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What do the following have in common?

(1) Varieties of commuting matrices.

(2) Markov-type surfaces x2 + y 2 + z2 − xyz = k .

(3) Moment, ratio, and zero statistics of L-function families.

(4) The singular dP4 surface x2
0 + x0x3 + x2x4 = x1x3 − x2

2 = 0,
possibly blown up at singularities A3 + A1, or (repeatedly)
at intersections of lines and/or exceptional divisors.

All exhibit symmetry, and connect to representation theory.

▶ Modulo conjugation, (1) is a character variety of a torus.

▶ (2) is a relative character variety of a punctured torus.1

▶ (3) carries a monodromy representation (Deligne).

▶ (4) is a solv-variety (Derenthal–Loughran).

▶ (3) and (4) involve interesting compactifications. Over
Fq(t), homological stability might hold (cf. Boyer et al.).

1Generalizes to any punctured surface (J. Whang); good candidate for
studying Hasse failures (cf. Colliot-Thélène–Wei–Xu, Loughran–Mitankin).
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Integer points on log K3 surfaces

The Markov-type surface x2 + y 2 + z2 − xyz = k is log
Calabi–Yau. We are interested in solutions (x , y , z) ∈ Z3.
▶ Heuristically, expect only Ok((logB)

2) solutions with
max(|x |, |y |, |z |) ≤ B , as B → ∞. More generally, see
conjectures of [Browning–Wilsch 2024].

▶ Such Diophantine equations lie at the boundary between
heuristic solubility and paucity. Any integer solutions only
barely exist (on average)!

▶ Another, infamous, example of a log K3 surface is the sum
of 3 cubes problem x3 + y 3 + z3 = k . For k = 42 the only
known solution [Booker–Sutherland 2019] is

(−80538738812075974)3+(80435758145817515)3+(12602123297335631)3 = 42.

▶ These problems test the limits of our understanding.
▶ They are directly adjacent to undecidable problems.

(∃ undecidable quartic equations over Z.)
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Solubility of Markov-type surfaces

The polynomial M = x2 + y 2 + z2 − xyz is fixed by a group
Γ ⊆ Aut(M), where Γ is formed by S3, sign changes ±1, and
Vieta involutions (x , y , z) 7→ (x , y , xy − z). Let hM(k) be the
number of Γ-orbits of the set {(x , y , z) ∈ Z3 : M = k}.

Theorem (Ghosh–Sarnak 2017)

We have hM(k) → ∞ along a density 1 of admissiblea k ∈ Z.
In particular, the integral Hasse principle holds for almost all
k ∈ Z.

ak ̸≡ 3 mod 4 and k ̸≡ ±3 mod 9

Theorem (Mishra 2024; lower bound is new)

Fix ϵ > 0. The inequality (log |k |)2−ϵ ≤ hM(k) ≤ (log |k |)2+ϵ

holds for a density 1 of admissible k ∈ Z.

(Upper bound ⇐ Ghosh–Sarnak + Markov’s inequality.)
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For all k < 0 (and for all “generic” k ≥ 5), Ghosh–Sarnak
construct a fundamental domain Fk for the action of Γ on
{(x , y , z) ∈ Z3 : x2 + y 2 + z2 − xyz = k}. Let rM(k) be the
number of points in a well-chosen region F ′

k ⊆ Fk .
▶ For Ghosh–Sarnak, F ′

k satisfies |x | ≍ |yz | ≍ |k |1/2 and
|z | ≤ |k |ϵ. Real density of solutions: σ∞(k) ≍ ϵ log |k |.

▶ For Mishra, F ′
k is part of a G2

m-torus |xyz | ≍ |k |, with
|k |δ ≤ |x/y | ≤ |k |−δ|z | ≤ |k |2δ. Here σ∞(k) ≍ (log |k |)2.

One then expands and upper-bounds an arithmetic variance

Var(K ,A) :=
∑
k≤K

(rM(k)− r locM (k ;A))2.

▶ The sum
∑

k≤K rM(k)2 counts solutions in a region to
x2 + y 2 + z2 − xyz = u2 + v 2 + w 2 − uvw .

