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Diophantine equations at the boundary

Some equations in Zs lie at the boundary between heuristic
solubility and paucity: in practice, equations of degree s, with
reasonable geometry (log Calabi–Yau?). Examples:

▶ Factoring: xy = k , for k ∈ N. This has Oϵ(k
ϵ) solutions.

It is open (?) to factor in (log k)O(1) digital steps.

▶ Markov–Hurwitz: x2
1 + · · ·+ x2

s − ax1 · · · xs = k , for s ≥ 3,
a ∈ N, k ∈ Z. If k − s + 2, k − s − 1 ̸= □, then this
either has 0 or ∼ c(logT )β(s) solutions of height
max(|x•|) ≤ T as T → ∞,1 where c = c(s, a, k) > 0,
β(3) = 2, and β(s) may well be transcendental for s ≥ 4.

▶ Sums of three cubes (you): x3 + y 3 + z3 = k . For k = 42
the only known solution [Booker–Sutherland 2019] is

42 = (−80538738812075974)3+(80435758145817515)3+(12602123297335631)3.

1[Gurwood 1976, . . . , Baragar 1998, Gamburd–Magee–Ronan 2019]
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Diophantine equations at the boundary (cont’d)

Example:

▶ Factoring: xy = k , for k ∈ N. This has Oϵ(k
ϵ) solutions.

Let n ≥ 2. Let Mn(Z) be the set of n × n matrices with entries
in Z. Let Vn(Z) = {A ∈ Mn(Z) : tr(A) = 0}. Fix K ∈ Vn(Z).
▶ Trace-zero commutators: XY − YX = K , to be solved in

(X ,Y ) ∈ Vn(Z)2. This can be viewed as a system of
n2 − 1 quadratic equations in 2(n2 − 1) integer variables.
This is known to be soluble for n ≥ 3 [Stasinski 2018], even
with principal ideal domains in place of Z, and for n ≥ 2 if
we drop the trace-zero condition [Laffey–Reams 1994].

It is reasonable to guess that for most K (perhaps all K ̸= 0),
the number of solutions (X ,Y ) of height ≤ T is OK ,ϵ(T

ϵ).
What about for K = 0?
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Diophantine equations at the boundary (cont’d2)

Let n ≥ 2. Let Mn(Z) be the set of n × n matrices with entries
in Z. Let Vn(Z) = {A ∈ Mn(Z) : tr(A) = 0}. Fix K ∈ Vn(Z).
▶ Trace-zero commutators: XY − YX = K , to be solved in

(X ,Y ) ∈ Vn(Z)2. This can be viewed as a system of
n2 − 1 quadratic equations in 2(n2 − 1) integer variables.

It is reasonable to guess that for most K (perhaps all K ̸= 0),
the number of solutions (X ,Y ) of height ≤ T is OK ,ϵ(T

ϵ).
However:
▶ Even after removing special solutions to XY = YX like

Y = X r , there may well remain ≥ T δ −On(1) solutions of
height ≤ T . This is because the variety XY = YX has
excess dimension (or morally, “redundant equations”).

Other non-examples that resemble examples:
▶ The cubic surfaces x2 + y 3 + z3 = k (Vaughan, Brüdern)

and 100x + 10y + z = (x + y + z)3 (PU/IAS NTS Zoom
password), due to being “insufficiently cubic”.
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Dimensions of commutator fibers

In what sense does XY = YX have excess dimension? For
simplicity, forget the trace-zero condition. Let n ≥ 2. Let
Mn(C) be the set of n × n matrices with entries in C.

Theorem (Motzkin–Taussky 1955)

The variety XY = YX in Mn(C)2 has dimension n2 + n.

[Feit–Fine 1960]2 gave a formula for the number of Fq-points
on the commuting variety, which by the Lang–Weil estimate
gives another proof of the Motzkin–Taussky theorem.

Theorem (Browning–Sawin–W. 2024)

dim{(X ,Y ) ∈ Mn(C)2 : XY − YX = M} ≤ n2 + 1 if M ̸= 0.

