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Some motivation

A central theme in analytic number theory is randomness,
appearing for instance in the following two questions:

1. Let V be a projective hypersurface over Q. Does the
“Hardy–Littlewood model” capture the behavior of NV (B)
(the number of Q-points on V of height ≤ B) as B →∞?

2. Let X be a projective hypersurface over Fp. Let

E (Xpr ) := #X (Fpr )−#PdimX (Fpr ).

As r →∞, does a “square-root cancellation” bound,
i.e. |E (Xpr )| � (pr )(dimX )/2, hold?

Often a failure of randomness can be explained by structure,
e.g. special subvarieties, or Brauer–Manin obstructions, or (less
satisfactorily) “logic” as in Hilbert’s tenth problem. . .
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Further motivation

Diophantine equations1 and L-functions2 are central objects in
number theory. Some natural problems and questions about
them are the following:

1. Count/produce/bound solutions to algebraic equations
over the integers (Z) or related rings (e.g. Fp[t] or Fp).

2. Prove approximations to GRH3 for individual L-functions,
or analyze statistics (esp. those of Random Matrix Theory
type) over families.

3. To what extent are (1)–(2) related?

1in the tradition of e.g. Hardy–Littlewood
2in the tradition of e.g. Riemann
3the Grand Riemann Hypothesis
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Example (BSD)

Let C/Q be a smooth cubic curve in P2 with a Q-point. (For
example, x3

1 + x3
2 + 60x3

3 = 0, but not 3x3
1 + 4x3

2 + 5x3
3 = 0.)

Then Birch–Swinnerton-Dyer ’65 conjectured

rank J(C )(Q) = ords=1/2 L(s,C )

(an equality of integers), where

1. rank J(C )(Q) measures how many integral solutions
x = (x1, x2, x3) ∈ [−X ,X ]3 there are as X →∞, while

2. L(s,C )—the Hasse–Weil L-function associated to
C—encodes the behavior of C mod p as p varies.

In general, the “≥” direction, i.e. “producing” points, remains
especially mysterious. But modularity (Wiles et al.) often helps,
via Heegner points (Gross–Zagier ’86).a

aContrast with the use of modularity in Fermat’s last theorem.
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Example (Quadratic equations)

The most difficult part of the solution of Hilbert’s eleventh
problem (up to questions of effectiveness), namely the part
regarding integral representations of integers by ternary
quadratic forms with integral coefficients (due to Iwaniec, Duke,
and Schulze-Pillot over Q), also makes essential use of
automorphic forms, through subconvex L-function bounds
obtained through the study of L-function families.

Remark
Rational representations are much simpler, with a very clean
existence theory (a local-to-global principle with no exceptions)
given by Hasse–Minkowski, quantifiable by the sharpest forms
of the circle method (e.g. the delta method, to be discussed).
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Main talk overview

Let F (x) := x3
1 + · · ·+ x3

6 . This talk centers around
Diophantine equations and L-functions, especially

1. F (x) = 0 over Z, as well as

2. F (x) = c · x = 0 over Fp (as c , p vary), and

3. the associated Hasse–Weil L-functions L(s,Vc) (over
∆(c) 6= 0).

Problem (Many authors)

Estimate the number of integral solutions to F (x) = 0 in
expanding boxes or other regions.

Remark (Many authors)

This problem is closely tied to the statistics of sums of 3 cubes.
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The usual randomness heuristic (via level sets)

Let s := 6. For K ⊂ Rs nice (cpt, semi-alg), X →∞, and
a ∈ Z, let NF−a,K (X ) := #{x ∈ Zs ∩ XK : F = a}.

Example

Say K = [−1, 1]s . Then XK = [−X ,X ]s , and

F (Zs ∩ XK )� X 3 (since F = x3
1 + · · ·+ x3

s is cubic).

So NF−a,K (X ) is � X s−3 on avg (in `1) over a� X 3.

Hardy–Littlewood (“randomness”) prediction for F = 0:

NF ,K (X ) ≈ X s−3
∏
v≤∞

σv .
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Randomness and structure (for F := x3
1 + · · ·+ x3

6 )

Hooley ’86a: HL (“randomness”) prediction misses triv. sol’s
(xi + xj = 0 in pairs); maybe the truth is HLH?

