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Some motivation

Diophantine equations in the tradition of Hardy–Littlewood,
and L-functions in the tradition of Riemann, are central objects
in number theory. Some natural problems and questions about
them are the following:

1. Count/produce/bound solutions to algebraic equations
over the integers (Z) or related rings (e.g. Fp[t] or Fp).

2. Prove approximations to GRH1 for individual L-functions,
or analyze statistics (esp. those of Random Matrix Theory
type) over families.

3. To what extent are (1)–(2) related?

1the Grand Riemann Hypothesis
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Example (BSD)

Let C/Q be a smooth cubic curve in P2 with a Q-point. (For
example, x3 + y 3 + 60z3 = 0, but not 3x3 + 4y 3 + 5z3 = 0.)

I The number of primitive integral solutions (x , y , z)� X is
αC (logX )rC/2 as X →∞. Here αC > 0 and rC ∈ Z≥0.

I Birch–Swinnerton-Dyer ’65 conjectured that

rC = ords=1/2 L(s,C ),

where L(s,C )—the Hasse–Weil L-function associated to
C—encodes the behavior of C mod p as prime p varies.

The “≥” direction (local-to-global), i.e. “producing” points,
remains especially mysterious.2 But modularity (Wiles et al.)
often helps, via Heegner points (Gross–Zagier ’86).3

2But both directions are hard and interesting.
3Contrast with the use of modularity in Fermat’s last theorem.
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Example (Quadratic equations)

The most difficult part of the solution of Hilbert’s eleventh
problem (up to questions of effectiveness), namely the part
regarding integral representations of integers by ternary
quadratic forms with integral coefficients (due to Iwaniec, Duke,
and Schulze-Pillot over Q), also makes essential use of
automorphic forms, through subconvex L-function bounds
obtained through the study of L-function families.

Remark
Rational representations are much simpler, with a very clean
existence theory (a local-to-global principle with no exceptions)
given by Hasse–Minkowski, quantifiable by the sharpest forms
of the circle method (e.g. the delta method, to be discussed).
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Sums of 3 cubes (cf. BSD; but less structure?)

Mordell ’53:

I Maybe producing large, general4 integer solutions to

x3 + y 3 + z3 = a

is as hard as “finding when an assigned sequence,
e.g. 123456789, occurs in the decimal expansion of π”?

I Is there a solution for a = 3 after

3 = 13 + 13 + 13 = 43 + 43 + (−5)3?

In general, if solutions exist, they are expected to be very rare.5

4say non-parametric
5Cf. Hypothesis K of Hardy–Littlewood ’25 that r3(a) ≤ C (ε)aε for

a ≥ 1; it is false, but certainly E1≤a≤A[r3(a)] ∼ C .
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The story of 33

Via computer, Booker obtained (at “five past nine in the
morning on the 27th of February 2019”)

(8866128975287528)3 + (−8778405442862239)3

+ (−2736111468807040)3 = 33.

Later with Sutherland (September 2019):

(−80538738812075974)3 + (80435758145817515)3

+ (12602123297335631)3 = 42.

Also,

(569936821221962380720)3 + (−569936821113563493509)3

+ (−472715493453327032)3 = 3,

thus affirmatively answering a question of Mordell.
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Main talk overview

Let F (x) := x3
1 + · · ·+ x3

6 . This talk centers around
Diophantine equations and L-functions, especially

1. V : F (x) = 0 over Z, as well as
2. Vc : F (x) = c · x = 0 over Fp,Zp,R (as c , p vary), and
3. the associated Hasse–Weil L-functions L(s,Vc) (over

∆(c) 6= 0).

Problem (Many authors)

Estimate the number of integral solutions to F (x) = 0 in
expanding boxes or other regions.

Remark (Many authors)

This problem is closely tied to the statistics of sums of 3 cubes,
via certain second moments (measuring the failure of injectivity
of the map (x , y , z) 7→ x3 + y 3 + z3).
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Further motivation and context

A central theme in analytic number theory is randomness,
appearing for instance in the following two questions:

1. Let H be a projective hypersurface over Q. Does the
“Hardy–Littlewood model” capture the behavior of NH(B)
(the number of Q-points on H of height ≤ B) as B →∞?

