Some examples of symmetry

Victor Wang (based on work of many authors)

IST Austria

Diophantine and Rationality Problems, March 2025

This project has received funding from the European Union's Horizon 2020 research and innovation program

under the Marie Skłodowska-Curie Grant Agreement No. 101034413

What do the following have in common?

- (1) Varieties of commuting matrices.
- (2) Markov-type surfaces $x^2 + y^2 + z^2 xyz = k$.
- (3) Moment, ratio, and zero statistics of *L*-function families.
- (4) The singular dP4 surface $x_0^2 + x_0x_3 + x_2x_4 = x_1x_3 x_2^2 = 0$, possibly blown up at singularities $\mathbf{A}_3 + \mathbf{A}_1$, or (repeatedly) at intersections of lines and/or exceptional divisors.

¹Generalizes to any punctured surface (J. Whang); good candidate for studying Hasse failures (cf. Colliot-Thélène–Wei–Xu, Loughran–Mitankin).

What do the following have in common?

- (1) Varieties of commuting matrices.
- (2) Markov-type surfaces $x^2 + y^2 + z^2 xyz = k$.
- (3) Moment, ratio, and zero statistics of L-function families.
- (4) The singular dP4 surface $x_0^2 + x_0x_3 + x_2x_4 = x_1x_3 x_2^2 = 0$, possibly blown up at singularities $\mathbf{A}_3 + \mathbf{A}_1$, or (repeatedly) at intersections of lines and/or exceptional divisors.

All exhibit symmetry, and connect to representation theory.

- Modulo conjugation, (1) is a character variety of a torus.
- ► (2) is a *relative character variety* of a punctured torus.¹
- (3) carries a monodromy representation (Deligne).
- ► (4) is a *solv-variety* (Derenthal–Loughran).
- (3) and (4) involve interesting compactifications. Over F_q(t), homological stability might hold (cf. Boyer et al.).

¹Generalizes to any punctured surface (J. Whang); good candidate for studying Hasse failures (cf. Colliot-Thélène–Wei–Xu, Loughran–Mitankin).

Solubility of Markov-type surfaces

The polynomial $M = x^2 + y^2 + z^2 - xyz$ is fixed by a group $\Gamma \subseteq \operatorname{Aut}(M)$, where Γ is formed by S_3 , sign changes ± 1 , and Vieta involutions $(x, y, z) \mapsto (x, y, xy - z)$. Let $h_M(k)$ be the number of Γ -orbits of the set $\{(x, y, z) \in \mathbb{Z}^3 : M = k\}$.

Theorem (Ghosh–Sarnak 2017)

We have $h_M(k) \to \infty$ along a density 1 of admissible^a $k \in \mathbb{Z}$. In particular, the Hasse principle holds for almost all $k \in \mathbb{Z}$.

^a $k \not\equiv 3 \mod 4$ and $k \not\equiv \pm 3 \mod 9$

Solubility of Markov-type surfaces

The polynomial $M = x^2 + y^2 + z^2 - xyz$ is fixed by a group $\Gamma \subseteq \operatorname{Aut}(M)$, where Γ is formed by S_3 , sign changes ± 1 , and Vieta involutions $(x, y, z) \mapsto (x, y, xy - z)$. Let $h_M(k)$ be the number of Γ -orbits of the set $\{(x, y, z) \in \mathbb{Z}^3 : M = k\}$.

Theorem (Ghosh–Sarnak 2017)

We have $h_M(k) \to \infty$ along a density 1 of admissible^a $k \in \mathbb{Z}$. In particular, the Hasse principle holds for almost all $k \in \mathbb{Z}$.

^a $k \not\equiv 3 \mod 4$ and $k \not\equiv \pm 3 \mod 9$

Theorem (Mishra 2024; lower bound is new) Fix $\epsilon > 0$. The inequality $(\log |k|)^{2-\epsilon} \le h_M(k) \le (\log |k|)^{2+\epsilon}$ holds for a density 1 of admissible $k \in \mathbb{Z}$.

(Upper bound \leftarrow Ghosh–Sarnak + Markov's inequality.)

