Log K3 and zeta statistics

Victor Wang (based on work of many authors)

IST Austria

Moments in Families of *L*-Functions over Function Fields, AIM, April 2025

This project has received funding from the European Union's Horizon 2020 research and innovation program

under the Marie Skłodowska-Curie Grant Agreement No. 101034413

What do the following have in common?

- (1) Varieties of commuting matrices.
- (2) Markov-type surfaces $x^2 + y^2 + z^2 xyz = k$.
- (3) Moment, ratio, and zero statistics of *L*-function families.
- (4) The singular dP4 surface $x_0^2 + x_0x_3 + x_2x_4 = x_1x_3 x_2^2 = 0$, possibly blown up at singularities $\mathbf{A}_3 + \mathbf{A}_1$, or (repeatedly) at intersections of lines and/or exceptional divisors.

¹Generalizes to any punctured surface (J. Whang); good candidate for studying Hasse failures (cf. Colliot-Thélène–Wei–Xu, Loughran–Mitankin).

What do the following have in common?

- (1) Varieties of commuting matrices.
- (2) Markov-type surfaces $x^2 + y^2 + z^2 xyz = k$.
- (3) Moment, ratio, and zero statistics of L-function families.
- (4) The singular dP4 surface $x_0^2 + x_0x_3 + x_2x_4 = x_1x_3 x_2^2 = 0$, possibly blown up at singularities $\mathbf{A}_3 + \mathbf{A}_1$, or (repeatedly) at intersections of lines and/or exceptional divisors.

All exhibit symmetry, and connect to representation theory.

- Modulo conjugation, (1) is a character variety of a torus.
- ► (2) is a *relative character variety* of a punctured torus.¹
- (3) carries a monodromy representation (Deligne).
- ► (4) is a *solv-variety* (Derenthal–Loughran).
- (3) and (4) involve interesting compactifications. Over F_q(t), homological stability might hold (cf. Boyer et al.).

¹Generalizes to any punctured surface (J. Whang); good candidate for studying Hasse failures (cf. Colliot-Thélène–Wei–Xu, Loughran–Mitankin).

Integer points on log K3 surfaces

The Markov-type surface $x^2 + y^2 + z^2 - xyz = k$ is log Calabi–Yau. We are interested in solutions $(x, y, z) \in \mathbb{Z}^3$.

- Heuristically, expect only O_k((log B)²) solutions with max(|x|, |y|, |z|) ≤ B, as B → ∞. More generally, see conjectures of [Browning–Wilsch 2024].
- Such Diophantine equations lie at the boundary between heuristic solubility and paucity. Any integer solutions only barely exist (on average)!

Integer points on log K3 surfaces

The Markov-type surface $x^2 + y^2 + z^2 - xyz = k$ is log Calabi-Yau. We are interested in solutions $(x, y, z) \in \mathbb{Z}^3$.

- Heuristically, expect only O_k((log B)²) solutions with max(|x|, |y|, |z|) ≤ B, as B → ∞. More generally, see conjectures of [Browning–Wilsch 2024].
- Such Diophantine equations lie at the boundary between heuristic solubility and paucity. Any integer solutions only barely exist (on average)!
- Another, infamous, example of a log K3 surface is the sum of 3 cubes problem x³ + y³ + z³ = k. For k = 42 the only known solution [Booker–Sutherland 2019] is

 $(-80538738812075974)^3 + (80435758145817515)^3 + (126021232)^3 + (1260223)^3 + (126021232)^3 + (1260223)^3 + (1260223)^3 + ($

 These problems test the limits of our understanding.
 They are directly adjacent to undecidable problems. (∃ undecidable quartic equations over Z.)

Solubility of Markov-type surfaces

The polynomial $M = x^2 + y^2 + z^2 - xyz$ is fixed by a group $\Gamma \subseteq \operatorname{Aut}(M)$, where Γ is formed by S_3 , sign changes ± 1 , and Vieta involutions $(x, y, z) \mapsto (x, y, xy - z)$. Let $h_M(k)$ be the number of Γ -orbits of the set $\{(x, y, z) \in \mathbb{Z}^3 : M = k\}$.

Theorem (Ghosh–Sarnak 2017)

We have $h_M(k) \to \infty$ along a density 1 of admissible^a $k \in \mathbb{Z}$. In particular, the integral Hasse principle holds for almost all $k \in \mathbb{Z}$.

 $^{a}k \not\equiv 3 \mod 4$ and $k \not\equiv \pm 3 \mod 9$

Solubility of Markov-type surfaces

The polynomial $M = x^2 + y^2 + z^2 - xyz$ is fixed by a group $\Gamma \subseteq \operatorname{Aut}(M)$, where Γ is formed by S_3 , sign changes ± 1 , and Vieta involutions $(x, y, z) \mapsto (x, y, xy - z)$. Let $h_M(k)$ be the number of Γ -orbits of the set $\{(x, y, z) \in \mathbb{Z}^3 : M = k\}$.

Theorem (Ghosh–Sarnak 2017)

We have $h_M(k) \to \infty$ along a density 1 of admissible^a $k \in \mathbb{Z}$. In particular, the integral Hasse principle holds for almost all $k \in \mathbb{Z}$.

 $^{a}k \not\equiv 3 \mod 4$ and $k \not\equiv \pm 3 \mod 9$

Theorem (Mishra 2024; lower bound is new)

Fix $\epsilon > 0$. The inequality $(\log |k|)^{2-\epsilon} \leq h_M(k) \leq (\log |k|)^{2+\epsilon}$ holds for a density 1 of admissible $k \in \mathbb{Z}$.

(Upper bound \leftarrow Ghosh–Sarnak + Markov's inequality.)

