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What do the following have in common?

(1) Varieties of commuting matrices.

(2) Markov-type surfaces x? + y? + z2 — xyz = k.

(3) Moment, ratio, and zero statistics of L-function families.

(4) The singular dP4 surface x3 + xox3 + XoXq = x1x3 — X3 = 0,
possibly blown up at singularities A3 + Ay, or (repeatedly)
at intersections of lines and/or exceptional divisors.

!Generalizes to any punctured surface (J. Whang); good candidate for
studying Hasse failures (cf. Colliot-Thélene-Wei—Xu, Loughran—Mitankin).



What do the following have in common?
(1) Varieties of commuting matrices.
(2) Markov-type surfaces x? + y? + z2 — xyz = k.
(3) Moment, ratio, and zero statistics of L-function families.
(4) The singular dP4 surface x3 + xox3 + XoXq = x1x3 — X3 = 0,
possibly blown up at singularities A3 + Ay, or (repeatedly)
at intersections of lines and/or exceptional divisors.
All exhibit symmetry, and connect to representation theory.
» Modulo conjugation, (1) is a character variety of a torus.
» (2) is a relative character variety of a punctured torus.
» (3) carries a monodromy representation (Deligne).
» (4) is a solv-variety (Derenthal-Loughran).
» (3) and (4) involve interesting compactifications. Over
F,(t), homological stability might hold (cf. Boyer et al.).

!Generalizes to any punctured surface (J. Whang); good candidate for
studying Hasse failures (cf. Colliot-Thélene-Wei—Xu, Loughran—Mitankin).




Integer points on log K3 surfaces

The Markov-type surface x> + y? + z2 — xyz = k is log
Calabi-Yau. We are interested in solutions (x, y, z) € Z3.

» Heuristically, expect only Ok((log B)?) solutions with
max(|x|, |y|,|z]) < B, as B — oco. More generally, see
conjectures of [Browning-Wilsch 2024].

» Such Diophantine equations lie at the boundary between
heuristic solubility and paucity. Any integer solutions only
barely exist (on average)!
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The Markov-type surface x> + y? + z2 — xyz = k is log
Calabi-Yau. We are interested in solutions (x, y, z) € Z3.

» Heuristically, expect only Ok((log B)?) solutions with
max(|x|, |y|,|z]) < B, as B — oco. More generally, see
conjectures of [Browning-Wilsch 2024].

» Such Diophantine equations lie at the boundary between
heuristic solubility and paucity. Any integer solutions only
barely exist (on average)!

» Another, infamous, example of a log K3 surface is the sum
of 3 cubes problem x> + y3 4 z3 = k. For k = 42 the only
known solution [Booker—Sutherland 2019] is

(—80538738812075974)3-+(80435758145817515)3+ (126021232

» These problems test the limits of our understanding.
» They are directly adjacent to undecidable problems.
(3 undecidable quartic equations over Z.)



Solubility of Markov-type surfaces

The polynomial M = x? + y? + z2 — xyz is fixed by a group

[ C Aut(M), where I is formed by Ss, sign changes +1, and
Vieta involutions (x, y,z) — (x,y,xy — z). Let hy(k) be the
number of [-orbits of the set {(x,y,z) € Z* : M = k}.

Theorem (Ghosh—Sarnak 2017)

We have hy (k) — oo along a density 1 of admissible® k € Z.

In particular, the integral Hasse principle holds for almost all
k e Z.

9k %3 mod 4 and k % +£3 mod 9
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Theorem (Mishra 2024; lower bound is new)

Fix € > 0. The inequality (log |k|)*=¢ < hu(k) < (log |k|)***
holds for a density 1 of admissible k € 7.

(Upper bound < Ghosh-Sarnak + Markov's inequality.)



For all k < 0 (and for all “generic” k > 5), Ghosh—Sarnak
construct a fundamental domain Fj for the action of [ on
{(x,y,2) € Z®: x> + y> + 2> — xyz = k}. Let ry(k) be the
number of points in a well-chosen region F, C Fy.
» For Ghosh—Sarnak, F satisfies |x| < |yz| < |k|*/? and
|z| < |k|°. Real density of solutions: 0., (k) < €log |k|.
» For Mishra, F is part of a G-torus |xyz| < |k|, with
KPP < [x/y] < K|0Jz] < [k Here o.c(k) = (log k|)?