For all k < 0 (and for all "generic" $k \ge 5$), Ghosh–Sarnak construct a fundamental domain \mathcal{F}_k for the action of Γ on $\{(x, y, z) \in \mathbb{Z}^3 : x^2 + y^2 + z^2 - xyz = k\}$. Let $r_M(k)$ be the number of points in a well-chosen region $\mathcal{F}'_k \subseteq \mathcal{F}_k$.

- For Ghosh–Sarnak, \mathcal{F}'_k satisfies $|x| \asymp |yz| \asymp |k|^{1/2}$ and $|z| \le |k|^{\epsilon}$. Real density of solutions: $\sigma_{\infty}(k) \asymp \epsilon \log |k|$.
- ► For Mishra, \mathcal{F}'_k is part of a \mathbb{G}^2_m -torus $|xyz| \asymp |k|$, with $|k|^{\delta} \le |x/y| \le |k|^{-\delta} |z| \le |k|^{2\delta}$. Here $\sigma_{\infty}(k) \asymp (\log |k|)^2$.

For all k < 0 (and for all "generic" $k \ge 5$), Ghosh–Sarnak construct a fundamental domain \mathcal{F}_k for the action of Γ on $\{(x, y, z) \in \mathbb{Z}^3 : x^2 + y^2 + z^2 - xyz = k\}$. Let $r_M(k)$ be the number of points in a well-chosen region $\mathcal{F}'_k \subseteq \mathcal{F}_k$.

- For Ghosh–Sarnak, \mathcal{F}'_k satisfies $|x| \simeq |yz| \simeq |k|^{1/2}$ and $|z| \le |k|^{\epsilon}$. Real density of solutions: $\sigma_{\infty}(k) \simeq \epsilon \log |k|$.
- For Mishra, \mathcal{F}'_k is part of a \mathbb{G}^2_m -torus $|xyz| \asymp |k|$, with $|k|^{\delta} \le |x/y| \le |k|^{-\delta} |z| \le |k|^{2\delta}$. Here $\sigma_{\infty}(k) \asymp (\log |k|)^2$.

One then expands and upper-bounds an arithmetic variance

$$Var(K,A) := \sum_{k \leq K} (r_M(k) - r_M^{loc}(k;A))^2.$$

- The sum $\sum_{k \le K} r_M(k)^2$ counts solutions in a region to $x^2 + y^2 + z^2 xyz = u^2 + v^2 + w^2 uvw$.
- Here r^{loc}_M(k; A) is roughly a truncated L-function at 1. Ghosh–Sarnak (resp. Mishra) use a multiplicative (resp. additive) truncation.
- Some of this generalizes to sums of three cubes.

Let L(s, c) be the *L*-function of $V_c : x_1^3 + \cdots + x_6^3 = c \cdot x = 0$, where $c = (c_1, \ldots, c_6) \in \mathbb{F}_q[t]^6$, with gcd(q, 6) = 1 and $\Delta(c) := disc(V_c) = \prod (c_1^{3/2} \pm c_2^{3/2} \pm \cdots \pm c_6^{3/2}) \neq 0$.

Theorem (Browning-Glas-W. 2024)

Assume sufficient progress on moments of $\frac{1}{L(s,c)}$ for $\Delta(c) \neq 0$. Then $x^3 + y^3 + z^3 = n$ is soluble in elements $x, y, z \in \mathbb{F}_q[t]$ of degree $\sim \frac{1}{3} \deg n$ for a density 1 of elements $n \in \mathbb{F}_q[t]$. Let L(s, c) be the *L*-function of $V_c : x_1^3 + \cdots + x_6^3 = c \cdot x = 0$, where $c = (c_1, \ldots, c_6) \in \mathbb{F}_q[t]^6$, with gcd(q, 6) = 1 and $\Delta(c) := disc(V_c) = \prod (c_1^{3/2} \pm c_2^{3/2} \pm \cdots \pm c_6^{3/2}) \neq 0$.

Theorem (Browning-Glas-W. 2024)

Assume sufficient progress on moments of $\frac{1}{L(s,c)}$ for $\Delta(c) \neq 0$. Then $x^3 + y^3 + z^3 = n$ is soluble in elements $x, y, z \in \mathbb{F}_q[t]$ of degree $\sim \frac{1}{3} \deg n$ for a density 1 of elements $n \in \mathbb{F}_q[t]$.