For all k < 0 (and for all "generic" $k \ge 5$), Ghosh–Sarnak construct a fundamental domain \mathcal{F}_k for the action of Γ on $\{(x, y, z) \in \mathbb{Z}^3 : x^2 + y^2 + z^2 - xyz = k\}$. Let $r_M(k)$ be the number of points in a well-chosen region $\mathcal{F}'_k \subseteq \mathcal{F}_k$.

- For Ghosh–Sarnak, \mathcal{F}'_k satisfies $|x| \asymp |yz| \asymp |k|^{1/2}$ and $|z| \le |k|^{\epsilon}$. Real density of solutions: $\sigma_{\infty}(k) \asymp \epsilon \log |k|$.
- ► For Mishra, \mathcal{F}'_k is part of a \mathbb{G}^2_m -torus $|xyz| \asymp |k|$, with $|k|^{\delta} \le |x/y| \le |k|^{-\delta} |z| \le |k|^{2\delta}$. Here $\sigma_{\infty}(k) \asymp (\log |k|)^2$.

For all k < 0 (and for all "generic" $k \ge 5$), Ghosh–Sarnak construct a fundamental domain \mathcal{F}_k for the action of Γ on $\{(x, y, z) \in \mathbb{Z}^3 : x^2 + y^2 + z^2 - xyz = k\}$. Let $r_M(k)$ be the number of points in a well-chosen region $\mathcal{F}'_k \subseteq \mathcal{F}_k$.

- For Ghosh–Sarnak, \mathcal{F}'_k satisfies $|x| \simeq |yz| \simeq |k|^{1/2}$ and $|z| \le |k|^{\epsilon}$. Real density of solutions: $\sigma_{\infty}(k) \simeq \epsilon \log |k|$.
- For Mishra, \mathcal{F}'_k is part of a \mathbb{G}^2_m -torus $|xyz| \asymp |k|$, with $|k|^{\delta} \le |x/y| \le |k|^{-\delta} |z| \le |k|^{2\delta}$. Here $\sigma_{\infty}(k) \asymp (\log |k|)^2$.

One then expands and upper-bounds an arithmetic variance

$$Var(K,A) := \sum_{k \leq K} (r_M(k) - r_M^{loc}(k;A))^2.$$

- The sum $\sum_{k \le K} r_M(k)^2$ counts solutions in a region to $x^2 + y^2 + z^2 xyz = u^2 + v^2 + w^2 uvw$.
- Here r^{loc}_M(k; A) is roughly a truncated L-function at 1. Ghosh–Sarnak (resp. Mishra) use a multiplicative (resp. additive) truncation.
- Some of this generalizes to sums of three cubes.

Let L(s, c) be the *L*-function of $V_c : x_1^3 + \cdots + x_6^3 = c \cdot x = 0$, where $c = (c_1, \ldots, c_6) \in \mathbb{F}_q[t]^6$, with gcd(q, 6) = 1 and $\Delta(c) := disc(V_c) = \prod (c_1^{3/2} \pm c_2^{3/2} \pm \cdots \pm c_6^{3/2}) \neq 0$.

Theorem (Browning-Glas-W. 2024)

Assume sufficient progress on moments of $\frac{1}{L(s,c)}$ for $\Delta(c) \neq 0$. Then $x^3 + y^3 + z^3 = n$ is soluble in elements $x, y, z \in \mathbb{F}_q[t]$ of degree $\sim \frac{1}{3} \deg n$ for a density 1 of elements $n \in \mathbb{F}_q[t]$. Let L(s, c) be the *L*-function of $V_c : x_1^3 + \cdots + x_6^3 = c \cdot x = 0$, where $c = (c_1, \ldots, c_6) \in \mathbb{F}_q[t]^6$, with gcd(q, 6) = 1 and $\Delta(c) := disc(V_c) = \prod (c_1^{3/2} \pm c_2^{3/2} \pm \cdots \pm c_6^{3/2}) \neq 0$.

Theorem (Browning-Glas-W. 2024)

Assume sufficient progress on moments of $\frac{1}{L(s,c)}$ for $\Delta(c) \neq 0$. Then $x^3 + y^3 + z^3 = n$ is soluble in elements $x, y, z \in \mathbb{F}_q[t]$ of degree $\sim \frac{1}{3} \deg n$ for a density 1 of elements $n \in \mathbb{F}_q[t]$.

Builds on ideas of many authors, such as the following:

- Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
- Kloosterman, Hooley 1986, Heath-Brown,
- Beauville (quadric bundles over \mathbb{P}^2), Getz, Tran,
- Rubinstein–Sarnak (Chebyshev's bias via prime squares),
- Deligne (GRH), Hooley 1994 (singular cubics),
- ► Huang ($\approx \mathbb{Q}$ -points), Busé–Jouanolou ($\Delta \in (f, (f')^2)$),
- Bhargava (Ekedahl sieve), Poonen (square-free sieve),
- ► Kisin (local constancy of *L*-factors).

What kind of progress on *L*-functions?

Let $2 \nmid q$. Let $\mu(r)$ be the Möbius function over $\mathbb{F}_q[t]$, and let $\chi_m(r) = (\frac{r}{m})$ be the Jacobi symbol over $\mathbb{F}_q[t]$.

Theorem (Bergström–Diaconu–Petersen–Westerland, Miller–Patzt–Petersen–Randal-Williams, W. 2024) If $1 \le M = 2g + 1$ and $1 \le R \le \alpha M$, and $q \gg_{\alpha} 1$, then

$$rac{\sum_{|m|=q^M}\sum_{|r|=q^R}\mu(r)\chi_m(r)}{q^Mq^{R/2}}\ll q^{-0.001M+O(1)},$$

where the sums over m and r run through square-free, monic $m, r \in \mathbb{F}_q[t]$ with deg m = M and deg r = R, respectively.