For all k < 0 (and for all “generic” k > 5), Ghosh—Sarnak
construct a fundamental domain Fj for the action of [ on
{(x,y,2) € Z®: x> + y> + 2> — xyz = k}. Let ry(k) be the
number of points in a well-chosen region F, C Fy.
» For Ghosh—Sarnak, F satisfies |x| < |yz| < |k|*/? and
|z| < |k|°. Real density of solutions: 0., (k) < €log |k|.
» For Mishra, F is part of a G-torus |xyz| < |k|, with
[kI” < Ix/y| < |k|7|z] < |k[?*. Here oo (k) =< (log [K|)%.
One then expands and upper-bounds an arithmetic variance

Var(K, A) ==Y " (ru(k) — riy* (k; A))>.

k<K

» The sum >, ru(k)? counts solutions in a region to
X2+y2—|—z2_—xyz: v+ v 4 w? — uvw.

» Here rio(k; A) is roughly a truncated L-function at 1.
Ghosh—Sarnak (resp. Mishra) use a multiplicative
(resp. additive) truncation.

» Some of this generalizes to sums of three cubes.



Let L(s, c) be the L-function of V. : 53 + -+ +x2 =c-x =0,
where ¢ = (¢, ..., ¢) € Fy[t]°, with ged(g,6) = 1 and
Ac) =disc(Vo) = [[(? + &P+ £ %) #0.

Theorem (Browning—Glas—W. 2024)

Assume sufficient progress on moments of ﬁ for A(c) # 0.

Then x* + y* + 23 = n is soluble in elements x,y,z € F[t] of
degree ~ % deg n for a density 1 of elements n € Fy[t].




Let L(s, c) be the L-function of V. : 53 + -+ +x2 =c-x =0,
where ¢ = (¢, ..., ¢) € Fy[t]°, with ged(g,6) = 1 and
Ac) =disc(Vo) = [[(? + &P+ £ %) #0.

Theorem (Browning—Glas—W. 2024)

Assume suftficient progress on moments of for A(c) #0.

Then x3 —|— y®+ 23 = n is soluble in e/ements X ¥,z € Fylt] of
degree ~ % deg n for a density 1 of elements n € Fy[t].

Builds on ideas of many authors, such as the following:

» Ghosh-Sarnak, Diaconu (log-K3 variance analysis),
Kloosterman, Hooley 1986, Heath-Brown,
Beauville (quadric bundles over P?), Getz, Tran,
Rubinstein-Sarnak (Chebyshev's bias via prime squares),
Deligne (GRH), Hooley 1994 (singular cubics),
Huang (= Q-points), Busé—Jouanolou (A € (f,(f')?)),
Bhargava (Ekedahl sieve), Poonen (square-free sieve),
Kisin (local constancy of L-factors).

VVvyVyVYYVYYVYY



What kind of progress on L-functions?

Let 21 q. Let u(r) be the Mobius function over Fy[t], and let
Xm(r) = (%) be the Jacobi symbol over F,[t].

Theorem (Bergstrom—Diaconu—Petersen—Westerland,
Miller—Patzt—Petersen—Randal-Williams, W. 2024)
If1<M=2g+1and1 < R<aM, and g >, 1, then

Zlmlzq”’ Z/I\;I=;;2M(r)x’"(r) < g 000M+0()
arq

where the sums over m and r run through square-free, monic
m, r € Fy[t] with degm = M and degr = R, respectively.

Theorem (Same papers; new for ¢ = p = 1 mod 4)

The set {m: L(3, xm) = 0} has upper density 04, (1).




Homological stability approach
Recall that M = 2g + 1. By the Lefschetz trace formula,

Zm qMZ qRM
|m|= Irl= _Z

gM R /2 2 “tr(Fry, He(Xm, Sym® Vi),

where Xy = UConfy(A') = {m : disc(m) # 0}, and where Vy
is a local system on Xy with fibers HX({y? = m(t)}, Q(3)) of
dimension 2g over m € Xy;. Captures zeros of L(s, xm)-

2“Obstructions to cancellation”. For instance, Hy = (Sym” Vi), (x,)-



Homological stability approach
Recall that M = 2g + 1. By the Lefschetz trace formula,

2 |m=gM 2 |ri=qn M

q qR/2

= (—1)*tr(Frg, Hi(Xu, Sym® Vi),
k>0

where Xy, = UConf(A) = {m : disc(m) # 0}, and where Vi

is a local system on Xy with fibers HX({y? = m(t)}, Qy(3)) of

dimension 2g over m € Xy;. Captures zeros of L(s, xm)-

» The first few homology groups Hy = H*M~k are the most
significant.2 By Deligne, tr(Fry, Hy) < q~%/2dim Hy. It is
also known that dim H, < 2M(R+2§*1) < QMpR+2g—1
Thus dim H, < 2@+IM gince 1 < R < aM.