2. Let X be a projective hypersurface over Fp. Let

E (X ,Fpr ) := #X (Fpr )−#PdimX (Fpr ).

As r →∞, does |E (X ,Fpr )| � (pr )(dimX )/2 (a naive
generalization of GRH/Fp) hold?

Often a failure of randomness can be explained by structure,
e.g. special subvarieties, or Brauer–Manin obstructions, or (less
satisfactorily) “logic” as in Hilbert’s tenth problem. . .
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Background on critical statistics (for k ∈ {2, 3})
Let rk(a) := #{(x1, . . . , xk) ∈ Zk

≥0 : xk1 + · · ·+ xkk = a} be the
number of ways to write a as a sum of k integer kth powers.

1. Uniformly over a ≥ 1, we have r2(a)�ε a
ε.

2. How about on average? In fact,
∑

a≤X 2 r2(a) ∼ C1X
2, and∑

a≤X 2 r2(a)2 ∼ C2X
2 logX , as X →∞.6

3. For r3, still have
∑

a≤X 3 r3(a) ∼ C3X
3 for first moment.7

4. Conjecturally (Hooley ’86a):
∑

a≤X 3 r3(a)2 ∼ C4X
3, and

> 0% of integers are sums of 3 nonnegative cubes.8

Remark (Many authors)∑
a≤X 3 r3(a)2 = #{x ∈ Z6 ∩ XK : x3

1 + · · ·+ x3
6 = 0} for some

fixed compact region K ⊆ R6.
6Related: 0% of integers a ≥ 0 are sums of 2 squares.
7But pointwise, r3(a)� a1/12 for infinitely many a ≥ 0 (Mahler ’36).
8In fact, the same holds for any positive-density subset of integer cubes.
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As before, let F (x) = F (x1, . . . , x6) := x3
1 + · · ·+ x3

6 .

Definition
Let NF ,K (X ) := #{x ∈ Z6 ∩ XK : F (x) = 0}, for K a nicea

compact region in R6. (Or just use smooth weights!)

aAssume the boundary of K is suitably transverse to F = 0.

Definition
Hardy–Littlewood (“randomness model”) prediction for F = 0:

NF ,K (X ) ≈ cHL · X 6−3, a

where the constant cHL := σR ·
∏

p σp ∈ [0,∞] is a product of
local densities measuring the “local” (i.e. real and p-adic) bias
of the equation F = 0 (over the regions K ⊆ R6 and Z6

p).

athe −3 indicating “how hard it is to satisfy a cubic equation”
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Randomness and structure (for F := x3
1 + · · ·+ x3

6 )

Hooley ’86a: HL (“randomness”) prediction misses trivial
solutions (“xi + xj = 0 in pairs”); maybe the truth is HLH?

Conjecture (HLH)

NF ,K (X ) = cHL · X 3 + #{trivial x ∈ Z6 ∩ XK}+ o(X 3) holds
as X →∞.

Remark (Around the square-root barrier)

1. The full HLH lies beyond the classical ◦-method (according
to square-root “pointwise” minor arc considerations).

2. But the δ-methoda opens the door to progress on HLH, by
harmonically decomposing the true minor arc contribution
in a “dual” fashion.

aKloosterman ’26, Duke–Friedlander–Iwaniec ’93, Heath-Brown ’96

11



What’s known towards HLH?

1. Hua ’38: NF ,K (X )� X 7/2+ε (by Cauchy b/w structure
and randomness in 4, 8 vars, resp.).

2. Vaughan ’86+: NF ,K (X )� X 7/2(logX )ε−5/2 (by new
source of randomness).

3. Hooley ’86+: NF ,K (X )� X 3+ε, under “Hypothesis HW”
(≈ “modularity plus GRH”) for the aforementioned
Hasse–Weil L-functions L(s,Vc).

Remark
1. Hooley used an “upper-bound precursor” to the δ-method.