Theorem (Same papers; new for $q = p \equiv 1 \mod 4$) The set $\{m : L(\frac{1}{2}, \chi_m) = 0\}$ has upper density $o_{q \to \infty}(1)$.

Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,

$$\frac{\sum_{|m|=q^{M}}\sum_{|r|=q^{R}}\mu(r)\chi_{m}(r)}{q^{M}q^{R/2}} = \sum_{k\geq 0} (-1)^{k} \operatorname{tr}(Fr_{q}, H_{k}(X_{M}, Sym^{R}V_{M})),$$

where $X_M = \text{UConf}_M(\mathbb{A}^1) = \{m : \text{disc}(m) \neq 0\}$, and where V_M is a local system on X_M with fibers $H^1_c(\{y^2 = m(t)\}, \overline{\mathbb{Q}}_\ell(\frac{1}{2}))$ of dimension 2g over $m \in X_M$. Captures zeros of $L(s, \chi_m)$.

²"Obstructions to cancellation". For instance, $H_0 = (Sym^R V_M)_{\pi_1(X_M)}$.

Homological stability approach

Recall that M = 2g + 1. By the Lefschetz trace formula,

$$\frac{\sum_{|m|=q^{M}}\sum_{|r|=q^{R}}\mu(r)\chi_{m}(r)}{q^{M}q^{R/2}} = \sum_{k\geq 0} (-1)^{k} \operatorname{tr}(Fr_{q}, H_{k}(X_{M}, Sym^{R}V_{M})),$$

where $X_M = \text{UConf}_M(\mathbb{A}^1) = \{m : \text{disc}(m) \neq 0\}$, and where V_M is a local system on X_M with fibers $H^1_c(\{y^2 = m(t)\}, \overline{\mathbb{Q}}_\ell(\frac{1}{2}))$ of dimension 2g over $m \in X_M$. Captures zeros of $L(s, \chi_m)$.

- ► The first few homology groups $H_k = H_c^{2M-k}$ are the most significant.² By Deligne, $\operatorname{tr}(Fr_q, H_k) \leq q^{-k/2} \dim H_k$. It is also known that $\dim H_k \leq 2^M \binom{R+2g-1}{R} \leq 2^M 2^{R+2g-1}$. Thus $\dim H_k \leq 2^{(2+\alpha)M}$, since $1 \leq R \leq \alpha M$.
- By geometric series, ∑_{k+1>δM} is negligible if q^{δ/2} ≥ 3^{2+α}.
 We are left with estimating ∑_{k+1≤δM}. Want a stability isomorphism H_k(X_M, Sym^RV_M) → H_k(X_{M+2}, Sym^RV_{M+2}).
 ²"Obstructions to cancellation". For instance, H₀ = (Sym^RV_M)_{π1(X_M)}.

No useful map $X_M \to X_{M+2}$. So BDPW compactify a quotient of X_M into a space X'_M . Want gluing/stabilization maps $\sigma \colon X'_M \to X'_{M+2}$ and $\tau \colon V_M \to \sigma^* V_{M+2}$.

- ▶ Roughly, if $m(t) \in X_M$, then $\sigma(m(t)) \in X'_{M+2}$ could be a stable map $\mathbb{P}^1 \cup_{\{\infty\} \sim \{0\}} \mathbb{A}^1 \to \mathbb{P}^1$ extending m(t).
- There are many possible maps σ. The collection of possible σ has a braided monoidal structure.
- ▶ In general, $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$. This is different than maps like multiplication in $\mathbb{F}_q[t]$. (More on this later...)

No useful map $X_M \to X_{M+2}$. So BDPW compactify a quotient of X_M into a space X'_M . Want gluing/stabilization maps $\sigma \colon X'_M \to X'_{M+2}$ and $\tau \colon V_M \to \sigma^* V_{M+2}$.

- ▶ Roughly, if $m(t) \in X_M$, then $\sigma(m(t)) \in X'_{M+2}$ could be a stable map $\mathbb{P}^1 \cup_{\{\infty\} \sim \{0\}} \mathbb{A}^1 \to \mathbb{P}^1$ extending m(t).
- There are many possible maps σ. The collection of possible σ has a braided monoidal structure.
- ▶ In general, $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$. This is different than maps like multiplication in $\mathbb{F}_q[t]$. (More on this later...)
- Here σ maps X'_M into the boundary ∂X'_{M+2} ⊆ X'_{M+2}. The map τ on H¹_c is induced by proper base change ("deformation retraction onto the boundary") and a collapse map σ(X'_M) → X'_M.
- By log geometry, H_k(X'_M, Sym^RV_M) = H_k(X_M, Sym^RV_M). A map σ: H_k(X_M, Sym^RV_M) → H_k(X_{M+2}, Sym^RV_{M+2}) thus arises via σ and τ. It can be checked to agree with a topological version of the map over ℂ.

The local system V_M is symplectic, by Poincaré duality on H_c^1 . So $(V_M)^{\otimes R}$ breaks up into symplectic pieces $(V_M)_{\lambda}$ associated to partitions λ of R, with $\lambda = (R)$ giving $Sym^R V_M$.

- ▶ The map $\sigma: H_k(X_M, (V_M)_\lambda) \to H_k(X_{M+2}, (V_{M+2})_\lambda)$ is an isomorphism for $k + 1 \leq \delta M$, for all R and λ (MPPRW).
- ln general the stable H_k are nonzero, leading to arithmetic main terms (matched to H_k by a limiting process).

