n/x) =Y x(n)e(nd)w(n/x),

featuring a multiplicative character xy mod r and an additive
character e(nf) := exp(2mind).

Question

Fix 0 € R. Assume 1 < x < r. How does S(x, 0; x) behave as
x mod r varies?

[Harper 2023] (building on [Harper 2020]) implies, for § € Q,
Ey mod r|S(x, 0; x)| = O(x'/?/(log log min(x, r/x))"'*) = o(x'/?)

if min(x, r/x) — oo, even for piecewise continuous w. | will
discuss joint work with Max Xu (2024) concerning 6 ¢ Q.



Mixed character sums (rmf model)

For random multiplicative f let

SH(F,0; x) : Zf

1<n<x

Fix § € R. How does S*(f,0; x) behave as f varies?

Theorem (Harper 2020)
If0 € Q and x — oo, then E¢|SH(f, 0; x)| = o(x'/?).

Theorem (Soundararajan—Xu 2023)

Suppose ||g8]| := min.ez|ql — a| > exp(—q/*°) for all

q € N.? Then as x — oo, the random variable S*(f,0; x) /x/?
converges in distribution to the standard complex Gaussian
CN(0,1). Moreover, E¢|Si(f,0; x)| ~ cx'/? (c > 0).

aThis is satisfied for most 8 € R, including 7, e, and any algebraic
irrational 6. For most 6 € R, we have ||gd|| > g~ 1€ for all g € N.

10



Mixed character sums (deterministic)

Fix a smooth function w: R — R, supported on [0, 1], with

fol w(t)?dt > 0. For characters x mod r let

S(x.0:x) =) _x(n)e(nd)w(n/x) =Y x(n)e(nd)w(n/x).

neZ 1<n<x
Fix 9 € R. Assume 1 < x <.
Theorem (Harper 2023)

/f(9 E Q, then ]EX mod r|5(X76,X)’ = O(X1/2) as
min(x, r/x) — oo, even for piecewise continuous w.

Theorem (W.—Xu 2024)

Suppose || gf|| := min,cz|qb — a| > exp(—q*/*) for all g € N.
If x >> 1, then x*/2 < By mod -|S(x, 0; x)| < x*/2.

11



Second moment

For 1 < x < r, orthogonality over { mod r} implies that

E > x( win/x)P=" % w(n/x)

1<n<x 1<n<min(x,r—1)

1
Nx/ w(t)? dt < x,
0

provided that x is sufficiently large (in terms of w).

12



Second moment
For 1 < x < r, orthogonality over { mod r} implies that

E > x( win/x)P=" % w(n/x)

1<n<x 1<n<min(x,r—1)

1
Nx/ w(t)? dt < x,
0

provided that x is sufficiently large (in terms of w). Thus

Ey mod r| SO, 0; X)| =By Y x(n)e(nf)w(n/x)| < x*/?

1<n<x

by Cauchy-Schwarz over {x mod r}. Thus the desired upper
bound in [W.—Xu 2024] holds without any Diophantine
condition on # € R. The lower bound is the interesting part.

12



Fourth moment
By Holder's inequality,
(B[SO 05 x)) (B[ S(x, 0:x)[*) = (B[ S(x, 05 x)17)° > %%,

so the desired lower bound E, |S(x, 6; x)| > x*/2 will follow if
we can show that

E\|S(x, 0;x)|* < X2

13



Fourth moment
By Holder's inequality,

(B[SO 0 )X (Er] SO, 0:3)*) = (ExlS(x, 0 x)17)° > 5,
so the desired lower bound E, |S(x, 6; x)| > x*/2 will follow if
we can show that

E\[S(x, 0 x)[* < x%.

If x < r/2, then orthogonality over y gives (for some smooth
weight W, which is not important)

E|S(x, 0; x)[* = > e((m+m—n—m)h)W

1<my,mp,n1,n2<x
myma=n1ny

= E¢|S(f,0; x)|* < x?,

by the methods of [Soundararajan—Xu 2023]. (Parameterize

solutions; combinatorially decompose into geometric series.)
13



If x > r'/2, then mym, = n1n, mod r is no longer equivalent to
mym, = nyn,. Thus, we choose not to directly compute the
fourth moment as we did for x < r*/2. Instead, we study a dual
problem, with r/x replacing x.