2. The building blocks of the δ-method are certain Fourier
transforms (“coefficients of wave decompositions”).
Which waves resonate throughout the frequency spectrum?
Which components cancel out destructively?
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Overview of Hooley’s original approach

I Hooley’s work uses the circle method (studying Fourier
series in arcs |α− a

q
| ≤ 1

qQ
, for q ≤ Q � X 3/2 and a ⊥ q),

plus a clever use of an idea9 of Kloosterman ’26, to reduce
the additive counting question NF ,K (X ) ≤ ? (about F = 0)
to estimating a beautiful but complicated average over
c � X 1/2 of multiplicative quantities to moduli q ≤ Q.

I This led to the surprising appearance10 of 1/L(s,Vc) over
c � X 1/2, which can be bounded for <(s) > 1/2 under
standard NT hypotheses, e.g. modularity plus GRH.

I After a significant amount of work this leads (conditionally)
to the near-optimal estimate NF ,K (X )�ε X

3+ε. By my
count, there are four or five different sources of epsilon!

9Poisson summation and averaging over a
10up to subtle algebro-geometric “error factors” related to a polynomial

∆(c) measuring the extent to which Vc is singular
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The δ-method

Proposition (δ-method: Kloosterman ’26,
Duke–Friedlander–Iwaniec ’93, Heath-Brown ’96)

NF ,K (X ) ≈≈ Ec�X 1/2En≤X 3/2[n−1Sc(n)] =: ?

(c ∈ Z6), where ≈≈ means I may be lying a bit, and

Sc(n) :=
∑

1≤a≤n:a⊥n

∑
1≤x1,...,x6≤n

e2πi(aF (x)+c·x)/n.

Remark

The thresholds X 1/2,X 3/2 for c , n measure the “complexity of
cubic problems” (a la Nyquist–Shannon). Here c = 0 captures
major arcs (roughly speaking), producing HL but not full HLH.
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The Sc(n)’s relate to Vc = {[x ] ∈ P5 : F (x) = c · x = 0}.
Fact: ∃ disc poly ∆ ∈ Z[c ] measuring singularities of Vc .

Lemma (Hooley)

If ∆(c) 6= 0, then S̃c(n) := n−7/2Sc(n) look (to 1st order) like
the coeffs µc(n) of 1/L(s,Vc).

Partial proof sketch.

Here F is homog (and a is summed), so Sc(n) is multiplicative.

Locally: If p - c , then S̃c(p) = Ẽc(p) + O(p−1/2), where

Ẽc(p) := p−3/2[#Vc(Fp)−#P3(Fp)]. Now use LTF.

Exercise (Cf. Hooley, “2×-Kloosterman”)

“Assume” ∀c , n,N : ∆(c) 6= 0, S̃c(n) = µc(n),∑
n≤N µc(n)� ‖c‖εN1/2+ε. Then ?� X 3+ε.
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Theorem (Hooley ’86+/Heath-Brown ’98)

NF ,K (X )�ε X
3+ε, under Hypo HW (≈ modularity + GRH) for

L(s,Vc)’s (over ∆(c) 6= 0).a

aA large-sieve hypo would suffice (W.). It’s open! But ∃ uncond. apps
to x2 + y3 + z3 (W., via Brüdern ’91 + Duke–Kowalski ’00 + Wiles et al).

There are several critical sources of ε in Hooley/Heath-Brown,
including the locus ∆(c) = 0 we have not yet discussed.

Theorem (W. ’21; unconditional)

The main terms of HLH come from the locus ∆(c) = 0.

Proof hint.
We shall soon see why this is plausible (failure of “naive
generalization” of GRH/Fp caused by special subvarieties).
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An optimal dichotomy over finite fields

Theorem (W. ’22)

The following are equivalent for a cubic threefold X of the form
x3

1 + · · ·+ x3
6 = c1x1 + · · ·+ c6x6 = 0 over Fp for p � 1:a

1. X fails the “naive generalization” of GRH/Fp.

2. XFp
contains a plane.

3. XFp
contains a plane lying on the Fermat cubic fourfold

x3
1 + · · ·+ x3

6 = 0.

4. XFp
contains x1 + x2 = x3 + x4 = x5 + x6 = 0 (up to

Fermat symmetries).