The local system V_M is symplectic, by Poincaré duality on H_c^1 . So $(V_M)^{\otimes R}$ breaks up into symplectic pieces $(V_M)_{\lambda}$ associated to partitions λ of R, with $\lambda = (R)$ giving $Sym^R V_M$.

- ▶ The map $\sigma: H_k(X_M, (V_M)_\lambda) \to H_k(X_{M+2}, (V_{M+2})_\lambda)$ is an isomorphism for $k + 1 \leq \delta M$, for all R and λ (MPPRW).
- ln general the stable H_k are nonzero, leading to arithmetic main terms (matched to H_k by a limiting process).
- ▶ Using monodromy ρ : $\pi_1(X_M) \twoheadrightarrow Q_M \subseteq Sp(V_M)$ over \mathbb{C} , MPPRW build ker $(H_k(X_M, (V_M)_{\lambda}) \to H_k(BQ_M, (V_M)_{\lambda}))$ out of $H_{k+1-k'}(X_{M-M'}, (V_M)_{\lambda})$ for various pairs (k', M')with $k' \ge 2$ (by surjectivity of ρ) and $M' \ll k'$.
- If le(λ) ≫ k + 1, then le(λ) 2M' ≥ le(λ) O(k) > 0, so the restriction (V_M)_λ|_{Sp(V_{M-M'})} has no trivial piece, by branching rules for restriction between symplectic groups. By vanishing results for H_k(Q_M, ·) (Borel et al.), we get H_k(X_M, (V_M)_λ) = 0 via induction on k ≤ δM 1.
 The case le(λ) ≪ k + 1 < δM relies on stable branching.

and on a relative version of the argument above.

Analytic approach to extracting main terms

Idea: The stable traces can be evaluated at any $M \gg k + 1$ of our choice. In particular, we can enlarge M so that $|\lambda|$ lies within the available sieve-theoretic *level of distribution* from analytic number theory. (Already observed by BDPW.)

Analytic approach to extracting main terms

Idea: The stable traces can be evaluated at any $M \gg k+1$ of our choice. In particular, we can enlarge M so that $|\lambda|$ lies within the available sieve-theoretic *level of distribution* from analytic number theory. (Already observed by BDPW.) For instance, using Grothendieck–Lefschetz, and our earlier bounds on (unstable) traces to justify manipulations,

$$\sum_{k\geq 0} (-1)^k \lim_{M\to\infty} \operatorname{tr}(Fr_q, H_k(X_M, \operatorname{Sym}^R V_M))$$

=
$$\lim_{M\to\infty} \frac{\sum_{|m|=q^M} \sum_{|r|=q^R} \mu(r)\chi_m(r)}{q^M q^{R/2}}$$

=
$$\sum_{|r|=q^R} \frac{\mu(r)}{q^{R/2}} \lim_{M\to\infty} \frac{\sum_{|m|=q^M} \chi_m(r)}{q^M} = 0,$$

since $r \neq 1$. However, this doesn't prove the deeper fact that $\lim_{M\to\infty} tr(Fr_q, H_k(X_M, Sym^R V_M)) = 0$ for R > 4k (BDPW).

More general geometric families

Definition

Let $s, n, \delta \in \mathbb{N}$. Let $P \in k[t][x_1, \ldots, x_s]$ be square-free. Let $k[t]_n$ denote the set of polynomials in k[t] of degree n. Define the Poonen space $X = X_{n,\delta} \subseteq \mathbb{A}_k^{(n+1)s}$ so that for k-algebras R,

$$X(R) = \{(f_1, \ldots, f_s) \in R[t]_n^s : P(f_1, \ldots, f_s) \in R^{\times} \cdot \mathsf{UConf}_{\delta}(R)\}.$$

For s = 1, P(f) = f: $X(R) = \{f \in R[t]_n : \operatorname{disc}(f) \in R^{\times}\}$, which is essentially the setting of all the classical geometric families (CFKRS et al.), such as $L(\cdot, \chi_f)$.

More general geometric families

Definition

Let $s, n, \delta \in \mathbb{N}$. Let $P \in k[t][x_1, \ldots, x_s]$ be square-free. Let $k[t]_n$ denote the set of polynomials in k[t] of degree n. Define the Poonen space $X = X_{n,\delta} \subseteq \mathbb{A}_k^{(n+1)s}$ so that for k-algebras R,

$$X(R) = \{(f_1, \ldots, f_s) \in R[t]_n^s : P(f_1, \ldots, f_s) \in R^{\times} \cdot \mathsf{UConf}_{\delta}(R)\}.$$

For s = 1, P(f) = f: $X(R) = \{f \in R[t]_n : \operatorname{disc}(f) \in R^{\times}\}$, which is essentially the setting of all the classical geometric families (CFKRS et al.), such as $L(\cdot, \chi_f)$. For general s and P, the space X is natural when studying, for

instance, the family of *L*-functions $L(\cdot, \chi_{P(f_1,...,f_s)})$.

Theorem (Poonen 2003)

Let $k = \mathbb{F}_q$. Then $\lim_{n\to\infty} \frac{\#X_{n,n\deg P}(\mathbb{F}_q)}{q^{(n+1)s}}$ exists. Power-saving error term $O_{P,q}(q^{-(n+1)s\eta})$ where $\eta \simeq_P 1/\operatorname{char}(\mathbb{F}_q)$.