14



If x > r'/2, then mym, = n1n, mod r is no longer equivalent to
mym, = nyn,. Thus, we choose not to directly compute the
fourth moment as we did for x < r*/2. Instead, we study a dual
problem, with r/x replacing x. Write 6 = é + &', where
k=|r0] € Z and 0 <6 < 1/r. We define

frx(n) = X(n)e(@), fo(n) = w()e(nd)).

r X
Then S(x, 0; x) may be written as

> x(me(n)w(2) = 3" () = 3 Fa( DA

neZ neZ meZ

by Poisson summation in (Z/rZ) x R, where
~ om. 1 (k+ m)a
D=1 3 wage (K272

and £. = [o w( — I)¢t)dt.

14



Fourier coefficients

We now estimate the Fourier coefficients frx( ) and (7). I
k + m % 0 mod r, then by standard properties of Gauss sums,

fr,x(m) = % Z x(a)e (w) = x(k+m)! (;8(2)’

acZ/rZ

where |C(x)| < 1 and C(x) depends only on x. Moreover,
integration by parts over t € R gives

X r r
for all A > 0, using smoothness of w.

P = [ e~y (g X1y

15



Fourier coefficients

We now estimate the Fourier coefficients frx( ) and (7). I
k + m % 0 mod r, then by standard properties of Gauss sums,

fr,x(m) = % Z x(a)e (w) = x(k+m)! (;8(2)’

acZ/rZ

where |C(x)| < 1 and C(x) depends only on x. Moreover,
integration by parts over t € R gives

P = [ w00t <ax(1+

xmax(|m| —1,0), -a
X r r )
for all A > 0, using smoothness of w. Plugging this into
S(X,0,x) = > ez fra(P)f (), we morally get

x(k +m)!
Steoi~] Y My

|m| <21/
m#Z—k mod r

15



Orthogonality after duality
We are essentially left with proving that

E,| Z (k:—/m)

|m| <21/
m#%—k mod r

* < X2

16



Orthogonality after duality

We are essentially left with proving that

Z M“(X

X| r1/

|m| <21/
m#%—k mod r

By orthogonality, LHS = f—;/\f4(2 + r/x), where Ny(T) counts
integer solutions

(my,mo,ni,mp) € {Im| < T:m# —kmod r}*
to the congruence
(k + my)(k + my) = (k+ ny)(k + ny) mod r.
This congruence is equivalent to
k(my + my — ny — ny) = nyny — mymy mod r.

We want to prove N3(T) < T2 for 3< T <24 r1/2,

16



Write S=my +my —ny — ny and P = nyn, — mymo.

Lemma (Almost a parameterization of solutions)

There exists a linear map ®: Z* — 72 such that if S, P € Z,

then ® maps the set A injectively into the set 3, where
A = {(mlﬂ my, Ny, n2) S Z4 My +Fmy—ng— N = 57

nny — mumy = P},

B:={(a,b,c)€Z®: ab+2cS = S* — 4P}.

17



Write S=my +my —ny — ny and P = nyn, — mymo.
Lemma (Almost a parameterization of solutions)

There exists a linear map ®: Z* — 72 such that if S, P € Z,
then ® maps the set A injectively into the set 3, where

A= {(ml,m2,n1,n2) VAR m +my—n—n, =25,
niny — mMpmy = P}7
B:={(a,b,c) € Z3: ab+2cS =5 — 4P}.

Proof.

Let ®(my, my, ny, ny) := (a, b, c) where
(a,b,¢) = (n — ny+ my — my,ny — np — my + my, my + my).

Then ab + ¢? = (c — S)? — 4P. Therefore, ® maps A into B.
Moreover, this map is injective, because the linear forms
a. b.c.S are linearly independent over Q. O

17



Fibering NV4(T) over (S, P)
We want to prove N3(T) < T2 for 3 < T <2+ r*/2, where
N4 (T) counts certain solutions to the congruence
kS = P mod r.