5. c3
1 − c3

2 = c3
3 − c3

4 = c3
5 − c3

6 = 0 (up to symmetry).

aThese hyperplane sections arise naturally in the context of the Fourier
transforms Sc(p) =

∑
1≤a≤p−1

∑
1≤x1,...,x6≤p e

2πi(a(x3
1 +···+x3

6 )+c·x)/p.
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The previous dichotomy follows from the following subtler,
more general dichotomy.11

Theorem (W. ’22)

For a cubic threefold X ⊆ P4
Fp

of the form C (x1, . . . , x5) = 0
with at most isolated singularities, the following are equivalent:

1. X fails the “naive generalization” of GRH/Fp.

2. There exist quadratic forms Q1,Q2 ∈ Fp[x1, . . . , x5]
“essentially in 4 variables”,a and a homogeneous polynomial
A ∈ Fp[x1, . . . , x5], such that A · C ∈ (Q1,Q2) and

A /∈
√

(Q1,Q2).b

3. XFp
contains a plane or a singular cubic scroll.

ai.e. Q1,Q2 with a common nonzero singularity
bI think it might be possible to take degA ≤ 1, but have not checked.

11Reduction: A calculation—a singularity analysis—involving, among
other things, 3× 3 Vandermonde determinants arising from diagonality.
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Remark
The proof of the “more general dichotomy” combines classical
geometry (including work of del Pezzo et al.), on the one hand,
with amplificatory base change via modern geometry (Katz,
Skorobogatov, et al.), on the other.

I like the statement12 more than the proof (which relies on
some not-very-robust situation-specific geometry).

Question
Is there a more enlightening or more general proof? Can one
avoid or minimize use of base change? Can one use auxiliary
polynomials or other tools?

12which, to me, is suggestive as to what may be true more generally
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The significance of the threefold dichotomy is threefold:

1. It gives an explicit “codimension 3” bound on the “locus
of failures” of the “naive generalization” of GRH/Fp.
I One can also (Lindner ’20 + Lefschetz pencil theory) give

an explicit “codimension 2” bound in terms of iterated
discriminants (cf. Bhargava ’22).

I Or (probably; cf. Grimmelt–Sawin ’21) an inexplicit
“codimension 2” bound via perversity machinery of
Fouvry–Katz ’01 for Fourier transforms.

2. The dichotomy implies that special subvarieties in
HLH/Manin for the cubic fourfold x3

1 + · · ·+ x3
6 = 0

“remain special” for hyperplane sections modulo p.
I On x4

1 + x4
2 + x4

3 = x4
4 + x4

5 + x4
6 , does a similar story

hold for (Wooley’s favorite special subvariety?)

x1+x2+x3 = x4+x5+x6 = (x2
1 +x2

2 +x2
3 )−(x2

4 +x2
5 +x2

6 ) = 0?

3. It can prove some consequences of Deligne–Katz
equidistribution involved in RMT-type prediction recipes.
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The p-adic ladder

Besides Sc(p), there are other Fourier transforms of interest:

Sc(pl) =
∑

1≤a≤pl :p-a

∑
1≤x1,...,x6≤pl

e2πi(a(x3
1 +···+x3

6 )+c·x)/pl ,

for l ≥ 2. We bound these using various partial analogs13 of the
following results for univariate polynomials. Given f ∈ Z[x ] and
an integer q ≥ 1, let N(f ; q) := #{x ∈ Z/qZ : f (x) = 0}.
I Sándor ’52: If p is a prime and l ≥ 2 + vp(disc f ), then

N(f ; pl)− p0N(f ; pl−1) = 0 (stabilization occurs).

I Huxley ’81: If p is a prime and l ≥ 1, then

N(f , pl) ≤ (deg f ) · pvp(disc f )/2

(a stratified bound in terms of how much p divides disc f ).
13some new, some old
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A consequence

The dichotomy and ladder provide discriminating pointwise
estimates on Sc(n). Together with general pointwise estimates
of Hooley and Heath-Brown, these let us reduce a useful
statement, (B3), to a standard hypothesis, (SFSC).

