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What do the following have in common?

(1) Varieties of commuting matrices.

(2) Markov-type surfaces x2 + y 2 + z2 − xyz = k .

(3) Moment, ratio, and zero statistics of L-function families.

(4) The singular dP4 surface x2
0 + x0x3 + x2x4 = x1x3 − x2

2 = 0,
possibly blown up at singularities A3 + A1, or (repeatedly)
at intersections of lines and/or exceptional divisors.

All exhibit symmetry, and connect to representation theory.

▶ Modulo conjugation, (1) is a character variety of a torus.

▶ (2) is a relative character variety of a punctured torus.1

▶ (3) carries a monodromy representation (Deligne).

▶ (4) is a solv-variety (Derenthal–Loughran).

▶ (3) and (4) involve interesting compactifications. Over
Fq(t), homological stability might hold (cf. Boyer et al.).

1Generalizes to any punctured surface (J. Whang); good candidate for
studying Hasse failures (cf. Colliot-Thélène–Wei–Xu, Loughran–Mitankin).
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Solubility of Markov-type surfaces

The polynomial M = x2 + y 2 + z2 − xyz is fixed by a group
Γ ⊆ Aut(M), where Γ is formed by S3, sign changes ±1, and
Vieta involutions (x , y , z) 7→ (x , y , xy − z). Let hM(k) be the
number of Γ-orbits of the set {(x , y , z) ∈ Z3 : M = k}.

Theorem (Ghosh–Sarnak 2017)

We have hM(k) → ∞ along a density 1 of admissiblea k ∈ Z.
In particular, the Hasse principle holds for almost all k ∈ Z.

ak ̸≡ 3 mod 4 and k ̸≡ ±3 mod 9

Theorem (Mishra 2024; lower bound is new)

Fix ϵ > 0. The inequality (log |k |)2−ϵ ≤ hM(k) ≤ (log |k |)2+ϵ

holds for a density 1 of admissible k ∈ Z.

(Upper bound ⇐ Ghosh–Sarnak + Markov’s inequality.)
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For all k < 0 (and for all “generic” k ≥ 5), Ghosh–Sarnak
construct a fundamental domain Fk for the action of Γ on
{(x , y , z) ∈ Z3 : x2 + y 2 + z2 − xyz = k}. Let rM(k) be the
number of points in a well-chosen region F ′

k ⊆ Fk .
▶ For Ghosh–Sarnak, F ′

k satisfies |x | ≍ |yz | ≍ |k |1/2 and
|z | ≤ |k |ϵ. Real density of solutions: σ∞(k) ≍ ϵ log |k |.

▶ For Mishra, F ′
k is part of a G2

m-torus |xyz | ≍ |k |, with
|k |δ ≤ |x/y | ≤ |k |−δ|z | ≤ |k |2δ. Here σ∞(k) ≍ (log |k |)2.

One then expands and upper-bounds an arithmetic variance

Var(K ,A) :=
∑
k≤K

(rM(k)− r locM (k ;A))2.

▶ The sum
∑

k≤K rM(k)2 counts solutions in a region to
x2 + y 2 + z2 − xyz = u2 + v 2 + w 2 − uvw .

▶ Here r locM (k ;A) is roughly a truncated L-function at 1.
Ghosh–Sarnak (resp. Mishra) use a multiplicative
(resp. additive) truncation.

▶ Some of this generalizes to sums of three cubes.
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Let L(s, c) be the L-function of Vc : x3
1 + · · ·+ x3

6 = c · x = 0,
where c = (c1, . . . , c6) ∈ Fq[t]

6, with gcd(q, 6) = 1 and

∆(c) := disc(Vc) =
∏
(c

3/2
1 ± c

3/2
2 ± · · · ± c

3/2
6 ) ̸= 0.

Theorem (Browning–Glas–W. 2024)

Assume sufficient progress on moments of 1
L(s,c)

for ∆(c) ̸= 0.

Then x3 + y 3 + z3 = n is soluble in elements x , y , z ∈ Fq[t] of
degree ∼ 1

3
deg n for a density 1 of elements n ∈ Fq[t].