Builds on ideas of many authors, such as the following:

- Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
- Kloosterman, Hooley 1986, Heath-Brown,
- Beauville (quadric bundles over \mathbb{P}^2), Getz, Tran,
- Rubinstein–Sarnak (Chebyshev's bias via prime squares),
- Deligne (GRH), Hooley 1994 (singular cubics),
- ► Huang ($\approx \mathbb{Q}$ -points), Busé–Jouanolou ($\Delta \in (f, (f')^2)$),
- Bhargava (Ekedahl sieve), Poonen (square-free sieve).

What kind of progress on *L*-functions?

Let $2 \nmid q$. Let $\mu(r)$ be the Möbius function over $\mathbb{F}_q[t]$, and let $\chi_m(r) = (\frac{r}{m})$ be the Jacobi symbol over $\mathbb{F}_q[t]$.

Theorem (Bergström–Diaconu–Petersen–Westerland, Miller–Patzt–Petersen–Randal-Williams, W. 2024) If $1 \le M = 2g + 1$ and $1 \le R \le \alpha M$, and $q \gg_{\alpha} 1$, then

$$rac{\sum_{|m|=q^M}\sum_{|r|=q^R}\mu(r)\chi_m(r)}{q^Mq^{R/2}}\ll q^{-0.001M+O(1)},$$

where the sums over m and r run through square-free, monic $m, r \in \mathbb{F}_q[t]$ with deg m = M and deg r = R, respectively.

Theorem (Petersen et al.; new for $q = p \equiv 1 \mod 4$) The set $\{m : L(\frac{1}{2}, \chi_m) = 0\}$ has upper density $o_{q \to \infty}(1)$.

Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,

$$\frac{\sum_{|m|=q^{M}}\sum_{|r|=q^{R}}\mu(r)\chi_{m}(r)}{q^{M}q^{R/2}}=\sum_{k\geq 0}(-1)^{k}\operatorname{tr}(Fr_{q},H_{k}(X_{M},Sym^{R}V_{M})),$$

where $X_M \subseteq \mathbb{A}^M$ is the square-free locus, and where V_M is a local system on X_M with fibers $H^1_c(\{y^2 = m(t)\}, \overline{\mathbb{Q}}_{\ell}(\frac{1}{2}))$ of dimension 2g over $m \in X_M$. Captures zeros of $L(s, \chi_m)$.

²"Obstructions to cancellation". For instance, $H_0 = (Sym^R V_M)_{\pi_1(X_M)}$.

Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,

$$\frac{\sum_{|m|=q^{M}}\sum_{|r|=q^{R}}\mu(r)\chi_{m}(r)}{q^{M}q^{R/2}}=\sum_{k\geq 0}(-1)^{k}\operatorname{tr}(Fr_{q},H_{k}(X_{M},Sym^{R}V_{M})),$$

where $X_M \subseteq \mathbb{A}^M$ is the square-free locus, and where V_M is a local system on X_M with fibers $H^1_c(\{y^2 = m(t)\}, \overline{\mathbb{Q}}_{\ell}(\frac{1}{2}))$ of dimension 2g over $m \in X_M$. Captures zeros of $L(s, \chi_m)$.

- ► The first few homology groups $H_k = H_c^{2M-k}$ are the most significant.² By Deligne, $\operatorname{tr}(Fr_q, H_k) \leq q^{-k/2} \dim H_k$. It is also known that $\dim H_k \leq 2^M \binom{R+2g-1}{R} \leq 2^M 2^{R+2g-1}$. Thus $\dim H_k \leq 2^{(2+\alpha)M}$, since $1 \leq R \leq \alpha M$.
- By geometric series, ∑_{k+1>δM} is negligible if q^{δ/2} ≥ 3^{2+α}.
 We are left with estimating ∑_{k+1≤δM}. Want a stability isomorphism H_k(X_M, Sym^RV_M) → H_k(X_{M+2}, Sym^RV_{M+2}).
 ²"Obstructions to cancellation". For instance, H₀ = (Sym^RV_M)_{π1(X_M)}.

No useful map $X_M \to X_{M+2}$. So BDPW compactify a quotient of X_M into a space X'_M . Want gluing/stabilization maps $\sigma \colon X'_M \to X'_{M+2}$ and $\tau \colon V_M \to \sigma^* V_{M+2}$.