> By geometric series, >, . .5y is negligible if g%/ > 32+
> We are left with estimating ), ;5. Want a stability
isomorphism Hy(Xu, Sym® Viy) = Hi(Xs2, SymR Vo).

2“Obstructions to cancellation”. For instance, Hy = (Sym” Vi), (x,)-




No useful map Xy — Xu12. So BDPW compactify a quotient
of X into a space X},. Want gluing/stabilization maps
0. XI/\/I — XI,\/I+2 and 7: VM — U*VM+2.
> Roughly, if m(t) € Xy, then o(m(t)) € Xj,,, could be a
stable map P* Ugoyqoy A — P* extending m(t).
» There are many possible maps o. The collection of
possible o has a braided monoidal structure.
» In general, 010, # 0,01. This is different than maps like
multiplication in F4[t]. (More on this later...)
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stable map P* Ugoyqoy A — P* extending m(t).

» There are many possible maps o. The collection of

>

>

possible o has a braided monoidal structure.

In general, 010, # 0,01. This is different than maps like
multiplication in F4[t]. (More on this later...)

Here o maps X}, into the boundary 0Xj,,, C Xj,.,. The
map 7 on H! is induced by proper base change
(“deformation retraction onto the boundary”) and a
collapse map a(X},) — Xy,

By log geometry, Hi(X},, SymR Vi) = Hi(Xu, SymRViy).
A map o : Hi(Xum, Sym® Vi) = Hi(Xusa, Sym® Vi)
thus arises via o and 7. It can be checked to agree with a
topological version of the map over C.



The local system V), is symplectic, by Poincaré duality on H?.
So (Vu)®R breaks up into symplectic pieces (Vjy), associated
to partitions \ of R, with A = (R) giving SymRV/,.
» The map o: Hi(Xu, (Vm)r) = Hi(Xm42, (Vm42),) is an
isomorphism for k + 1 < M, for all R and A (MPPRW).
» In general the stable H, are nonzero, leading to arithmetic
main terms (matched to Hy by a limiting process).

10



The local system V), is symplectic, by Poincaré duality on H?.
So (Vu)®R breaks up into symplectic pieces (Vjy), associated
to partitions \ of R, with A = (R) giving SymRV/,.

>
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The map o Hi(Xm, (Vin)a) = Hi(Xmi2, (Vmi2)a) is an
isomorphism for k + 1 < M, for all R and A (MPPRW).
In general the stable H, are nonzero, leading to arithmetic
main terms (matched to Hy by a limiting process).

Using monodromy p: m1(Xum) — Qum C Sp(Vm) over C,
MPPRW build ker(Hk(XM, (VM))\) — Hk(BQM, (Vm))\))
out of Hyr1 w(Xm—mr, (Vm)a) for various pairs (k', M")
with k’ > 2 (by surjectivity of p) and M’ < k'.

If le(A\) >> k + 1, then le(\) —2M’ > le(A) — O(k) > 0,
so the restriction (Vi )x|sp(v,,_,,) has no trivial piece, by
branching rules for restriction between symplectic groups.
By vanishing results for Hi(Qu, -) (Borel et al.), we get
Hi(Xm, (Vm)a) = 0 via induction on k < oM — 1.

The case le(\) < k+ 1 < dM relies on stable branching,
and on a relative version of the argument above. 10



Analytic approach to extracting main terms

Idea: The stable traces can be evaluated at any M >> k + 1 of
our choice. In particular, we can enlarge M so that |)| lies
within the available sieve-theoretic level of distribution from
analytic number theory. (Already observed by BDPW.)