Builds on ideas of many authors, such as the following:
▶ Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
▶ Kloosterman, Hooley 1986, Heath-Brown,
▶ Beauville (quadric bundles over P2), Getz, Tran,
▶ Rubinstein–Sarnak (Chebyshev’s bias via prime squares),
▶ Deligne (GRH), Hooley 1994 (singular cubics),
▶ Huang (≈ Q-points), Busé–Jouanolou (∆ ∈ (f , (f ′)2)),
▶ Bhargava (Ekedahl sieve), Poonen (square-free sieve).
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What kind of progress on L-functions?

Let 2 ∤ q. Let µ(r) be the Möbius function over Fq[t], and let
χm(r) = ( r

m
) be the Jacobi symbol over Fq[t].

Theorem (Bergström–Diaconu–Petersen–Westerland,
Miller–Patzt–Petersen–Randal-Williams, W. 2024)

If 1 ≤ M = 2g + 1 and 1 ≤ R ≤ αM, and q ≫α 1, then∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2
≪ q−0.001M+O(1),

where the sums over m and r run through square-free, monic
m, r ∈ Fq[t] with degm = M and deg r = R, respectively.

Theorem (Petersen et al.; new for q = p ≡ 1 mod 4)

The set {m : L(1
2
, χm) = 0} has upper density oq→∞(1).
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Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2
=

∑
k≥0

(−1)k tr(Frq,Hk(XM , Sym
RVM)),

where XM ⊆ AM is the square-free locus, and where VM is a
local system on XM with fibers H1

c ({y 2 = m(t)},Qℓ(
1
2
)) of

dimension 2g over m ∈ XM . Captures zeros of L(s, χm).

▶ The first few homology groups Hk = H2M−k
c are the most

significant.2 By Deligne, tr(Frq,Hk) ≤ q−k/2 dimHk . It is
also known that dimHk ≤ 2M

(
R+2g−1

R

)
≤ 2M2R+2g−1.

Thus dimHk ≤ 2(2+α)M , since 1 ≤ R ≤ αM .
▶ By geometric series,

∑
k+1>δM is negligible if qδ/2 ≥ 32+α.

▶ We are left with estimating
∑

k+1≤δM . Want a stability

isomorphism Hk(XM , Sym
RVM) → Hk(XM+2, Sym

RVM+2).

2“Obstructions to cancellation”. For instance, H0 = (SymRVM)π1(XM ).
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No useful map XM → XM+2. So BDPW compactify a quotient
of XM into a space X ′

M . Want gluing/stabilization maps
σ : X ′

M → X ′
M+2 and τ : VM → σ∗VM+2.

▶ Roughly, if m(t) ∈ XM , then σ(m(t)) ∈ X ′
M+2 could be a

stable map P1 ∪{∞}∼{0} A1 → P1 extending m(t).
▶ There are many possible maps σ. The collection of

possible σ has a braided monoidal structure.
▶ In general, σ1σ2 ̸= σ2σ1. This is rather different than more

familiar maps like multiplication in Fq[t].

▶ Here σ maps X ′
M into the boundary ∂X ′

M+2 ⊆ X ′
M+2. We

may restrict VM+2 to ∂X ′
M+2 via the Galois groups of the

generic points of X ′
M+2 and ∂X ′

M+2. The map τ on H1
c is

induced by a collapse map σ(X ′
M) → X ′

M .
▶ By log geometry, Hk(X

′
M , Sym

RVM) = Hk(XM , Sym
RVM).

A map σ : Hk(XM , Sym
RVM) → Hk(XM+2, Sym

RVM+2)
thus arises via σ and τ . It can be checked to agree with a
topological version of the map over C.
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The local system VM is symplectic, by Poincaré duality on H1
c .

So (VM)⊗R breaks up into symplectic pieces (VM)λ associated
to partitions λ of R , with λ = (R) giving SymRVM .
▶ The map σ : Hk(XM , (VM)λ) → Hk(XM+2, (VM+2)λ) is an

isomorphism for k + 1 ≤ δM , for all R and λ (MPPRW).
▶ In general the stable Hk are nonzero, leading to arithmetic

main terms (matched to Hk by a limiting process).

▶ Using monodromy ρ : π1(XM)↠QM ⊆ Sp(VM), MPPRW
build ker(Hk(XM , (VM)λ) → Hk(BQM , (VM)λ)) out of
Hk+1−k ′(XM−M′ , (VM)λ) for various pairs (k

′,M ′) with
k ′ ≥ 2 (by surjectivity of ρ) and M ′ ≪ k ′.