Conjecture (B3, roughly; “cf. Sarnak–Xue”)

For some δ > 0: Over c ∈ [−Z ,Z ]6 with ∆(c) 6= 0, the
probability there exists an integer n ≤ Z 3 such that |Sc(n)| fails
square-root cancellation by a factor of ≥ λ · n1/2−δ is O(λ−2).

Conjecture (SFSC, roughly)

Over c ∈ [−Z ,Z ]6 with ∆(c) 6= 0, the probability there exists
a prime p ≥ P with p2 | ∆(c) is O(P−δ), for some δ > 0.

(B3) would fail if we replaced x3
1 + · · ·+ x3

6 with x2
1 + · · ·+ x2

6 .
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Theorem (W. ’21; conditional)

Roughly: Under RMT-type predictionsa and (B3), the locus
∆(c) 6= 0 in the δ-method contributes O(X 3); in fact, o(X 3).

aWe use the Ratios Conjectures of Conrey–Farmer–Zirnbauer ’08.

Proof hint.
Appropriately decompose Sc(n) to isolate distincta behaviors.b

For O(X 3), use Hölder appropriately between “good” and “bad”
factors; some important ingredients are (B3) and (R2’).
For o(X 3), handle some ranges (namely those with large “error
moduli”) the same. Over what remains, decompose Σ∆ 6=0 into
“error-constant” pieces—based on ∆—up to a small exceptional
set constructed by algorithmic tree-like means. Then estimate
these pieces via local calculations and Poisson summation.

adistinct at least under current philosophy
bRoughly: “L-approximations”, “good errors”, and “bad factors”.
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A sample RMT-type ingredient

Over ∆(c) 6= 0, the reciprocal L-functions 1/L(s,Vc) are the
main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2’, roughly)

Let σ > 1/2 and 1 ≤ N ≤ X 3/2. If s = σ + it, then

Ec�X 1/2:
∆(c)6=0

∣∣∣∣∫
R
dt es

2

N s · ζ(2s)−1L(s + 1/2,V )−1

L(s,Vc)

∣∣∣∣2 � N .

I The LHS is independent of σ.14

I There are no logN or logX factors on the RHS!15

I This is enough “RMT input” for NF ,K (X )� X 3.
14One could take σ− 1

2 �
1

log X to facilitate comparison with other work.
15At least up to mollification/integration, logs reflect “symmetry type”

of a family. Our L-functions are expected to behave like the characteristic
polynomials of C × C random orthogonal matrices with C � logX .
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Remark
I Up to Cauchy–Schwarz over s (losing logX?), (R2’) might

be very similar to well-studied moments (cf. Sound ’09 and
Harper ’13 on moments of zeta, and Bui–Florea–Keating
’21 and Florea ’21 on negative moments of L-functions).

I But because the integral is inside in the absolute value,
(R2’) is really a statement about log-free cancellation over

n � N of the coefficients of ζ(2s)−1L(s+1/2,V )−1

L(s,Vc )
. This

resembles the (unconditional!) log-free bound

1

X

∑
m�X :
µ(m)2=1

∣∣∣∑
n�X

λ̃f (n)
(m
n

)∣∣∣2 � X

of Xiannan Li regarding certain orthogonal families of
quadratic twists (see (1.3) of arXiv:2208.07343v2).
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More on mean values (Cancellation over c)

The Ratios Conjectures also predict the following for σ > 1/2:16

Conjecture (R1, roughly)

Write s = σ + it. For some δ > 0 (independent of σ),

Ec�X 1/2:
∆(c)6=0

 1

L(s,Vc)
− ζ(2s)L(s + 1/2,V )︸ ︷︷ ︸

polar factors

AF (s)

�σ,t X
−δ

for X ≥ 1. Here AF (s)� 1 for <(s) ≥ 1/2− δ.

Remark
For NF ,K (X )� X 3, we only use (R2’). But for HLH, we need
a “slight adelic perturbation” (RA1) of (R1).

16A soft asymptotic for σ − 1
2 �

1
log X should also suffice for soft HLH.
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Main result

Theorem (W. ’21)

Roughly: Assume standard NT hypotheses on L-functions and
“unlikely” divisors. Then NF ,K (X )� X 3, and in fact HLH Conj.
holds for a large class of regions K. (Actual hypo’s for former
are cleaner than those for latter.)