11



Analytic approach to extracting main terms

Idea: The stable traces can be evaluated at any M >> k + 1 of
our choice. In particular, we can enlarge M so that |)| lies
within the available sieve-theoretic level of distribution from
analytic number theory. (Already observed by BDPW.)

For instance, using Grothendieck—Lefschetz, and our earlier
bounds on (unstable) traces to justify manipulations,

Z(—l)klvlli_rgotr(Frq,Hk(XM,SymRVM))
:_ im 2 jml=q™ 2ori=q® H(r)Xm(r)

M—s00 quR/2

_ m r
- ul(?r) i 2imi=q Xm(7) o
q /2 M— oo qM

|r|=qR
since r # 1. However, this doesn't prove the deeper fact that
limar—s o0 tr(Frq, He(Xm, SymR Vi) = 0 for R > 4k (BDPW).

11



More general geometric families

Definition

Let s,n, 6 € N. Let P € k[t][x1,...,xs] be square-free. Let
k[t], denote the set of polynomials in k[t] of degree n. Define
the Poonen space X = X, 5 C Al""™* so that for k-algebras R,

X(R) = {(f..... ) € R[tl5 : P(f..... ) € R“-UConfy(R)}.

For s =1, P(f) = f: X(R) = {f € R[t], : disc(f) € R*},
which is essentially the setting of all the classical geometric
families (CFKRS et al.), such as L(-, xf).

12



More general geometric families

Definition

Let s,n, 6 € N. Let P € k[t][x1,...,xs] be square-free. Let
k[t], denote the set of polynomials in k[t] of degree n. Define
the Poonen space X = X, 5 C Al""™* so that for k-algebras R,

X(R) = {(f..... ) € R[tl5 : P(f..... ) € R“-UConfy(R)}.

For s =1, P(f) = f: X(R) = {f € R[t], : disc(f) € R*},
which is essentially the setting of all the classical geometric
families (CFKRS et al.), such as L(-, xf).

For general s and P, the space X is natural when studying, for
instance, the family of L-functions L(-, xp(,...x))-

Theorem (Poonen 2003)

: X F . )
Let k =F,. Then lim,_, #”(;"(,f—fl)’z(") exists. Power-saving

error term Op (g~ (")) where n <p 1/char(F,).



Aside: Another motivation for sieve study

Theorem (Elkies)
Let F(A, B, C) be the ternary cubic form

0A3+9A°B+3A%C+3AB?>—6ABC+3AC?+3B3+3B%C+BC?*+

P2 - Vps(x®*+y3+22+w?), [A: B: C]— [F(A B,C):
F(—A,B,—C): F(—A,—B,C) : F(A,—B,—C)] is birational. )

Corollary
H-T, T Py + 24w =0# x+y+z+w) < THe
(weak Manin conjecture) is equivalent to (1). Also, (2)=(1).
1. #{[1, N]® : gcd(a, b,c) = 1, ged(a, 3b + ¢?) ged(b, 3% +
c?) ged(c,3a% + b?) < G} /N3 <. N¢/G.
2. #{[1, N]? : gcd(a, b, c) =

1, sq(abc(3b% + c?)(3a° + b*> + c?)) < G?}/N® <, N/G.]

13


https://people.math.harvard.edu/~elkies/4cubes.html

Something probably doable

Question

Can sieve-theoretic topology methods (such as those of
[Das—Tosteson 2024]) compute the stable homology of some

Poonen spaces X, ydeg p(FFg) 0F X ndeg P(C) with polynomials

P(f) # f such as P(f) = f2 — 1 or P(f,f) = (f2 — f7)fifo, or

more generally products of linear things?

v

14



Something probably doable

Question

Can sieve-theoretic topology methods (such as those of
[Das—Tosteson 2024]) compute the stable homology of some
Poonen spaces andegP(Fq) or Xy ndeg p(C) with polynomials
P(f) # f such as P(f) = f2 — 1 or P(f,f) = (f2 — f7)fifo, or

more generally products of linear things?

v

The recent progress on quadratic Dirichlet L-functions is
monodromy-theoretic rather than sieve-theoretic. However, it
might be helpful to know the “answer” (stable homology) in
some cases, in order to guide further progress on square-free
values and statistics of geometric L-functions.