▶ Here r locM (k ;A) is roughly a truncated L-function at 1.
Ghosh–Sarnak (resp. Mishra) use a multiplicative
(resp. additive) truncation.

▶ Some of this generalizes to sums of three cubes.
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Let L(s, c) be the L-function of Vc : x3
1 + · · ·+ x3

6 = c · x = 0,
where c = (c1, . . . , c6) ∈ Fq[t]

6, with gcd(q, 6) = 1 and

∆(c) := disc(Vc) =
∏
(c

3/2
1 ± c

3/2
2 ± · · · ± c

3/2
6 ) ̸= 0.

Theorem (Browning–Glas–W. 2024)

Assume sufficient progress on moments of 1
L(s,c)

for ∆(c) ̸= 0.

Then x3 + y 3 + z3 = n is soluble in elements x , y , z ∈ Fq[t] of
degree ∼ 1

3
deg n for a density 1 of elements n ∈ Fq[t].

Builds on ideas of many authors, such as the following:
▶ Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
▶ Kloosterman, Hooley 1986, Heath-Brown,
▶ Beauville (quadric bundles over P2), Getz, Tran,
▶ Rubinstein–Sarnak (Chebyshev’s bias via prime squares),
▶ Deligne (GRH), Hooley 1994 (singular cubics),
▶ Huang (≈ Q-points), Busé–Jouanolou (∆ ∈ (f , (f ′)2)),
▶ Bhargava (Ekedahl sieve), Poonen (square-free sieve),
▶ Kisin (local constancy of L-factors).
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What kind of progress on L-functions?

Let 2 ∤ q. Let µ(r) be the Möbius function over Fq[t], and let
χm(r) = ( r

m
) be the Jacobi symbol over Fq[t].

Theorem (Bergström–Diaconu–Petersen–Westerland,
Miller–Patzt–Petersen–Randal-Williams, W. 2024)

If 1 ≤ M = 2g + 1 and 1 ≤ R ≤ αM , and q ≫α 1, then∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2
≪ q−0.001M+O(1),

where the sums over m and r run through square-free, monic
m, r ∈ Fq[t] with degm = M and deg r = R , respectively.

Theorem (Same papers; new for q = p ≡ 1 mod 4)

The set {m : L(1
2
, χm) = 0} has upper density oq→∞(1).
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Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2
=

∑
k≥0

(−1)k tr(Frq,Hk(XM , SymRVM)),

where XM = UConfM(A1) = {m : disc(m) ̸= 0}, and where VM

is a local system on XM with fibers H1
c ({y 2 = m(t)},Qℓ(

1
2
)) of

dimension 2g over m ∈ XM . Captures zeros of L(s, χm).

▶ The first few homology groups Hk = H2M−k
c are the most

significant.2 By Deligne, tr(Frq,Hk) ≤ q−k/2 dimHk . It is
also known that dimHk ≤ 2M

(
R+2g−1

R

)
≤ 2M2R+2g−1.

Thus dimHk ≤ 2(2+α)M , since 1 ≤ R ≤ αM .
▶ By geometric series,

∑
k+1>δM is negligible if qδ/2 ≥ 32+α.

▶ We are left with estimating
∑

k+1≤δM . Want a stability

isomorphism Hk(XM , SymRVM) → Hk(XM+2, Sym
RVM+2).

2“Obstructions to cancellation”. For instance, H0 = (SymRVM)π1(XM ).
8



Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2
=

∑
k≥0

(−1)k tr(Frq,Hk(XM , SymRVM)),

where XM = UConfM(A1) = {m : disc(m) ̸= 0}, and where VM

is a local system on XM with fibers H1
c ({y 2 = m(t)},Qℓ(

1
2
)) of

dimension 2g over m ∈ XM . Captures zeros of L(s, χm).
▶ The first few homology groups Hk = H2M−k

c are the most
significant.2 By Deligne, tr(Frq,Hk) ≤ q−k/2 dimHk . It is
also known that dimHk ≤ 2M

(
R+2g−1

R

)
≤ 2M2R+2g−1.

Thus dimHk ≤ 2(2+α)M , since 1 ≤ R ≤ αM .
▶ By geometric series,

∑
k+1>δM is negligible if qδ/2 ≥ 32+α.