▶ If le(λ) ≫ k + 1, then le(λ)− 2M ′ ≥ le(λ)− O(k) > 0,
so the restriction (VM)λ|Sp(VM−M′ ) has no trivial piece, by
branching rules for restriction between symplectic groups.
By vanishing results for Hk(QM , ·) (Borel et al.), we get
Hk(XM , (VM)λ) = 0 via induction on k ≤ δM − 1.

▶ The case le(λ) ≪ k + 1 ≤ δM relies on stable branching,
and on a relative version of the argument above.
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Counting with symmetry

Compactifications can also appear more directly in Diophantine
problems. For example, let G := Aff(A1) = {[ a b

0 1 ]} ⊆ GL2 be
the affine group of A1 over Q. Explicitly, the group law on
(a, b), (u, v) ∈ G is

(a, b) · (u, v) = (au, av + b).

Theorem (W. ’23)

Manin’s conjecture holds for sufficiently split smooth
equivariant compactifications X of G over Q.

This builds on adelic harmonic analysis of Tanimoto–Tschinkel,
who decomposed a point count on G (Q) into the form∑

α∈Q

∫
t∈R

(decay factor)
∏

p prime

(p-adic integral) dt.
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Tanimoto–Tschinkel decomposed the height zeta function
Z(s, g) =

∑
γ∈G(Q) H(s, γg)−1 into the form∑

α∈Q

∫
t∈R

(real integral)
∏

p prime

(p-adic integral) dt,

via the short exact sequence (of pointed sets)

1 → Q\AQ
b 7→(1,b)−−−−→ G (Q)\G (AQ)

det : (a,b)7→a−−−−−−−→ Q×\A×
Q → 1,

using Fourier expansion on b ∈ Q\AQ followed by Mellin
inversion on a ∈ A×

Q. The p-adic integral is, roughly,∫
G(Qp):αap∈Zp

Hp(s, gp)−1e(−αbp mod Zp)|ap|−it
p dgp.

Both additive and multiplicative harmonics appear above; the
sum over α ∈ Q somehow reflects the non-abelian nature of G .
The “central term” α = 0, like c = 0 in the δ-method, gives
the main term in the Manin–Peyre conjecture.
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Special divisors

Write D := X \ G =
⋃

j∈J Dj , where the Dj are irreducible over
Q. Roughly, Tanimoto–Tschinkel handled the case where

ordDj
(a) < 0 ⇒ ordDj

(b) < ordDj
(a). (1)

Condition (1) relates to positivity of K−1
X . Similar conditions,

with variables and degrees, are familiar in the circle method.

Proposition (W.)

Let j ∈ J and c ∈ Q. Then ordDj
(b − c) ≤ ordDj

(a).

Definition (W.)

Given j ∈ J , call Dj special if maxc∈Q ordDj
(b − c) = ordDj

(a).

When (1) fails we seem to need a new idea. Main culprit: pairs
of special divisors (Dj ,Di) with ordDj

(a) ordDi
(a) < 0.
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Suppose there are k ≥ 0 special divisors with ordDj
(a) < 0, and

l ≥ 0 special divisors with ordDj
(a) > 0. Then the main issue,

after new leading-order “bias” computations (in the spirit of
Heath-Brown, Getz, Tran, et al.) relying on a new G -related
source of local coordinates and cancellation in p-adic integrals,
is to appropriately bound multiple Dirichlet series like∑

α=m1···mk/n1···nl :
pairwise coprime m1,...,mk ,n1,...,nl≥1

f (α)e(c0α)

mβ1
1 · · ·mβk

k

∏
1≤j≤l

e(−cjα mod Znj )

n
γj
j

,

for some c0, c1, . . . , cl ∈ Q and a transform f : R>0 → C of
H∞(s, g)−1.

We proceed by analytic NT methods:

▶ Additive reciprocity (
∏

v ψv |Q = 1) and Weyl-type
inequalities in ranges with two or more large variables nj .

▶ Local cancellations (via Poisson summation over the
largest mi) in ranges with only one large variable nj .
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