14



Complex Betti bounds

Let s,n, 6 € N. Let P € k[t][xi, ..., xs] be square-free. Let

k[t], denote the set of polynomials in k[t] of degree n. Define
the Poonen space X = X, 5 C AS("H)S so that for k-algebras R,

X(R) ={(fi,....£.) € R[] : P(f....,£) € R“-UConfs(R)}.

Proposition (W. 2025+)

Let k = C. Let deg,,, P := deg P +deg, P > 1. For every
local system L on X of finite-dimensional vector spaces over C,

Z dim H'(X, £) < exp(Ogeg,,, p(ns)) rank L.

i>0

15



Complex Betti bounds

Let s,n, 6 € N. Let P € k[t][xi, ..., xs] be square-free. Let

k[t], denote the set of polynomials in k[t] of degree n. Define

the Poonen space X = X, 5 C AS("H)S so that for k-algebras R,

X(R) ={(fi,....£.) € R[] : P(f....,£) € R“-UConfs(R)}.

Proposition (W. 2025+)

Let k = C. Let deg,,, P := deg P +deg, P > 1. For every
local system L on X of finite-dimensional vector spaces over C,

Z dim H'(X, £) < exp(Ogeg,,, p(ns)) rank L.

i>0

Proof.
1+(n+1)s

X is smooth, connected, and cut out in A, x UConfs(k)
by equations like “degree 1 + deg P poly = linear in ¢"... [

V.

15



Lemma

Let k =C. Let m,n,r,d > 1 be integers. Let

gi,---,8 € k[x]+ k[e] = k[x1, ..., xm] + Kk[ex, ..., en] such
that deg,(g;) < d and deg.(gj) <1 forall1<j<r. Let

W C k™ x UConf (k) C k™*" be the complex subvariety

g1 =---=g =0, where ¢ is the coordinate on

UConf,(k) C k" corresponding to the ith elementary symmetric
polynomial under the covering map PConf,(k) — UConf (k).
Assume W is smooth and connected. Then

Zdim H'(W, L) < exp(O4(m + n+r))rank L.

i>0
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Lemma

Let k =C. Let m,n,r,d > 1 be integers. Let

gi,---,8 € k[x]+ k[e] = k[x1, ..., xm] + Kk[ex, ..., en] such
that deg,(g;) < d and deg.(gj) <1 forall1<j<r. Let

W C k™ x UConf (k) C k™*" be the complex subvariety

g1 =---=g =0, where ¢ is the coordinate on

UConf,(k) C k" corresponding to the ith elementary symmetric
polynomial under the covering map PConf,(k) — UConf (k).
Assume W is smooth and connected. Then

Zdim H'(W, L) < exp(O4(m + n+r))rank L.

i>0

Proof.

W is affine. Slicing induction as in [Katz 2001], by Artin
vanishing and affine weak Lefschetz, reduces us to bounding
X(W, L) = x(W)rank £. But (W) =X < X0

n!

16



Lemma

Let k =C. Let m,n,r,d > 1 be integers. Let

gi,---,8 € k[x] + kl[e] = k[x1, ..., xm] + kle1, ..., en] such
that deg,(g;) < d and deg,(gj) <1 forall1<j<r. Let
V C k™ x PConf,(k) C k™" be the complex subvariety
gi(x,e) =---=g/(x,e) =0, where ¢ is the coordinate on
UConf,(k) C k" corresponding to the ith elementary
symmetric polynomial under the covering map

PConf,(k) — UConf,(k). Assume V is smooth. Then

Ix(V)| < exp(Og(m+n+r))-n"

17



Lemma

Let k =C. Let m,n,r,d > 1 be integers. Let

gi,---,8 € k[x] + kl[e] = k[x1, ..., xm] + kle1, ..., en] such
that deg,(g;) < d and deg,(gj) <1 forall1<j<r. Let
V C k™ x PConf,(k) C k™" be the complex subvariety
gi(x,e) =---=g/(x,e) =0, where e is the coordinate on
UConf,(k) C k" corresponding to the ith elementary
symmetric polynomial under the covering map

PConf,(k) — UConf,(k). Assume V is smooth. Then

Ix(V)| < exp(Og(m+n+r))-n"

Proof.

V' is smooth, so (V) = xc(V). But V C k™" C klm+2n)+n
is the zero locus of r 4 2n polynomials: gj(x,e) for 1 < j <,
and v,-—]_[,#,.(z,—z,-) and viw; — 1 for1 </ <n... O

V.