Aside: Another motivation for sieve study

Theorem (Elkies)

Let F(A, B, C) be the ternary cubic form

 $9A^{3}+9A^{2}B+3A^{2}C+3AB^{2}-6ABC+3AC^{2}+3B^{3}+3B^{2}C+BC^{2}+C^{3}$

 $\mathbb{P}^2 \dashrightarrow V_{\mathbb{P}^3}(x^3 + y^3 + z^3 + w^3), \ [A : B : C] \mapsto [F(A, B, C) : F(-A, B, -C) : F(-A, -B, C) : F(A, -B, -C)] \ is \ birational.$

Corollary

$$\begin{split} &\#\{[-T, T]^4 : x^3 + y^3 + z^3 + w^3 = 0 \neq x + y + z + w\} \ll_{\epsilon} T^{1+\epsilon} \\ &(\textit{weak Manin conjecture}) \textit{ is equivalent to } (1). \textit{ Also, } (2) \Rightarrow (1). \\ &1. \ \#\{[1, N]^3 : \gcd(a, b, c) = 1, \ \gcd(a, 3b^2 + c^2) \gcd(b, 3a^2 + c^2) \gcd(c, 3a^2 + b^2) \asymp G\} / N^3 \ll_{\epsilon} N^{\epsilon} / G. \end{split}$$

2.
$$\#\{[1, N]^3 : \gcd(a, b, c) = 1, \ \operatorname{sq}(abc(3b^2 + c^2)(3a^2 + b^2 + c^2)) \asymp G^2\}/N^3 \ll_{\epsilon} N^{\epsilon}/G.$$

13

Something probably doable

Question

Can sieve-theoretic topology methods (such as those of [Das–Tosteson 2024]) compute the stable homology of some Poonen spaces $X_{n,n \deg P}(\overline{\mathbb{F}}_q)$ or $X_{n,n \deg P}(\mathbb{C})$ with polynomials $P(f) \neq f$ such as $P(f) = f^2 - 1$ or $P(f_1, f_2) = (f_1^2 - f_2^2)f_1f_2$, or more generally products of linear things?

Something probably doable

Question

Can sieve-theoretic topology methods (such as those of [Das–Tosteson 2024]) compute the stable homology of some Poonen spaces $X_{n,n \deg P}(\overline{\mathbb{F}}_q)$ or $X_{n,n \deg P}(\mathbb{C})$ with polynomials $P(f) \neq f$ such as $P(f) = f^2 - 1$ or $P(f_1, f_2) = (f_1^2 - f_2^2)f_1f_2$, or more generally products of linear things?

The recent progress on quadratic Dirichlet *L*-functions is monodromy-theoretic rather than sieve-theoretic. However, it might be helpful to know the "answer" (stable homology) in some cases, in order to guide further progress on square-free values and statistics of geometric *L*-functions.

Complex Betti bounds

Let $s, n, \delta \in \mathbb{N}$. Let $P \in k[t][x_1, \ldots, x_s]$ be square-free. Let $k[t]_n$ denote the set of polynomials in k[t] of degree n. Define the *Poonen space* $X = X_{n,\delta} \subseteq \mathbb{A}_k^{(n+1)s}$ so that for k-algebras R, $X(R) = \{(f_1, \ldots, f_s) \in R[t]_n^s : P(f_1, \ldots, f_s) \in R^{\times} \cdot \mathsf{UConf}_{\delta}(R)\}.$

Proposition (W. 2025+) Let $k = \mathbb{C}$. Let $\deg_{tot} P := \deg P + \deg_t P \ge 1$. For every local system \mathcal{L} on X of finite-dimensional vector spaces over \mathbb{C} ,

$$\sum_{i\geq 0} \dim H^i(X,\mathcal{L}) \leq \exp(O_{\deg_{tot}P}(ns)) \operatorname{rank} \mathcal{L}.$$

Complex Betti bounds

Let $s, n, \delta \in \mathbb{N}$. Let $P \in k[t][x_1, \ldots, x_s]$ be square-free. Let $k[t]_n$ denote the set of polynomials in k[t] of degree n. Define the *Poonen space* $X = X_{n,\delta} \subseteq \mathbb{A}_k^{(n+1)s}$ so that for k-algebras R, $X(R) = \{(f_1, \ldots, f_s) \in R[t]_n^s : P(f_1, \ldots, f_s) \in R^{\times} \cdot \mathsf{UConf}_{\delta}(R)\}.$

Proposition (W. 2025+) Let $k = \mathbb{C}$. Let $\deg_{tot} P := \deg P + \deg_t P \ge 1$. For every local system \mathcal{L} on X of finite-dimensional vector spaces over \mathbb{C} ,

$$\sum_{i\geq 0} \dim H^i(X,\mathcal{L}) \leq \exp(O_{\deg_{tot}P}(ns))$$
 rank \mathcal{L} .

Proof.

X is smooth, connected, and cut out in $\mathbb{A}_{k}^{1+(n+1)s} \times \mathrm{UConf}_{\delta}(k)$ by equations like "degree $1 + \deg P$ poly = linear in e_{i} "...

Let $k = \mathbb{C}$. Let $m, n, r, d \ge 1$ be integers. Let $g_1, \ldots, g_r \in k[x] + k[e] = k[x_1, \ldots, x_m] + k[e_1, \ldots, e_n]$ such that $\deg_x(g_j) \le d$ and $\deg_e(g_j) \le 1$ for all $1 \le j \le r$. Let $W \subseteq k^m \times \operatorname{UConf}_n(k) \subseteq k^{m+n}$ be the complex subvariety $g_1 = \cdots = g_r = 0$, where e_i is the coordinate on $\operatorname{UConf}_n(k) \subseteq k^n$ corresponding to the ith elementary symmetric polynomial under the covering map $\operatorname{PConf}_n(k) \to \operatorname{UConf}_n(k)$. Assume W is smooth and connected. Then

$$\sum_{i\geq 0} \dim H^i(W,\mathcal{L}) \leq \exp(O_d(m+n+r)) \operatorname{rank} \mathcal{L}.$$