Conjecture (HLH)

For any nice K ⊂ R6,

NF ,K (X ) = cHL,F ,K · X 3 + #{triv. x ∈ Z6 ∩ XK}+ o(X 3).

Remark (Around the square-root barrier)

1. The full HLH lies beyond the classical ◦-method (according
to square-root “pointwise” minor arc considerations).

2. But the δ-method opens the door to progress on HLH, by
harmonically decomposing the true minor arc contribution
in a “dual” fashion.
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What’s known towards HLH?

1. Hua ’38: NF ,K (X )� X 7/2+ε (by Cauchy b/w structure
and randomness in 4, 8 vars, resp.).

2. Vaughan ’86+: “ ” � X 7/2(logX )ε−5/2 (by new source of
randomness).

3. Hooley ’86+: “ ” � X 3+ε, under Hypo HW (≈ modularity
+ GRH for the Hasse–Weil L-functions L(s,Vc)).

Hooley used an “upper-bound precursor” to the δ-method.

9



The δ-method

Proposition (δ-method: Kloosterman ’26,
Duke–Friedlander–Iwaniec ’93, Heath-Brown ’96)

NF ,K (X ) ≈≈ Ec�X 1/2En≤X 3/2[n−1Sc(n)] =: ?

(c ∈ Z6), where ≈≈ means I may be lying a bit, and

Sc(n) :=
∑′

a mod n

∑
x∈(Z/n)6

en(aF (x) + c · x).

(en(t) := e2πit/n) (Don’t worry about the “′”; it means a ⊥ n)

Remark
Here c = 0 captures major arcs (roughly speaking), producing
HL but not full HLH. And c 6= 0 captures. . .
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“Pf”.
Idea (“Kloosterman method”) is to treat classical major and
minor arcs uniformly (using Poisson summationa), and average
over a mod n.

NF ,K (X ) ≈≈
∑

n≤X 3/2

1

nX 3/2

∑′

a mod n

∑
x�X

en(aF (x)) (◦-method)

≈≈
∑

n≤X 3/2

1

nX 3/2
Ec�n/X [Sc(n)] (“complexity” n/X )

≈≈ En≤X 3/2Ec�X 1/2[n−1Sc(n)] = ?.

Idea’: In gen’l (for n� X large),
∑′

a mod n

∑
x�X en(aF (x)) is

incomplete mod n, but still a wt’d avg of the complete sums
Sc(n), if we sample over enough c ’s (Nyquist–Shannon).

awith c = 0 “purely probabilistic”, and c 6= 0 subtler
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The Sc(n)’s relate to Vc := {[x ] ∈ P5 : F (x) = c · x = 0}.
Fact: ∃ disc poly ∆ ∈ Z[c ] measuring singularities of Vc .

Lemma (Hooley)

If ∆(c) 6= 0, then S̃c(n) := n−7/2Sc(n) look (to 1st order) like
the coeffs µc(n) of 1/L(s,Vc) (Vc := (Vc)Q).

Partial proof sketch.

Here F is homog (& a is summed), so Sc(n) is multiplicative.

Locally: If p - c , then S̃c(p) = Ẽc(p) + O(p−1/2), where

Ẽc(p) := p−3/2[#Vc(Fp)−#P3(Fp)]. Now use LTF.

Exercise (Cf. Hooley, “2×-Kloosterman”)

“Assume” ∀c , n,N : ∆(c) 6= 0, S̃c(n) = µc(n),∑
n≤N µc(n)� ‖c‖εN1/2+ε. Then ?� X 3+ε.
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By coincidence, the “double Kloosterman” misses HLH by ε.

Theorem (Hooley ’86+/Heath-Brown ’98)

NF ,K (X )�ε X
3+ε, under Hypo HW (≈ modularity + GRH) for

L(s,Vc)’s (over ∆(c) 6= 0).a

aA large-sieve hypo would suffice (W.). It’s open! But ∃ uncond. apps
to x2 + y3 + z3 (W., via Brüdern ’91 + Duke–Kowalski ’00 + Wiles et al).

Theorem (W.)