17



Proof.

... Use the following lemma with n, = d, = n. D)

Lemma (Adolphson—Sperber 1987; “Dwork theory”)

Let k be an algebraically closed field. Let ¢ be a prime number
invertible in k. Let ny, n,, r,dy,dr > 1 be integers. Let

fi,..., f € kx] + kly] = k[x1, ..., o] + kl¥1, - - -, Yn,] SUCh
that deg,(f;) < di and deg,(f;) < d» forall1 < j <r. Then

IXc(Spec(kx, y]/(h, .- -, £)))| < exp(O(m + ny +r))di*dy®.

18



Proof.

.. Use the following lemma with n, = d, = n. O

v

Lemma (Adolphson—Sperber 1987; “Dwork theory”)

Let k be an algebraically closed field. Let ¢ be a prime number
invertible in k. Let ny, n,, r,dy,dr > 1 be integers. Let

fi,..., f € kx] + kly] = k[x1, ..., o] + kl¥1, - - -, Yn,] SUCh
that deg,(f;) < di and deg,(f;) < d» forall1 < j <r. Then

IXc(Spec(kx, y]/(h, .- -, £)))| < exp(O(m + ny +r))di*dy®.

Proof.
LHS < exp(O(ny + na+r)) - (n + np)!vol(Sg,.a,), Where Sg, 4,
is the convex hull of 0, dye, ..., diey, dren 11, ..., d2€n1n, IN

R™*" By a diagonal re-scaling of R”l+”2 we have
vol(Say.a,) = di*dy? vol(S11) = . (Cf. [Weil 1949].) [

n +n2

v
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An affine stabilization map
Let P € k[x] C k|[t][x]. Define X = X,; C A7™! so that
X(R) = {f € R[t] : deg(f) = n, P(f) € R* - UConfs(R)}.

Lemma (W. 2025+)
Let k be a field. Let m,n > 1 be integers. Let

j € (1+t-K[e]) N (K - UConf(k¥)).

Let f € Xnndegp. Then j(et)f(t) € Xmin(m+n)degp for all € in
a punctured neighborhood of 0 € Al.

V.

19



An affine stabilization map

Let P € k[x] C k|[t][x]. Define X = X,; C A7™! so that
X(R) = {f € R[t] : deg(f) = n, P(f) € R* - UConfs(R)}.

Lemma (W. 2025+)
Let k be a field. Let m,n > 1 be integers. Let

j € (1+t-K[e]) N (K - UConf(k¥)).

Let f € Xnndegp. Then j(et)f(t) € Xmin(m+n)degp for all € in
a punctured neighborhood of 0 € Al.

V.

Proof.

If k = C, use Rouché'’s theorem. In general, use discriminants,
Gauss' lemma, and Newton polygons, over the valued field
k((€)), and use a change of variables t — r := et. O

v
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A projective stabilization map

Same argument gives a nicer result in the following setting: Let

P € k[xi,...,xs] be homogeneous. Let f™(t) := t4 & f(1).

Let a, b,a’, b, A € (k¥)°. Let XZP*A(R) be

{(f,...,£) € R[] : [F(0): - f(0)] =[ay: - :a) € P,
[A(0):--: £(0)] =[by:---:b] P
P()\lfb ceey )\sfs) c R*. UConf,,degp(RX)}.

Lemma (W. 2025-+)

I, ..o js) € X3 PMY and (£,...,£) € X2PX then
(i(et)A(t), - .. Js(et) (1)) € X22EPAY for all c in a
punctured neighborhood of 0 € A'.
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A projective stabilization map

Same argument gives a nicer result in the following setting: Let

P € k[xi,...,xs] be homogeneous. Let f™(t) := t4 & f(1).

Let a, b,a’, b, A € (k¥)°. Let XZP*A(R) be

{(f,...,£) € R[] : [F(0): - f(0)] =[ay: - :a) € P,
[A(0):--: £(0)] =[by:---:b] P
P()\lfb ceey )\sfs) c R*. UConf,,degp(RX)}.

Lemma (W. 2025-+)

I, ..o js) € X3 PMY and (£,...,£) € X2PX then
(i(et)A(t), - .. Js(et) (1)) € X22EPAY for all c in a
punctured neighborhood of 0 € A'.