▶ We are left with estimating
∑

k+1≤δM . Want a stability

isomorphism Hk(XM , SymRVM) → Hk(XM+2, Sym
RVM+2).

2“Obstructions to cancellation”. For instance, H0 = (SymRVM)π1(XM ).
8



No useful map XM → XM+2. So BDPW compactify a quotient
of XM into a space X ′

M . Want gluing/stabilization maps
σ : X ′

M → X ′
M+2 and τ : VM → σ∗VM+2.

▶ Roughly, if m(t) ∈ XM , then σ(m(t)) ∈ X ′
M+2 could be a

stable map P1 ∪{∞}∼{0} A1 → P1 extending m(t).
▶ There are many possible maps σ. The collection of

possible σ has a braided monoidal structure.
▶ In general, σ1σ2 ̸= σ2σ1. This is different than maps like

multiplication in Fq[t]. (More on this later. . . )

▶ Here σ maps X ′
M into the boundary ∂X ′

M+2 ⊆ X ′
M+2. The

map τ on H1
c is induced by proper base change

(“deformation retraction onto the boundary”) and a
collapse map σ(X ′

M) → X ′
M .

▶ By log geometry, Hk(X
′
M , SymRVM) = Hk(XM , SymRVM).

A map σ : Hk(XM , SymRVM) → Hk(XM+2, Sym
RVM+2)

thus arises via σ and τ . It can be checked to agree with a
topological version of the map over C.
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The local system VM is symplectic, by Poincaré duality on H1
c .

So (VM)⊗R breaks up into symplectic pieces (VM)λ associated
to partitions λ of R , with λ = (R) giving SymRVM .
▶ The map σ : Hk(XM , (VM)λ) → Hk(XM+2, (VM+2)λ) is an

isomorphism for k + 1 ≤ δM , for all R and λ (MPPRW).
▶ In general the stable Hk are nonzero, leading to arithmetic

main terms (matched to Hk by a limiting process).

▶ Using monodromy ρ : π1(XM)↠QM ⊆ Sp(VM) over C,
MPPRW build ker(Hk(XM , (VM)λ) → Hk(BQM , (VM)λ))
out of Hk+1−k ′(XM−M′ , (VM)λ) for various pairs (k

′,M ′)
with k ′ ≥ 2 (by surjectivity of ρ) and M ′ ≪ k ′.

▶ If le(λ) ≫ k + 1, then le(λ)− 2M ′ ≥ le(λ)− O(k) > 0,
so the restriction (VM)λ|Sp(VM−M′ ) has no trivial piece, by
branching rules for restriction between symplectic groups.
By vanishing results for Hk(QM , ·) (Borel et al.), we get
Hk(XM , (VM)λ) = 0 via induction on k ≤ δM − 1.

▶ The case le(λ) ≪ k + 1 ≤ δM relies on stable branching,
and on a relative version of the argument above.

10
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Analytic approach to extracting main terms

Idea: The stable traces can be evaluated at any M ≫ k + 1 of
our choice. In particular, we can enlarge M so that |λ| lies
within the available sieve-theoretic level of distribution from
analytic number theory. (Already observed by BDPW.)

For instance, using Grothendieck–Lefschetz, and our earlier
bounds on (unstable) traces to justify manipulations,∑

k≥0

(−1)k lim
M→∞

tr(Frq,Hk(XM , SymRVM))

= lim
M→∞

∑
|m|=qM

∑
|r |=qR µ(r)χm(r)

qMqR/2

=
∑
|r |=qR

µ(r)

qR/2
lim

M→∞

∑
|m|=qM χm(r)

qM
= 0,

since r ̸= 1. However, this doesn’t prove the deeper fact that
limM→∞ tr(Frq,Hk(XM , SymRVM)) = 0 for R > 4k (BDPW).
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More general geometric families

Definition
Let s, n, δ ∈ N. Let P ∈ k[t][x1, . . . , xs ] be square-free. Let
k[t]n denote the set of polynomials in k[t] of degree n. Define

the Poonen space X = Xn,δ ⊆ A(n+1)s
k so that for k-algebras R ,

X (R) = {(f1, . . . , fs) ∈ R[t]sn : P(f1, . . . , fs) ∈ R×·UConfδ(R)}.