- ▶ Roughly, if $m(t) \in X_M$, then $\sigma(m(t)) \in X'_{M+2}$ could be a stable map $\mathbb{P}^1 \cup_{\{\infty\} \sim \{0\}} \mathbb{A}^1 \to \mathbb{P}^1$ extending m(t).
- There are many possible maps σ. The collection of possible σ has a braided monoidal structure.
- ▶ In general, $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$. This is rather different than more familiar maps like multiplication in $\mathbb{F}_q[t]$.

No useful map $X_M \to X_{M+2}$. So BDPW compactify a quotient of X_M into a space X'_M . Want gluing/stabilization maps $\sigma \colon X'_M \to X'_{M+2}$ and $\tau \colon V_M \to \sigma^* V_{M+2}$.

- ▶ Roughly, if $m(t) \in X_M$, then $\sigma(m(t)) \in X'_{M+2}$ could be a stable map $\mathbb{P}^1 \cup_{\{\infty\} \sim \{0\}} \mathbb{A}^1 \to \mathbb{P}^1$ extending m(t).
- There are many possible maps σ. The collection of possible σ has a braided monoidal structure.
- ▶ In general, $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$. This is rather different than more familiar maps like multiplication in $\mathbb{F}_q[t]$.
- ▶ Here σ maps X'_{M} into the boundary $\partial X'_{M+2} \subseteq X'_{M+2}$. We may restrict V_{M+2} to $\partial X'_{M+2}$ via the Galois groups of the generic points of X'_{M+2} and $\partial X'_{M+2}$. The map τ on H^{1}_{c} is induced by a collapse map $\sigma(X'_{M}) \to X'_{M}$.
- By log geometry, H_k(X'_M, Sym^RV_M) = H_k(X_M, Sym^RV_M). A map σ: H_k(X_M, Sym^RV_M) → H_k(X_{M+2}, Sym^RV_{M+2}) thus arises via σ and τ. It can be checked to agree with a topological version of the map over ℂ.

The local system V_M is symplectic, by Poincaré duality on H_c^1 . So $(V_M)^{\otimes R}$ breaks up into symplectic pieces $(V_M)_{\lambda}$ associated to partitions λ of R, with $\lambda = (R)$ giving $Sym^R V_M$.

- ▶ The map $\sigma: H_k(X_M, (V_M)_\lambda) \to H_k(X_{M+2}, (V_{M+2})_\lambda)$ is an isomorphism for $k + 1 \leq \delta M$, for all R and λ (MPPRW).
- ln general the stable H_k are nonzero, leading to arithmetic main terms (matched to H_k by a limiting process).

The local system V_M is symplectic, by Poincaré duality on H_c^1 . So $(V_M)^{\otimes R}$ breaks up into symplectic pieces $(V_M)_{\lambda}$ associated to partitions λ of R, with $\lambda = (R)$ giving $Sym^R V_M$.

- ▶ The map $\sigma: H_k(X_M, (V_M)_\lambda) \to H_k(X_{M+2}, (V_{M+2})_\lambda)$ is an isomorphism for $k + 1 \leq \delta M$, for all R and λ (MPPRW).
- ▶ In general the stable H_k are nonzero, leading to arithmetic main terms (matched to H_k by a limiting process).
- Using monodromy $\rho: \pi_1(X_M) \twoheadrightarrow Q_M \subseteq Sp(V_M)$, MPPRW build ker $(H_k(X_M, (V_M)_{\lambda}) \to H_k(BQ_M, (V_M)_{\lambda}))$ out of $H_{k+1-k'}(X_{M-M'}, (V_M)_{\lambda})$ for various pairs (k', M') with $k' \ge 2$ (by surjectivity of ρ) and $M' \ll k'$.
- If le(λ) ≫ k + 1, then le(λ) 2M' ≥ le(λ) O(k) > 0, so the restriction (V_M)_λ|_{Sp(V_{M-M'})} has no trivial piece, by branching rules for restriction between symplectic groups. By vanishing results for H_k(Q_M, ·) (Borel et al.), we get H_k(X_M, (V_M)_λ) = 0 via induction on k ≤ δM 1.
 The case la(λ) ≪ k + 1 ≤ δM relies on stable branching
- The case le(λ) ≪ k + 1 ≤ δM relies on stable branching, and on a relative version of the argument above.