Let $k = \mathbb{C}$. Let $m, n, r, d \ge 1$ be integers. Let $g_1, \ldots, g_r \in k[x] + k[e] = k[x_1, \ldots, x_m] + k[e_1, \ldots, e_n]$ such that $\deg_x(g_j) \le d$ and $\deg_e(g_j) \le 1$ for all $1 \le j \le r$. Let $W \subseteq k^m \times \operatorname{UConf}_n(k) \subseteq k^{m+n}$ be the complex subvariety $g_1 = \cdots = g_r = 0$, where e_i is the coordinate on $\operatorname{UConf}_n(k) \subseteq k^n$ corresponding to the ith elementary symmetric polynomial under the covering map $\operatorname{PConf}_n(k) \to \operatorname{UConf}_n(k)$. Assume W is smooth and connected. Then

$$\sum_{i\geq 0} \dim H^i(W,\mathcal{L}) \leq \exp(O_d(m+n+r)) \operatorname{rank} \mathcal{L}.$$

Proof.

W is affine. Slicing induction as in [Katz 2001], by Artin vanishing and affine weak Lefschetz, reduces us to bounding $\chi(W, \mathcal{L}) = \chi(W)$ rank \mathcal{L} . But $\chi(W) = \frac{\chi(V)}{n!} \ll \frac{\chi(V)}{(n/e)^n} \dots$

Let $k = \mathbb{C}$. Let $m, n, r, d \ge 1$ be integers. Let $g_1, \ldots, g_r \in k[x] + k[e] = k[x_1, \ldots, x_m] + k[e_1, \ldots, e_n]$ such that $\deg_x(g_j) \le d$ and $\deg_e(g_j) \le 1$ for all $1 \le j \le r$. Let $V \subseteq k^m \times \operatorname{PConf}_n(k) \subseteq k^{m+n}$ be the complex subvariety $g_1(x, e) = \cdots = g_r(x, e) = 0$, where e_i is the coordinate on $\operatorname{UConf}_n(k) \subseteq k^n$ corresponding to the ith elementary symmetric polynomial under the covering map $\operatorname{PConf}_n(k) \to \operatorname{UConf}_n(k)$. Assume V is smooth. Then

 $|\chi(V)| \leq \exp(O_d(m+n+r)) \cdot n^n.$

Let $k = \mathbb{C}$. Let $m, n, r, d \ge 1$ be integers. Let $g_1, \ldots, g_r \in k[\mathbf{x}] + k[\mathbf{e}] = k[x_1, \ldots, x_m] + k[e_1, \ldots, e_n]$ such that $\deg_{\mathbf{x}}(g_j) \le d$ and $\deg_{\mathbf{e}}(g_j) \le 1$ for all $1 \le j \le r$. Let $V \subseteq k^m \times \operatorname{PConf}_n(k) \subseteq k^{m+n}$ be the complex subvariety $g_1(\mathbf{x}, \mathbf{e}) = \cdots = g_r(\mathbf{x}, \mathbf{e}) = 0$, where e_i is the coordinate on $\operatorname{UConf}_n(k) \subseteq k^n$ corresponding to the *i*th elementary symmetric polynomial under the covering map $\operatorname{PConf}_n(k) \to \operatorname{UConf}_n(k)$. Assume V is smooth. Then

$$|\chi(V)| \leq \exp(O_d(m+n+r)) \cdot n^n.$$

Proof.

V is smooth, so $\chi(V) = \chi_c(V)$. But $V \subseteq k^{m+n} \subseteq k^{(m+2n)+n}$ is the zero locus of r + 2n polynomials: $g_j(\mathbf{x}, \mathbf{e})$ for $1 \le j \le r$, and $v_i - \prod_{l \ne i} (z_l - z_i)$ and $v_i w_i - 1$ for $1 \le i \le n$...

Proof.

... Use the following lemma with $n_2 = d_2 = n$.

Lemma (Adolphson–Sperber 1987; "Dwork theory")

Let k be an algebraically closed field. Let ℓ be a prime number invertible in k. Let $n_1, n_2, r, d_1, d_2 \ge 1$ be integers. Let $f_1, \ldots, f_r \in k[\mathbf{x}] + k[\mathbf{y}] = k[x_1, \ldots, x_{n_1}] + k[y_1, \ldots, y_{n_2}]$ such that $\deg_{\mathbf{x}}(f_j) \le d_1$ and $\deg_{\mathbf{y}}(f_j) \le d_2$ for all $1 \le j \le r$. Then

$$|\chi_c(\operatorname{Spec}(k[\boldsymbol{x}, \boldsymbol{y}]/(f_1, \ldots, f_r)))| \leq \exp(O(n_1 + n_2 + r))d_1^{n_1}d_2^{n_2}.$$

Proof.

... Use the following lemma with $n_2 = d_2 = n$.

Lemma (Adolphson–Sperber 1987; "Dwork theory") Let k be an algebraically closed field. Let ℓ be a prime number invertible in k. Let $n_1, n_2, r, d_1, d_2 \ge 1$ be integers. Let $f_1, \ldots, f_r \in k[\mathbf{x}] + k[\mathbf{y}] = k[x_1, \ldots, x_{n_1}] + k[y_1, \ldots, y_{n_2}]$ such that $\deg_{\mathbf{x}}(f_j) \le d_1$ and $\deg_{\mathbf{y}}(f_j) \le d_2$ for all $1 \le j \le r$. Then

$$|\chi_c(\operatorname{Spec}(k[\boldsymbol{x},\boldsymbol{y}]/(f_1,\ldots,f_r)))| \leq \exp(O(n_1+n_2+r))d_1^{n_1}d_2^{n_2}.$$

Proof.