For s = 1, P(f ) = f : X (R) = {f ∈ R[t]n : disc(f ) ∈ R×},
which is essentially the setting of all the classical geometric
families (CFKRS et al.), such as L(·, χf ).

For general s and P , the space X is natural when studying, for
instance, the family of L-functions L(·, χP(f1,...,fs)).

Theorem (Poonen 2003)

Let k = Fq. Then limn→∞
#Xn,n deg P(Fq)

q(n+1)s exists. Power-saving

error term OP,q(q
−(n+1)sη) where η ≍P 1/char(Fq).
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Aside: Another motivation for sieve study

Theorem (Elkies)

Let F (A,B ,C ) be the ternary cubic form

9A3+9A2B+3A2C+3AB2−6ABC+3AC 2+3B3+3B2C+BC 2+C 3.

P2 99K VP3(x3 + y 3 + z3 + w 3), [A : B : C ] 7→ [F (A,B ,C ) :
F (−A,B ,−C ) : F (−A,−B ,C ) : F (A,−B ,−C )] is birational.

Corollary

#{[−T ,T ]4 : x3+y 3+z3+w 3 = 0 ̸= x+y+z+w} ≪ϵ T
1+ϵ

(weak Manin conjecture) is equivalent to (1). Also, (2)⇒(1).

1. #{[1,N ]3 : gcd(a, b, c) = 1, gcd(a, 3b2 + c2) gcd(b, 3a2 +
c2) gcd(c , 3a2 + b2) ≍ G}/N3 ≪ϵ N

ϵ/G .

2. #{[1,N]3 : gcd(a, b, c) =
1, sq(abc(3b2 + c2)(3a2 + b2 + c2)) ≍ G 2}/N3 ≪ϵ N

ϵ/G . 13

https://people.math.harvard.edu/~elkies/4cubes.html


Something probably doable

Question
Can sieve-theoretic topology methods (such as those of
[Das–Tosteson 2024]) compute the stable homology of some
Poonen spaces Xn,n deg P(Fq) or Xn,n deg P(C) with polynomials
P(f ) ̸= f such as P(f ) = f 2 − 1 or P(f1, f2) = (f 2

1 − f 2
2 )f1f2, or

more generally products of linear things?

The recent progress on quadratic Dirichlet L-functions is
monodromy-theoretic rather than sieve-theoretic. However, it
might be helpful to know the “answer” (stable homology) in
some cases, in order to guide further progress on square-free
values and statistics of geometric L-functions.
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1 − f 2
2 )f1f2, or

more generally products of linear things?

The recent progress on quadratic Dirichlet L-functions is
monodromy-theoretic rather than sieve-theoretic. However, it
might be helpful to know the “answer” (stable homology) in
some cases, in order to guide further progress on square-free
values and statistics of geometric L-functions.
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Complex Betti bounds

Let s, n, δ ∈ N. Let P ∈ k[t][x1, . . . , xs ] be square-free. Let
k[t]n denote the set of polynomials in k[t] of degree n. Define

the Poonen space X = Xn,δ ⊆ A(n+1)s
k so that for k-algebras R ,

X (R) = {(f1, . . . , fs) ∈ R[t]sn : P(f1, . . . , fs) ∈ R×·UConfδ(R)}.

Proposition (W. 2025+)

Let k = C. Let degtot P := degP + degt P ≥ 1. For every
local system L on X of finite-dimensional vector spaces over C,∑

i≥0

dimH i(X ,L) ≤ exp(Odegtot P(ns)) rankL.

Proof.

X is smooth, connected, and cut out in A1+(n+1)s
k × UConfδ(k)

by equations like “degree 1 + degP poly = linear in ei”. . .
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Lemma
Let k = C. Let m, n, r , d ≥ 1 be integers. Let
g1, . . . , gr ∈ k[x ] + k[e] = k[x1, . . . , xm] + k[e1, . . . , en] such
that degx(gj) ≤ d and dege(gj) ≤ 1 for all 1 ≤ j ≤ r . Let
W ⊆ km × UConfn(k) ⊆ km+n be the complex subvariety
g1 = · · · = gr = 0, where ei is the coordinate on
UConfn(k) ⊆ kn corresponding to the ith elementary symmetric
polynomial under the covering map PConfn(k) → UConfn(k).
Assume W is smooth and connected. Then∑

i≥0

dimH i(W ,L) ≤ exp(Od(m + n + r)) rankL.