This suggests that X}1*(C) is a braided monoid (with braiding
t— t/ease—0), and C,(X2*!(C)) is a bi-module over
(X1ta(C), XI1E(C)). Can we build cells over (C.(X),m1)? 20



General approaches to consider

Say we're interested in a geometric family Yy, of L-functions
(e.g. a Poonen space), possibly within a larger family Xj.
1. One might try to generalize the cell-based inductive
approach of MPPRW to Y), or Xy, possibly introducing
new ideas to build cells and set up the induction.
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General approaches to consider

Say we're interested in a geometric family Yy, of L-functions
(e.g. a Poonen space), possibly within a larger family Xj.

1. One might try to generalize the cell-based inductive
approach of MPPRW to Y), or Xy, possibly introducing
new ideas to build cells and set up the induction.

2. If the fact (due to BDPW + MPPRW) that

tr(Frq, He(Xum, SymR Vm)) =0 (1)

for M, R >> k + 1 is robust enough to hold more generally,
then one might hope to express Xj, as an average of
families Yy ,, indexed by some parameter a with
Yumo = Ywm, and use fiber comparison methods of [Sawin,
Acta 2024] to prove the same vanishing result for Y).

3. The recursive analytic methods of Soundararajan, Harper,
Bui—Florea—Keating, et al., writing 1/L = exp(—log L), are

currently the most flexible approach available.
21



Let L(s, c) be the L-function of V. : 53 + -+ +x2 =c-x =0,
where ¢ = (¢, ..., ¢) € Fy[t]°, with ged(g,6) = 1 and
Ac) =disc(Vo) = [[(? + &P+ £ %) #0.

Theorem (Browning—Glas—W. 2024)

Assume suftficient progress on moments of for A(c) #0.

Then x3 —|— y®+ 23 = n is soluble in e/ements X ¥,z € Fylt] of
degree ~ % deg n for a density 1 of elements n € Fy[t].

Builds on ideas of many authors, such as the following:

» Ghosh-Sarnak, Diaconu (log-K3 variance analysis),
Kloosterman, Hooley 1986, Heath-Brown,
Beauville (quadric bundles over P?), Getz, Tran,
Rubinstein-Sarnak (Chebyshev's bias via prime squares),
Deligne (GRH), Hooley 1994 (singular cubics),
Huang (= Q-points), Busé—Jouanolou (A € (f,(f')?)),
Bhargava (Ekedahl sieve), Poonen (square-free sieve),
Kisin (local constancy of L-factors). 2
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Variance analysis

We actually reduce everything to counting solutions to
6
> =0
i=1

in certain regions of F,[t]°. A homogeneous equation of degree
d in 2d variables lies at the square-root barrier. The expected
asymptotic (Manin et al.) often features two main terms of the
same order of magnitude.
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Variance analysis

We actually reduce everything to counting solutions to

6
E x? =0
i=1

in certain regions of F,[t]°. A homogeneous equation of degree
d in 2d variables lies at the square-root barrier. The expected
asymptotic (Manin et al.) often features two main terms of the
same order of magnitude.

The hyperplane sections

Veixg+ -+ =c-x=0,

for c = (c1,...,¢) € Fy[t]°, and especially their L-functions,
arise through the circle method and Fourier analysis. Analysis
of these hyperplane sections branches out based on the
vanishing, size, and divisibility of A(c).

23



A deformation along the square-root barrier

Browning, Munshi, and | (2025+) hope to use the smooth
(Duke—Friedlander—lwaniec) version of the circle method to
prove an unconditional asymptotic over Q for the singular

6-variable homogeneous cubic equation

xy; + xys + xay; =0

named after Perazzo.
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A deformation along the square-root barrier

Browning, Munshi, and | (2025+) hope to use the smooth
(Duke—Friedlander—lwaniec) version of the circle method to
prove an unconditional asymptotic over Q for the singular

6-variable homogeneous cubic equation

xy; + xys + xay; =0

named after Perazzo. This can be viewed as a deformation of a
smooth 6-variable cubic like the Fermat

6
E x? =0
i=1

considered in [Browning—Glas—W. 2024]. Whereas L-functions
turn out to be less important here, certain divisor problems play
a more prominent role (which we hope to handle via Hooley
A-functions; cf. [de la Breteche-Tenenbaum 2024]).
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