LHS $\leq \exp(O(n_1 + n_2 + r)) \cdot (n_1 + n_2)! \operatorname{vol}(S_{d_1,d_2})$, where S_{d_1,d_2} is the convex hull of $\mathbf{0}, d_1e_1, \dots, d_1e_{n_1}, d_2e_{n_1+1}, \dots, d_2e_{n_1+n_2}$ in $\mathbb{R}^{n_1+n_2}$. By a diagonal re-scaling of $\mathbb{R}^{n_1+n_2}$, we have $\operatorname{vol}(S_{d_1,d_2}) = d_1^{n_1}d_2^{n_2} \operatorname{vol}(S_{1,1}) = \frac{d_1^{n_1}d_2^{n_2}}{(n_1+n_2)!}$. (Cf. [Weil 1949].)

An affine stabilization map

Let
$$P \in k[x] \subseteq k[t][x]$$
. Define $X = X_{n,\delta} \subseteq \mathbb{A}_k^{n+1}$ so that
 $X(R) = \{f \in R[t] : \deg(f) = n, \ P(f) \in R^{\times} \cdot \mathsf{UConf}_{\delta}(R)\}.$

Lemma (W. 2025+)

Let k be a field. Let $m, n \ge 1$ be integers. Let

 $j \in (1 + t \cdot k[t]) \cap (k^{\times} \cdot \mathsf{UConf}_m(k^{\times})).$

Let $f \in X_{n,n \deg P}$. Then $j(\epsilon t)f(t) \in X_{m+n,(m+n) \deg P}$ for all ϵ in a punctured neighborhood of $0 \in \mathbb{A}^1$.

An affine stabilization map

Let
$$P \in k[x] \subseteq k[t][x]$$
. Define $X = X_{n,\delta} \subseteq \mathbb{A}_k^{n+1}$ so that
 $X(R) = \{f \in R[t] : \deg(f) = n, \ P(f) \in R^{\times} \cdot \mathsf{UConf}_{\delta}(R)\}.$

Lemma (W. 2025+)

Let k be a field. Let $m, n \ge 1$ be integers. Let

$$j \in (1 + t \cdot k[t]) \cap (k^{ imes} \cdot \mathsf{UConf}_m(k^{ imes})).$$

Let $f \in X_{n,n \deg P}$. Then $j(\epsilon t)f(t) \in X_{m+n,(m+n) \deg P}$ for all ϵ in a punctured neighborhood of $0 \in \mathbb{A}^1$.

Proof.

If $k = \mathbb{C}$, use Rouché's theorem. In general, use discriminants, Gauss' lemma, and Newton polygons, over the valued field $\overline{k((\epsilon))}$, and use a change of variables $t \mapsto r := \epsilon t$.

A projective stabilization map

Same argument gives a nicer result in the following setting: Let $P \in k[x_1, \ldots, x_s]$ be homogeneous. Let $f^{rev}(t) := t^{\deg f} f(\frac{1}{t})$. Let $a, b, a', b', \lambda \in (k^{\times})^s$. Let $X_n^{a,b,\lambda}(R)$ be $\{(f_1, \ldots, f_s) \in R[t]_n^s : [f_1^{rev}(0) : \cdots : f_s^{rev}(0)] = [a_1 : \cdots : a_s] \in \mathbb{P}^{s-1},$ $[f_1(0) : \cdots : f_s(0)] = [b_1 : \cdots : b_s] \in \mathbb{P}^{s-1},$ $P(\lambda_1 f_1, \ldots, \lambda_s f_s) \in R^{\times} \cdot \operatorname{UConf}_{n \deg P}(R^{\times})\}.$

Lemma (W. 2025+)

If $(j_1, \ldots, j_s) \in X_m^{a',b',a\lambda/b'}$ and $(f_1, \ldots, f_s) \in X_n^{a,b,\lambda}$, then $(j_1(\epsilon t)f_1(t), \ldots, j_s(\epsilon t)f_s(t)) \in X_{m+n}^{a'a,b'b,\lambda/b'}$ for all ϵ in a punctured neighborhood of $0 \in \mathbb{A}^1$.

A projective stabilization map

Same argument gives a nicer result in the following setting: Let $P \in k[x_1, \ldots, x_s]$ be homogeneous. Let $f^{rev}(t) := t^{\deg f} f(\frac{1}{t})$. Let $a, b, a', b', \lambda \in (k^{\times})^s$. Let $X_n^{a,b,\lambda}(R)$ be $\{(f_1, \ldots, f_s) \in R[t]_n^s : [f_1^{rev}(0) : \cdots : f_s^{rev}(0)] = [a_1 : \cdots : a_s] \in \mathbb{P}^{s-1},$ $[f_1(0) : \cdots : f_s(0)] = [b_1 : \cdots : b_s] \in \mathbb{P}^{s-1},$ $P(\lambda_1 f_1, \ldots, \lambda_s f_s) \in R^{\times} \cdot \operatorname{UConf}_{n \deg P}(R^{\times})\}.$

Lemma (W. 2025+)

If $(j_1, \ldots, j_s) \in X_m^{a',b',a\lambda/b'}$ and $(f_1, \ldots, f_s) \in X_n^{a,b,\lambda}$, then $(j_1(\epsilon t)f_1(t), \ldots, j_s(\epsilon t)f_s(t)) \in X_{m+n}^{a'a,b'b,\lambda/b'}$ for all ϵ in a punctured neighborhood of $0 \in \mathbb{A}^1$.