Counting with symmetry

Compactifications can also appear more directly in Diophantine problems. For example, let $G := \operatorname{Aff}(\mathbb{A}^1) = \{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \} \subseteq \operatorname{GL}_2$ be the *affine group* of \mathbb{A}^1 over \mathbb{Q} . Explicitly, the group law on $(a, b), (u, v) \in G$ is

$$(a,b)\cdot(u,v)=(au,av+b).$$

Theorem (W. '23)

Manin's conjecture holds for sufficiently split smooth equivariant compactifications X of G over \mathbb{Q} .

This builds on adelic harmonic analysis of Tanimoto–Tschinkel, who decomposed a point count on $G(\mathbb{Q})$ into the form

$$\sum_{lpha \in \mathbb{Q}} \int_{t \in \mathbb{R}} (ext{decay factor}) \prod_{p ext{ prime}} (p ext{-adic integral}) dt.$$

Tanimoto–Tschinkel decomposed the *height zeta function*

$$Z(s,g) = \sum_{\gamma \in G(\mathbb{Q})} H(s,\gamma g)^{-1}$$
 into the form
 $\sum_{\alpha \in \mathbb{Q}} \int_{t \in \mathbb{R}} \text{(real integral)} \prod_{p \text{ prime}} (p\text{-adic integral}) dt,$

via the short exact sequence (of pointed sets)

$$1 \to \mathbb{Q} \backslash \mathbf{A}_{\mathbb{Q}} \xrightarrow{b \mapsto (1,b)} G(\mathbb{Q}) \backslash G(\mathbf{A}_{\mathbb{Q}}) \xrightarrow{\det: (a,b) \mapsto a} \mathbb{Q}^{\times} \backslash \mathbf{A}_{\mathbb{Q}}^{\times} \to 1,$$

using Fourier expansion on $b \in \mathbb{Q} \setminus A_{\mathbb{Q}}$ followed by Mellin inversion on $a \in \mathbf{A}_{\mathbb{Q}}^{\times}$. The *p*-adic integral is, roughly,

$$\int_{G(\mathbb{Q}_p): \alpha a_p \in \mathbb{Z}_p} H_p(s, g_p)^{-1} e(-\alpha b_p \mod \mathbb{Z}_p) |a_p|_p^{-it} dg_p.$$

Tanimoto–Tschinkel decomposed the *height zeta function*

$$Z(s,g) = \sum_{\gamma \in G(\mathbb{Q})} H(s,\gamma g)^{-1} \text{ into the form}$$

$$\sum_{\alpha \in \mathbb{Q}} \int_{t \in \mathbb{R}} \text{ (real integral)} \prod_{p \text{ prime}} (p\text{-adic integral}) dt,$$

via the short exact sequence (of pointed sets)

$$1 \to \mathbb{Q} \backslash \mathbf{A}_{\mathbb{Q}} \xrightarrow{b \mapsto (1,b)} G(\mathbb{Q}) \backslash G(\mathbf{A}_{\mathbb{Q}}) \xrightarrow{\det: (a,b) \mapsto a} \mathbb{Q}^{\times} \backslash \mathbf{A}_{\mathbb{Q}}^{\times} \to 1,$$

using Fourier expansion on $b \in \mathbb{Q} \setminus A_{\mathbb{Q}}$ followed by Mellin inversion on $a \in \mathbf{A}_{\mathbb{Q}}^{\times}$. The *p*-adic integral is, roughly,

$$\int_{\mathcal{G}(\mathbb{Q}_p): \alpha a_p \in \mathbb{Z}_p}^{\cdot} H_p(s, g_p)^{-1} e(-\alpha b_p \mod \mathbb{Z}_p) |a_p|_p^{-it} dg_p$$

Both additive and multiplicative harmonics appear above; the sum over $\alpha \in \mathbb{Q}$ somehow reflects the non-abelian nature of G. The "central term" $\alpha = 0$, like c = 0 in the δ -method, gives the main term in the Manin–Peyre conjecture.