[Larsen–Lu 2021] proved a similar result for (g , h) ∈ SLn(C)2.

2see also [Fulman–Guralnick 2018]
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Proof strategy

Theorem (Browning–Sawin–W. 2024)

dim{(X ,Y ) ∈ Mn(C)2 : XY − YX = M} ≤ n2 + 1 if M ̸= 0.

[Larsen–Lu 2021] proved a similar result for (g , h) ∈ SLn(C)2.
One might wonder if the SLn result can imply the Mn result by
a Lie-theoretic limiting process; however, Larsen told us that he
expected the Mn case to be harder than the SLn case.

Nonetheless, both results can be proven by Fq-point counting.
The key difference, as it turns out, is that symmetry is built-in
for SLn, but must be created by hand for Mn. Let

Σ(M) := (1− q−1)
∑

U,V∈Mn(Fq)

1UV−VU=M .

By the Lang–Weil estimate, for suitable q → ∞,

Σ(M) ≥ (1 + On(q
−1/2)) qdim{(U,V )∈Mn(Fp)2:UV−VU=M}.
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The polygon method (finite-field circle method)

Let
Σ(M) := (1− q−1)

∑
U,V∈Mn(Fq)

1UV−VU=M .

Let ψ(·) := ep(trFq/Fp(·)) on Fq. By Fourier orthogonality,

Σ(M) =
1− q−1

#Mn(Fq)

∑
U,V ,Z∈Mn(Fq)

ψ(tr(Z (UV − VU −M)))

= (1− q−1)
∑

V ,Z∈Mn(Fq)
VZ−ZV=0

ψ(tr(−ZM)),

where we average over U after writing tr(ZUV ) = tr(VZU).
Since VZ − ZV = 0 is homogeneous,

Σ(M) =
∑

V ,Z∈Mn(Fq)
VZ−ZV=0

(1tr(ZM)=0 − q−1).
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Blooper reel

From the previous slide, we have

Σ(M) =
∑

V ,Z∈Mn(Fq)
VZ−ZV=0

(1tr(ZM)=0 − q−1).

Summing over V ∈ C (Z ) := {V ∈ Mn(Fq) : VZ − ZV = 0},

Σ(M) =
∑

Z∈Mn(Fq)

qdimC(Z)(1tr(ZM)=0 − q−1).

We find on averaging over conjugates of Z that

Σ(M) =
∑

Z∈Mn(Fq)

qdimC(Z)E (Z ,M),

where E (Z ,M) := Eg∈GLn(Fq)(1tr(gZg−1M)=0 − q−1).
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Blooper reel (cont’d)

If C (Z ) := {V ∈ Mn(Fq) : VZ − ZV = 0}, we have

Σ(M) =
∑

Z∈Mn(Fq)

qdimC(Z)E (Z ,M),

where E (Z ,M) := Eg∈GLn(Fq)(1tr(gZg−1M)=0 − q−1) ≪ 1 is an
example of a Lie-algebra orbital integral.
▶ Generically, dimC (Z ) = n and we can bound the tail

Pr(dimC (Z ) > P) for any parameter P ≥ n.
▶ For dimC (Z ) ≤ P , we use Cauchy–Schwarz and a variance

bound
∑

Z∈Mn(Fq) E (Z ,M)2 ≪n q
dimC(M) ≤ qn2−δn , noting

that M is non-scalar (since tr(M) = 0 ̸= M).

Optimizing P , we get Σ(M) ≪n q
n2+n−

√
n+O(1), whence

dim{(U ,V ) ∈ Mn(Fp)
2 : UV−VU = M} ≤ n2+n−

√
n+O(1),

#{(X ,Y ) ∈ Mn([−T ,T ])2 : XY = YX} ≪n T
n2+n−

√
n+O(1).

(More on the latter later. It improves on the dimension growth
bound On(T

n2+n−1) for large n. This was our original goal.)
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The right button

We pressed L and we should have pressed R instead. We had

Σ(M) =
∑

V ,Z∈Mn(Fq)
VZ−ZV=0

(1tr(ZM)=0 − q−1).