This suggests that $X^{\mathbf{1},\mathbf{1},\lambda}_{\bullet}(\mathbb{C})$ is a braided monoid (with braiding $t \mapsto t/\epsilon$ as $\epsilon \to 0$), and $C_*(X^{\mathbf{a},\mathbf{b},\mathbf{1}}_{\bullet}(\mathbb{C}))$ is a bi-module over $(X^{\mathbf{1},\mathbf{1},\mathbf{a}}_{\bullet}(\mathbb{C}), X^{\mathbf{1},\mathbf{1},\mathbf{b}}_{\bullet}(\mathbb{C}))$. Can we build cells over $(C_*(\widetilde{X}), \pi_1)$?

General approaches to consider

Say we're interested in a geometric family Y_M of *L*-functions (e.g. a Poonen space), possibly within a larger family X_M .

1. One might try to generalize the cell-based inductive approach of MPPRW to Y_M or X_M , possibly introducing new ideas to build cells and set up the induction.

General approaches to consider

Say we're interested in a geometric family Y_M of *L*-functions (e.g. a Poonen space), possibly within a larger family X_M .

- 1. One might try to generalize the cell-based inductive approach of MPPRW to Y_M or X_M , possibly introducing new ideas to build cells and set up the induction.
- 2. If the fact (due to BDPW + MPPRW) that

$$tr(Fr_q, H_k(X_M, Sym^R V_M)) = 0$$
(1)

for $M, R \gg k+1$ is robust enough to hold more generally, then one might hope to express X_M as an average of families $Y_{M,a}$, indexed by some parameter *a* with $Y_{M,0} = Y_M$, and use fiber comparison methods of [Sawin, Acta 2024] to prove the same vanishing result for Y_M .

3. The recursive analytic methods of Soundararajan, Harper, Bui–Florea–Keating, et al., writing $1/L = \exp(-\log L)$, are currently the most flexible approach available.

Let L(s, c) be the *L*-function of $V_c : x_1^3 + \cdots + x_6^3 = c \cdot x = 0$, where $c = (c_1, \ldots, c_6) \in \mathbb{F}_q[t]^6$, with gcd(q, 6) = 1 and $\Delta(c) := disc(V_c) = \prod (c_1^{3/2} \pm c_2^{3/2} \pm \cdots \pm c_6^{3/2}) \neq 0$.

Theorem (Browning-Glas-W. 2024)

Assume sufficient progress on moments of $\frac{1}{L(s,c)}$ for $\Delta(c) \neq 0$. Then $x^3 + y^3 + z^3 = n$ is soluble in elements $x, y, z \in \mathbb{F}_q[t]$ of degree $\sim \frac{1}{3} \deg n$ for a density 1 of elements $n \in \mathbb{F}_q[t]$.

Builds on ideas of many authors, such as the following:

- Ghosh–Sarnak, Diaconu (log-K3 variance analysis),
- Kloosterman, Hooley 1986, Heath-Brown,
- Beauville (quadric bundles over \mathbb{P}^2), Getz, Tran,
- Rubinstein–Sarnak (Chebyshev's bias via prime squares),
- Deligne (GRH), Hooley 1994 (singular cubics),
- ► Huang ($\approx \mathbb{Q}$ -points), Busé–Jouanolou ($\Delta \in (f, (f')^2)$),
- Bhargava (Ekedahl sieve), Poonen (square-free sieve),
- ► Kisin (local constancy of *L*-factors).

Variance analysis

We actually reduce everything to counting solutions to

$$\sum_{i=1}^6 x_i^3 = 0$$

in certain regions of $\mathbb{F}_q[t]^6$. A homogeneous equation of degree d in 2d variables lies at the square-root barrier. The expected asymptotic (Manin et al.) often features *two main terms* of the same order of magnitude.

Variance analysis

We actually reduce everything to counting solutions to

$$\sum_{i=1}^6 x_i^3 = 0$$

in certain regions of $\mathbb{F}_q[t]^6$. A homogeneous equation of degree d in 2d variables lies at the square-root barrier. The expected asymptotic (Manin et al.) often features *two main terms* of the same order of magnitude.

The hyperplane sections

$$V_{\boldsymbol{c}}: x_1^3 + \cdots + x_6^3 = \boldsymbol{c} \cdot \boldsymbol{x} = 0,$$

for $\mathbf{c} = (c_1, \ldots, c_6) \in \mathbb{F}_q[t]^6$, and especially their *L*-functions, arise through the circle method and Fourier analysis. Analysis of these hyperplane sections branches out based on the vanishing, size, and divisibility of $\Delta(\mathbf{c})$.

A deformation along the square-root barrier

Browning, Munshi, and I (2025+) hope to use the smooth (Duke–Friedlander–Iwaniec) version of the *circle method* to prove an unconditional asymptotic over \mathbb{Q} for the singular 6-variable homogeneous cubic equation

$$x_1y_1^2 + x_2y_2^2 + x_3y_3^2 = 0$$

named after Perazzo.

A deformation along the square-root barrier

Browning, Munshi, and I (2025+) hope to use the smooth (Duke–Friedlander–Iwaniec) version of the *circle method* to prove an unconditional asymptotic over \mathbb{Q} for the singular 6-variable homogeneous cubic equation

$$x_1y_1^2 + x_2y_2^2 + x_3y_3^2 = 0$$

named after *Perazzo*. This can be viewed as a deformation of a smooth 6-variable cubic like the Fermat

$$\sum_{i=1}^6 x_i^3 = 0$$

considered in [Browning–Glas–W. 2024]. Whereas *L*-functions turn out to be less important here, certain divisor problems play a more prominent role (which we hope to handle via Hooley Δ -functions; cf. [de la Bretèche–Tenenbaum 2024]).