By the lemma, we have

Na(T) < > Nsp(T),

|S|<4T, |P|<2T?
kS=P mod r

where
Nsp(T):=#{a,b,c < T :ab+2cS = S5>—4P}.

18



Fibering NV4(T) over (S, P)
We want to prove N3(T) < T2 for 3 < T <2+ r*/2, where
N4(T) counts certain solutions to the congruence
kS = P mod r.
By the lemma, we have

Nu(T) < > Nsp(T),

|S|<4T, |P|<2T?
kS=P mod r

where
Nsp(T) :=#{a,b,c < T :ab+2cS = S*—4P}.
The equation ab + 2cS = S2 — 4P implies that
ab+4P=0mod S,  ab+4P < TS+ S*< TS,
since c < T and S <« T. Therefore,
Nsp(T)<#{a,b< T:S|ab+4P, ab+4P < TS}.

18



Lemma (Hyperbolic summation in a residue class)

Suppose 1 < u,v< S T. Then

T T
Z Lppapers < E Iog(2 + E)
a,bkgT

(a,b)=(u,v) mod S

Proof idea.
Given a, we may accurately count integers b = v mod S in any
interval of length min(T, TS/|a]) > S, since a < T. O

V.

For any S < T with S # 0, the lemma implies

T n(-ap,5),

T
log(2+
|5

Nsp(T) < Z 1sap1aploprarcts < o S|

a,bkT

where N(d, q) := #{(a, b) € (Z/qZ)? : ab= d mod q}.

19



We bound N(d, q) := #{(a, b) € (Z/qZ)? : ab= d mod q}.
Lemma (Counting residue classes)

Let d € Z and q € N. Then N(d, q) < 7(gcd(d, q))q, where
7(-) is the divisor function.

Proof.

It suffices to prove the lemma when g is a prime power. Say
g = p' and gecd(d, g) = p™. Then clearly t > m > 0. If m =0,
then

N(d,q) = ¢(q) < q
If m=1, then N(d,q) =2¢(q) + 1;=1 < 2q. If m > 2, then
N(d, q) = 2¢(q) + p*N(d/p*, q/pP*).

By induction on m, it follows that N(d,q) < (m+ 1)q. O

V.

20



Dyadic fibering over gcd
For any S < T with S # 0, the lemma implies

Nso(T) < T n(-ap.s)

T
log(2 +
Cts

Is|

< Tlog(2 + l) (gcd(P, S)),

|5

21



Dyadic fibering over gcd
For any S < T with S # 0, the lemma implies

T T
Nsp(T) < — log(2+ —)N(—4P,S)
S| S|
T
< Tlog(2 + m) 7(gcd(P, S)),
Upon writing (S, P) = (gS5’, gP’) with g = gcd(S, P) > 1, and
summing 7(g) over dyadic intervals [G/2, G), we get (ignoring
the S = 0 contribution, which is easy to deal with)
Nu(T) < > Nsp(T)

|S|<4T, |P|<2T?
kS=P mod r

< > > T log( |G7;I’)(GlogG).

Ge{z 48,.}S'<T/G, P’<KT?/G
GKLT kS'=P’ mod r

21



Lemma (Pigeonhole counting bound)

Assume |q8 — a| > T(q) for all (a,q) € Z x N, where T is a

decreasing, nonnegative function. If 5 > M > N > 1,

N

T(#{(S’, P) e [1,N] x [-M,M] : kS’ = P’ mod r}

then

)«

M

r

22



Lemma (Pigeonhole counting bound)

Assume |q8 — a| > T(q) for all (a,q) € Z x N, where T is a
decreasing, nonnegative function. If 5 > M > N > 1, then

T N M
(#{(5', P) € [1,N] x [-M, M] : kS’ = P’ mod r}) < 7)

Proof.

By pigeonhole, there exists (q, d) € [1, N] x [-2M,2M] such
_ N

that kg = d mod r and q < e E TRV MRS =P mod 1T

For such a pair (g, d), we have kg = d + ra for some a € Z.