Special divisors

Write $D := X \setminus G = \bigcup_{j \in J} D_j$, where the D_j are irreducible over \mathbb{Q} . Roughly, Tanimoto–Tschinkel handled the case where

$$\operatorname{ord}_{D_j}(a) < 0 \Rightarrow \operatorname{ord}_{D_j}(b) < \operatorname{ord}_{D_j}(a).$$
 (1)

Condition (1) relates to positivity of K_{χ}^{-1} . Similar conditions, with variables and degrees, are familiar in the circle method.

Proposition (W.)

Let $j \in J$ and $c \in \mathbb{Q}$. Then $\operatorname{ord}_{D_i}(b-c) \leq \operatorname{ord}_{D_i}(a)$.

Special divisors

Write $D := X \setminus G = \bigcup_{j \in J} D_j$, where the D_j are irreducible over \mathbb{Q} . Roughly, Tanimoto–Tschinkel handled the case where

$$\operatorname{ord}_{D_j}(a) < 0 \Rightarrow \operatorname{ord}_{D_j}(b) < \operatorname{ord}_{D_j}(a).$$
 (1)

Condition (1) relates to positivity of K_{χ}^{-1} . Similar conditions, with variables and degrees, are familiar in the circle method.

Proposition (W.)

Let
$$j \in J$$
 and $c \in \mathbb{Q}$. Then $\operatorname{ord}_{D_i}(b-c) \leq \operatorname{ord}_{D_i}(a)$.

Definition (W.)

Given $j \in J$, call D_j special if $\max_{c \in \mathbb{Q}} \operatorname{ord}_{D_j}(b-c) = \operatorname{ord}_{D_j}(a)$.

When (1) fails we seem to need a new idea. Main culprit: pairs of special divisors (D_j, D_i) with $\operatorname{ord}_{D_i}(a) \operatorname{ord}_{D_i}(a) < 0$.

Suppose there are $k \ge 0$ special divisors with $\operatorname{ord}_{D_j}(a) < 0$, and $l \ge 0$ special divisors with $\operatorname{ord}_{D_j}(a) > 0$. Then the main issue, after new leading-order "bias" computations (in the spirit of Heath-Brown, Getz, Tran, et al.) relying on a new *G*-related source of local coordinates and cancellation in *p*-adic integrals, is to appropriately bound multiple Dirichlet series like

$$\sum_{\substack{\alpha=m_1\cdots m_k/n_1\cdots n_l:\\ \text{pairwise coprime } m_1,\dots,m_k,n_1,\dots,n_l \ge 1}} \frac{f(\alpha)e(c_0\alpha)}{m_1^{\beta_1}\cdots m_k^{\beta_k}}\prod_{1\le j\le l} \frac{e(-c_j\alpha \mod \mathbb{Z}_{n_j})}{n_j^{\gamma_j}},$$

for some $c_0, c_1, \ldots, c_l \in \mathbb{Q}$ and a transform $f : \mathbb{R}_{>0} \to \mathbb{C}$ of $H_{\infty}(s, g)^{-1}$.

Suppose there are $k \ge 0$ special divisors with $\operatorname{ord}_{D_j}(a) < 0$, and $l \ge 0$ special divisors with $\operatorname{ord}_{D_j}(a) > 0$. Then the main issue, after new leading-order "bias" computations (in the spirit of Heath-Brown, Getz, Tran, et al.) relying on a new *G*-related source of local coordinates and cancellation in *p*-adic integrals, is to appropriately bound multiple Dirichlet series like

$$\sum_{\substack{\alpha=m_1\cdots m_k/n_1\cdots n_l:\\ \text{pairwise coprime } m_1,\dots,m_k,n_1,\dots,n_l \ge 1}} \frac{f(\alpha)e(c_0\alpha)}{m_1^{\beta_1}\cdots m_k^{\beta_k}}\prod_{1\le j\le l} \frac{e(-c_j\alpha \mod \mathbb{Z}_{n_j})}{n_j^{\gamma_j}},$$

for some $c_0, c_1, \ldots, c_l \in \mathbb{Q}$ and a transform $f : \mathbb{R}_{>0} \to \mathbb{C}$ of $H_{\infty}(s, g)^{-1}$. We proceed by analytic NT methods:

- Additive reciprocity (∏_v ψ_v|_Q = 1) and Weyl-type inequalities in ranges with two or more large variables n_j.
- Local cancellations (via Poisson summation over the largest m_i) in ranges with only one large variable n_j.