Summing over Z ∈ C (V ) := {Z ∈ Mn(Fq) : VZ − ZV = 0},

Σ(M) =
∑

V∈Mn(Fq)

qdimC(V )(q−11C(V ) ̸⊆M⊥ + 1C(V )⊆M⊥ − q−1)

=
∑

V∈Mn(Fq)

qdimC(V )(1− q−1)1C(V )⊆M⊥ ,

where M⊥ := {A ∈ Mn(Fq) : tr(AM) = 0}. By conjugation,

Σ(M) =
∑

V∈Mn(Fq)

qdimC(V )(1− q−1)L(V ,M),

where L(V ,M) := Eg∈GLn(Fq)(1C(gVg−1)⊆M⊥).
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If C (V ) := {Z ∈ Mn(Fq) : VZ − ZV = 0}, we have

Σ(M) =
∑

V∈Mn(Fq)

qdimC(V )(1− q−1)L(V ,M),

where L(V ,M) := Eg∈GLn(Fq)(1C(gVg−1)⊆M⊥) ≤ 1. If
Kn(Fq) ⊆ Mn(Fq) denotes a complete set of representatives for
conjugation by GLn(Fq), then breaking Mn(Fq) into orbits gives

Σ(M) ≪n q
n2

∑
V∈Kn(Fq)

L(V ,M).

Let nV be the number of distinct eigenvalues of V in Fq. Since
#{V ∈ Kn(Fq) : nV = d} ≪n q

d , the following lemma implies
Σ(M) ≪n q

n2+11tr(M)=0 + qn2+n1M=0, as desired.

Lemma (Orbital integral bound)

Let V ,M ∈ Mn(Fq), not necessarily with trace zero. Then

L(V ,M) ≪n q
1−nV1tr(M)=0 + 1M=0.
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Let C (V ) := {Z ∈ Mn(Fq) : VZ − ZV = 0}. Let nV be the
number of distinct eigenvalues of V in Fq.

Lemma (Orbital integral bound)

Let V ,M ∈ Mn(Fq), not necessarily with trace zero. Then

L(V ,M) := Eg∈GLn(Fq)(1tr(gC(V )g−1M)=0) ≪n q
1−nV1tr(M)=0+1M=0.

Proof sketch.

Interesting case: tr(M) = 0 and nV ≥ 2. WLOG V =
[
V1 0
0 V2

]
,

where V1 ∈ Mk(Fq) and V2 ∈ Mn−k(Fq), with nV1 , nV2 ≥ 1 and

nV = nV1 + nV2 . Then C (V ) =
[
C(V1) 0

0 C(V2)

]
. Since

tr([ A 0
0 B ]M) = tr(Ap1(M)) + tr(Bp2(M)), it follows that

L(V ,M) = Eg∈GLn(Fq)L(V1, p1(g
−1Mg))L(V2, p2(g

−1Mg)),

by folding the RHS GLk ×GLn−k into GLn. Induct on n.
Average over a large abelian unipotent group of g ’s. 12



Let V =
[
V1 0
0 V2

]
, where V1 ∈ Mk(Fq) and V2 ∈ Mn−k(Fq).

After Fourier-manipulating the equation UV − VU = M , we
used the following fact to induct on n:

Lemma (Well known)

If V1 and V2 share no eigenvalues, then C (V ) =
[
C(V1) 0

0 C(V2)

]
.

The identity [ A B
C D ]V − V [ A B

C D ] =
[
AV1−V1A BV2−V1B
CV1−V2C DV2−V2D

]
and the

following lemma give an alternative approach to induction,
directly at the level of the equation UV − VU = M :

Lemma (C. Stephanos 1900)

The eigenvalues of the linear maps B 7→ V1B − BV2 and
C 7→ CV1 − V2C are λ1 − λ2, where λi are eigenvalues of Vi .