But by definition of k, we have |rf — k| < 1. Therefore,

|qro — ra| < |qr0 —kq| + |kqg—ra| < g+ |d| < N+2M < 3M,

whence |gf — a| < 3M/r. Yet by assumption, |gf — a| > T(q).
Since T(q) is decreasing, the lemma follows. O

22



Applying the lemma

If £> M > N >1and T(q) = exp(—g"/?), then
N

' / . Lcl — pt
#{S'"< N, P<M: kS =P mod r} <« (log(2 & r/M))?

by the lemma; this is also trivially true if M < r.

23



Applying the lemma
If £> M > N >1and T(q) = exp(—g"/?), then

N
S <N, P<M: kS =P mod r} <
a V< log@a + /M)y
by the lemma; this is also trivially true if M < r. Thus
T
Ni(T) < Z Z T log(2 + |GS/|)(G|og G)
Ge{2,48,...} 'KT/G, P'<T?/G
GLT kS'=P’ mod r
T N
< T log(2 + —=)(G log G)
G,Ne{zz,;,s,...} |GN| (log(2+ rG/T?))3
GN<T
T N
T(=)""(Glog G T?
< 2 Tlgy)(Cle Gl ey <
G,NE{2,48,...}
GN<T

for 3 < T <2+ r'/2, by summing over N and then over G.

23



Final moments
We thus obtain the following result:

Theorem (W.—Xu 2024)

Suppose ||gf]| := min,cz|q0 — a| > exp(—q*/*) for all g € N.

If x 3> 1, then E, mod |S(x, 0; x)|? < x¥/2 for all 0 < b < 4.

24



Final moments
We thus obtain the following result:

Theorem (W.—Xu 2024)

Suppose ||gf]| := min,cz|q0 — a| > exp(—q*/*) for all g € N.
If x 3> 1, then E, mod |S(x, 0; x)|? < x¥/2 for all 0 < b < 4.

(Setting of the theorem: Fix a smooth function w: R — R,
supported on [0, 1], with fo t)>dt > 0. Let

S(x.0:x) = > x(n)e(nb)w(n/x) = > x(n)e(nB)w(n/x),

neZ 1<n<x

Fix 0 € R. Assume 1 < x <r.)
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Some interesting behavior

Shala used work of Matomaki (Diophantine approximation with
prime denominators), the Burgess bound, and properties of
Gauss sums, to prove the following result:

Theorem (Shala 2024)

There is a sequence of prime r — oo such that the distribution
of% Y i<n<r x(n)e(nv/2) tends to the uniform distribution on
the unit circle. (In particular, not Gaussian!)

(Thanks to Bober, Klurman, and Shala for informing us of this
result.)
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Comparison with [Heap—Sahay 2024]

Recently we learned of the following result, concerning the
periodic zeta function (dual to the Hurwitz zeta function)

P(S,Q):ZM,

ns
n>1

which uses related Diophantine approximation techniques.

Theorem (Heap—Sahay 2024, in Crelle 2025)

Suppose ||qf|| := min,ez|qd — a| > 1/q*7° for all g € N, for
some § > 0.? Then for 0 < b < 4 and large T, we have

2T
/ P(L + it,0)[ = T(log T)"">.
]

2Equivalently, the irrationality measure 11(0) of 6 is < 3.
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Comparison with [Heap—Sahay 2024]

Recently we learned of the following result, concerning the
periodic zeta function (dual to the Hurwitz zeta function)

P(S,@):ZM,

ns
n>1

which uses related Diophantine approximation techniques.

Theorem (Heap—Sahay 2024, in Crelle 2025)

Suppose ||qf|| := min,ez|qd — a| > 1/q*7° for all g € N, for
some § > 0.? Then for 0 < b < 4 and large T, we have

2T
/ P(L + it,0)[ = T(log T)"">.
]

2Equivalently, the irrationality measure 11(0) of 6 is < 3.
.

Can our methods be used to relax their Diophantine condition?