Proof.
W is affine. Slicing induction as in [Katz 2001], by Artin
vanishing and affine weak Lefschetz, reduces us to bounding
χ(W ,L) = χ(W ) rankL. But χ(W ) = χ(V )

n!
≪ χ(V )

(n/e)n
. . .
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that degx(gj) ≤ d and dege(gj) ≤ 1 for all 1 ≤ j ≤ r . Let
V ⊆ km × PConfn(k) ⊆ km+n be the complex subvariety
g1(x , e) = · · · = gr (x , e) = 0, where ei is the coordinate on
UConfn(k) ⊆ kn corresponding to the ith elementary
symmetric polynomial under the covering map
PConfn(k) → UConfn(k). Assume V is smooth. Then

|χ(V )| ≤ exp(Od(m + n + r)) · nn.

Proof.

V is smooth, so χ(V ) = χc(V ). But V ⊆ km+n ⊆ k (m+2n)+n

is the zero locus of r + 2n polynomials: gj(x , e) for 1 ≤ j ≤ r ,
and vi −

∏
l ̸=i(zl − zi) and viwi − 1 for 1 ≤ i ≤ n. . .
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Proof.
. . . Use the following lemma with n2 = d2 = n.

Lemma (Adolphson–Sperber 1987; “Dwork theory”)

Let k be an algebraically closed field. Let ℓ be a prime number
invertible in k . Let n1, n2, r , d1, d2 ≥ 1 be integers. Let
f1, . . . , fr ∈ k[x ] + k[y ] = k[x1, . . . , xn1] + k[y1, . . . , yn2] such
that degx(fj) ≤ d1 and degy (fj) ≤ d2 for all 1 ≤ j ≤ r . Then

|χc(Spec(k[x , y ]/(f1, . . . , fr )))| ≤ exp(O(n1 + n2 + r))dn1
1 dn2

2 .

Proof.
LHS ≤ exp(O(n1 + n2 + r)) · (n1 + n2)! vol(Sd1,d2), where Sd1,d2

is the convex hull of 0, d1e1, . . . , d1en1 , d2en1+1, . . . , d2en1+n2 in
Rn1+n2 . By a diagonal re-scaling of Rn1+n2 , we have

vol(Sd1,d2) = dn1
1 dn2

2 vol(S1,1) =
d
n1
1 d

n2
2

(n1+n2)!
. (Cf. [Weil 1949].)
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An affine stabilization map

Let P ∈ k[x ] ⊆ k[t][x ]. Define X = Xn,δ ⊆ An+1
k so that

X (R) = {f ∈ R[t] : deg(f ) = n, P(f ) ∈ R× · UConfδ(R)}.

Lemma (W. 2025+)

Let k be a field. Let m, n ≥ 1 be integers. Let

j ∈ (1 + t · k[t]) ∩ (k× · UConfm(k×)).

Let f ∈ Xn,n deg P . Then j(ϵt)f (t) ∈ Xm+n,(m+n) deg P for all ϵ in
a punctured neighborhood of 0 ∈ A1.

Proof.
If k = C, use Rouché’s theorem. In general, use discriminants,
Gauss’ lemma, and Newton polygons, over the valued field
k((ϵ)), and use a change of variables t 7→ r := ϵt.
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A projective stabilization map

Same argument gives a nicer result in the following setting: Let
P ∈ k[x1, . . . , xs ] be homogeneous. Let f rev (t) := tdeg f f (1

t
).

Let a,b, a′,b′,λ ∈ (k×)s . Let X a,b,λ
n (R) be

{(f1, . . . , fs) ∈ R[t]sn : [f
rev

1 (0) : · · · : f revs (0)] = [a1 : · · · : as ] ∈ Ps−1,

[f1(0) : · · · : fs(0)] = [b1 : · · · : bs ] ∈ Ps−1,

P(λ1f1, . . . , λs fs) ∈ R× · UConfn deg P(R
×)}.