In fact, [Neubauer 1989] used the latter lemma to show that
the variety {(X ,Y ) ∈ Mn(C)2 : rank(XY − YX ) ≤ 1} consists
of n − 1 irreducible components of dimension n2 + 2n − 1.
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Sizes of commutator fibers

Theorem (Browning–Sawin–W. 2024)

dim{(X ,Y ) ∈ Mn(C)2 : XY − YX = M} ≤ n2 + 1 if M ̸= 0.

Let NM(T ) := #{(X ,Y ) ∈ Mn([−T ,T ])2 : XY − YX = M}.

Corollary (Browning–Sawin–W. 2024)

If T ≥ 1, then T n2+1 ≤ N0(T ) ≪n T
n2+2−2/(n+1).

[Chapman–Mudgal 2025] give sharp bounds on N0(T ) for
n ≤ 3.

Another corollary of our theorem is the following:

Corollary (Browning–Sawin–W. 2024)

NM(T ) ≪n T
n2+1 for T ≥ 1, uniformly over M ̸= 0.

(Proof: Embed [−T ,T ] ⊆ Fp. Improvement to T n2+ϵ may be
possible by affine dimension growth [Vermeulen 2023].)

14



Sizes of commutator fibers

Theorem (Browning–Sawin–W. 2024)

dim{(X ,Y ) ∈ Mn(C)2 : XY − YX = M} ≤ n2 + 1 if M ̸= 0.

Let NM(T ) := #{(X ,Y ) ∈ Mn([−T ,T ])2 : XY − YX = M}.

Corollary (Browning–Sawin–W. 2024)

If T ≥ 1, then T n2+1 ≤ N0(T ) ≪n T
n2+2−2/(n+1).

[Chapman–Mudgal 2025] give sharp bounds on N0(T ) for
n ≤ 3. Another corollary of our theorem is the following:

Corollary (Browning–Sawin–W. 2024)

NM(T ) ≪n T
n2+1 for T ≥ 1, uniformly over M ̸= 0.

(Proof: Embed [−T ,T ] ⊆ Fp. Improvement to T n2+ϵ may be
possible by affine dimension growth [Vermeulen 2023].)

14



It remains to explain this:

Theorem (Browning–Sawin–W. 2024)

N0(T ) := #{(X ,Y ) ∈ Mn([−T ,T ])2 : XY = YX} ≪n T
n2+2.

Proof sketch.

Assume T ≫ 1. Let p ∼ T (n2+n−2)/(n2−1) = T (n+2)/(n+1).
Relax XY = YX to p | XY − YX . By Poisson summation,

N0(T ) ≪n (T/p)
2n2

∑
(A,B)∈Mn(Z)2: |A|,|B|≤p/T

|S(A,B ; p)|,

where S(A,B ; p) :=
∑

(U,V )∈Mn(Fp)2:UV−VU=0 ep(tr(AU + BV )).

But |S(A,B ; p)| ≤ S(A, 0; p) ≪n p
n2+1 + pn

2+n1p|A by Fourier

orthogonality. This “PNT” gives N0(T ) ≪n T
n2+n/2+O(1).

Remove n/2 by [Fouvry–Katz 2001] algebraic “large sieve”
stratification.
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Upper bounds via harmonic analysis to an auxiliary modulus p
go back at least to [Fujiwara 1984]. Also, [Heath-Brown 1994]
gave stronger results in many cases via a composite modulus
pq. The simplest version of Fujiwara’s method, plus
[Fouvry–Katz 2001], gives the following:

Theorem (General axiomatization)

Let V ⊂ AN
Z be a subscheme with dim(V ⊗ C) = D. Assume

that for all primes p and for all 0 ̸= c ∈ FN
p , we have∑

x∈V (Fp)

ep(c1x1 + · · ·+ cNxN) ≪V pD−L,

where 2L ∈ Z. Then #V ([−T ,T ]) ≪V TD−L+ L2

N−D+L .

If say L ≥ 3
2
and N − D ≥ 4, then this would improve on the

dimension growth bound Oϵ,V (T
D−1+ϵ), when that applies. For

XY = YX , take N = 2n2, D = n2 + n, and L = n − 1.
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