More precisely, hypotheses are the following:

I L(s,Vc), L(s,Vc ,
∧2), L(s,V ) (Hypo HW2 + Ratios

Conj’s, where (R2’) suffices for NF ,K (X )� X 3),

I Square-free Sieve Conjecture for ∆(c), and

I “effective Krasner”17 if one wants a power saving in HLH.

These are all essentially hypotheses about the family of
Hasse–Weil L-functions L(s,Vc) over c � X 1/2.

17“effective version of Kisin’s thesis”
27
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Glossary for hypo’s

1. Hypo HW2: Similar in spirit to Hooley’s Hypo HW.

2. Ratios Conj’s: Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s,Vc) and
1/L(s1,Vc)L(s2,Vc) over families of c ’s.18

3. “Effective Krasner”: Need Lp(s,Vc) to only depend on
c mod p∆(c)1000 (cf. Kisin’s thesis, Local constancy in
p-adic families of Galois representations).

4. SFSC: Need, for Z ≥ 1 and P ≤ Z 3/2, an upper bound of
O(Z 6P−δ) for

#{c ∈ [−Z ,Z ]6 : ∃ p ∈ [P , 2P] with p2 | ∆(c)}.
18Conrey–Farmer–Zirnbauer ’08 build on other historical works, such as

Conrey–Farmer–Keating–Rubinstein–Snaith ’05, which in turn build on
predictions for L-zeros “in the bulk” of Montgomery–Dyson ’70s and
others, and “near 1/2” of Katz–Sarnak ’90s.
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Application to representing integers and primes

Theorem (W. ’21, roughly)

Assume the same hypotheses as before. Then NF ,K (X )� X 3

for a large class of regions K. In fact, one gets an asymptotic
featuring a randomness-structure dichotomy.a Consequently,
100% of integers a 6≡ ±4 mod 9 are sums of three cubes.b

acf. conjectures of Hooley, Manin, Vaughan–Wooley, Peyre, et al.
bThis follows from “HLH for sufficiently many K” (Diaconu ’19 + ε).

Theorem (W. ’22, roughly)

Assume roughly the same hypotheses as above. Then 100% of
primes p 6≡ ±4 mod 9 are sums of three cubes.a

aThis follows from “HLH with a power saving for sufficiently many K ,
with small divisibility constraints d | x3

1 + x3
2 + x3

3 , x
3
4 + x3

5 + x3
6 ”.
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Approach to primes

To capture primes one can apply the Selberg sieve to a certain
“approximate variance” for sums of three cubes. What would
the Selberg sieve give towards the following question?

Question
Assuming precise asymptotic second moments for r3(a) over
{a ≤ A : a ≡ 0 mod d} for d ≤ Aδ,a can one show for A ≥ 2∑

p≤A

r3(p)2 � A/ logA?

aThe expected main term for these second moments may not vary
multiplicatively with d . This may or may not be a serious obstacle.

Here r3(a) := #{(x , y , z) ∈ Z3
≥0 : x3 + y 3 + z3 = a}.

(The Selberg sieve does easily give
∑

p≤A r3(p)� A/ logA.)
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Questions to explore

I Prove (R2’), at least up to logs, under GRH? Cf. Sound
’09, Harper ’13, Bui–Florea–Keating ’21, and Florea ’21.

I Function-field analogs (GRH is known; exist monodromy
groups; but only know limited ranges of RMT conjectures).

I Understand the “subtle AG error factors” better; try to
handle some non-diagonal analogs of x3

1 + · · ·+ x3
6 = 0?

I xyz = uvw : NT basically understood (“multiplicative”
harmonic analysis). Here can one go from NT to RMT?

I Hypothesis K (sparsity) fails for x3 + y 3 + z3 = a. What
about Hypothesis K for x4 + y 4 + z4 + w 4 = a? Lots of
AG questions in this vein.

I Counting on quartics or other varieties: Try to combine
symmetry (dynamical ideas?) and the circle method?
Already exist many works using only one or the other.
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