Lemma (W. 2025+)

If (j1, . . . , js) ∈ X
a′,b′,aλ/b′

m and (f1, . . . , fs) ∈ X a,b,λ
n , then

(j1(ϵt)f1(t), . . . , js(ϵt)fs(t)) ∈ X
a′a,b′b,λ/b′

m+n for all ϵ in a
punctured neighborhood of 0 ∈ A1.

This suggests that X 1,1,λ
• (C) is a braided monoid (with braiding

t 7→ t/ϵ as ϵ → 0), and C∗(X
a,b,1
• (C)) is a bi-module over

(X 1,1,a
• (C),X 1,1,b

• (C)). Can we build cells over (C∗(X̃ ), π1)?
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General approaches to consider

Say we’re interested in a geometric family YM of L-functions
(e.g. a Poonen space), possibly within a larger family XM .
1. One might try to generalize the cell-based inductive

approach of MPPRW to YM or XM , possibly introducing
new ideas to build cells and set up the induction.

2. If the fact (due to BDPW + MPPRW) that

tr(Frq,Hk(XM , SymRVM)) = 0 (1)

for M ,R ≫ k +1 is robust enough to hold more generally,
then one might hope to express XM as an average of
families YM,a, indexed by some parameter a with
YM,0 = YM , and use fiber comparison methods of [Sawin,
Acta 2024] to prove the same vanishing result for YM .

3. The recursive analytic methods of Soundararajan, Harper,
Bui–Florea–Keating, et al., writing 1/L = exp(− log L), are
currently the most flexible approach available.
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Let L(s, c) be the L-function of Vc : x3
1 + · · ·+ x3

6 = c · x = 0,
where c = (c1, . . . , c6) ∈ Fq[t]

6, with gcd(q, 6) = 1 and

∆(c) := disc(Vc) =
∏
(c

3/2
1 ± c

3/2
2 ± · · · ± c

3/2
6 ) ̸= 0.

Theorem (Browning–Glas–W. 2024)

Assume sufficient progress on moments of 1
L(s,c)

for ∆(c) ̸= 0.

Then x3 + y 3 + z3 = n is soluble in elements x , y , z ∈ Fq[t] of
degree ∼ 1

3
deg n for a density 1 of elements n ∈ Fq[t].

Builds on ideas of many authors, such as the following:
▶ Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
▶ Kloosterman, Hooley 1986, Heath-Brown,
▶ Beauville (quadric bundles over P2), Getz, Tran,
▶ Rubinstein–Sarnak (Chebyshev’s bias via prime squares),
▶ Deligne (GRH), Hooley 1994 (singular cubics),
▶ Huang (≈ Q-points), Busé–Jouanolou (∆ ∈ (f , (f ′)2)),
▶ Bhargava (Ekedahl sieve), Poonen (square-free sieve),
▶ Kisin (local constancy of L-factors). 22



Variance analysis

We actually reduce everything to counting solutions to

6∑
i=1

x3
i = 0

in certain regions of Fq[t]
6. A homogeneous equation of degree

d in 2d variables lies at the square-root barrier. The expected
asymptotic (Manin et al.) often features two main terms of the
same order of magnitude.

The hyperplane sections

Vc : x3
1 + · · ·+ x3

6 = c · x = 0,

for c = (c1, . . . , c6) ∈ Fq[t]
6, and especially their L-functions,

arise through the circle method and Fourier analysis. Analysis
of these hyperplane sections branches out based on the
vanishing, size, and divisibility of ∆(c).
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A deformation along the square-root barrier

Browning, Munshi, and I (2025+) hope to use the smooth
(Duke–Friedlander–Iwaniec) version of the circle method to
prove an unconditional asymptotic over Q for the singular
6-variable homogeneous cubic equation

x1y
2
1 + x2y

2
2 + x3y

2
3 = 0

named after Perazzo.

This can be viewed as a deformation of a
smooth 6-variable cubic like the Fermat

6∑
i=1

x3
i = 0

considered in [Browning–Glas–W. 2024]. Whereas L-functions
turn out to be less important here, certain divisor problems play
a more prominent role (which we hope to handle via Hooley
∆-functions; cf. [de la Bretèche–Tenenbaum 2024]).
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