Roughly: Assume standard NT conjectures on L-functions
(e.g. Hypo HW + RMT-type predictions) and “unlikely”
divisors (“p2 | ∆(c)”).
Then NF ,K (X )� X 3, and in fact HLH Conj. holds for a large
class of regions K.a

aThis has nice applications to sums of 3 cubes (Diaconu ’19 + ε).
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More precisely:

Theorem (W.)

Assume standard NT conj’s on

I L(s,Vc), L(s,Vc ,
∧2), L(s,V (F )) (Hypo HW2 + Ratios

Conj’s + Krasnera), and

I “unlikely” divisors (Square-free Sieve Conjecture for ∆(c)).

Then for any nice K ⊂ R6 w/ K ∩ hessF = ∅,b we have
NF ,K (X )� X 3, & in fact HLH Conj. holds. (Actual hypo’s for
former are cleaner than those for latter.)

a“effective version of Kisin’s thesis (Local constancy in p-adic families
of Galois representations)”

bThis could probably be removed with enough work, but is mild enough
for our main qualitative needs.
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Glossary for hypo’s

1. Hypo HW2: Similar in spirit to Hooley’s Hypo HW.

2. Ratios Conj’s: Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s,Vc) and
1/L(s1,Vc)L(s2,Vc) over families of c ’s.4

3. Krasner: Need Lp(s,Vc) to only depend on
c mod p∆(c)1000 (cf. Kisin’s thesis).

4. SFSC: Need (for Z ≥ 1, P ≤ Z 3)

Pr
[
c ∈ [−Z ,Z ]6 : ∃ p ∈ [P , 2P] with p2 | ∆(c)

]
� P−δ.

4How does c 7→ L(s,Vc) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery–Dyson, and “near
1/2” from Katz–Sarnak. CFKRS (2005) developed full main term
predictions for L-powers, and CFZ (2008) for L-ratios.
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Proof hint.
We want to bound/estimate (via δ-method)

NF ,K (X ) ≈≈ Ec�X 1/2En≤X 3/2[n−1Sc(n)] =: ?.

Exponent numerics over various loci (if d = 3, s = 6):

s − d︸ ︷︷ ︸
c=0, n small

=
s

2
+�

��O(ε)︸ ︷︷ ︸
∆(c)=0, n large

=
d

4
(s − 2) +�

���O(4ε)︸ ︷︷ ︸
∆(c) 6=0

= 3 +��
��O(5ε).

Main terms of HLH: ∆(c) = 0 (key: Sc(n) is biased for special
c ’s). Conditional/hardest part: ∆(c) 6= 0 (which “factors” into
certain mean-value and pointwise estimates over c).
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Remark (Some more details)

There are maybe 5 sources of ε in Hooley/Heath-Brown,
incl. what I’ll call “Special”, “Generic”, & “Badp”.
The locus ∆(c) = 0 in ? unconditionally produces the conj’d
main term cHLH · X 3. This resolves “Special”.
The remaining sum (over ∆(c) 6= 0) is conditionally

≈≈
∑

finite set

(typically O(1))a × (RMT-type sum).

I To prove “typical-O(1)” (under SFSC), re: “Badp”, need
partial results towards a dichotomy/Fp.

I Each “RMT-type sum” is 0 + O(X 3−δ) (under Ratios),
improving on GRH bound Oε(X

3+ε) (cf. “Generic”).

aneeds proof; loosely resembles Sarnak–Xue “density philosophy”
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A sample pointwise ingredient

We also use partial results5 toward a dichotomy/Fp, amusingly
parallel to HLH:

Theorem (W. ’22)

If p is sufficiently large, and c ∈ F6
p satisfies

|#Vc(Fp)−#P3(Fp)| ≥ 1010p3/2 (“randomness fails”), then
Vc mod p contains a plane (i.e. c3

i = c3
j in pairs; “some special

structure holds”). This is part of a subtler general dichotomy.

Recall: Vc is the hyperplane section F (x) = c · x = 0.
For large p, the planes on V (the zero locus of
F (x) = x3

1 + · · ·+ x3
6 in P5) are cut out by “x3

i + x3
j = 0 in

pairs” (e.g. x1 + x2 = x3 + x4 = x5 + x6 = 0).

5proven using “worst-case” results of Skorobogatov ’92 (or Katz ’91)
and “average-case” results of Lindner ’20
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A sample mean-value ingredient

Over ∆(c) 6= 0, the reciprocal L-functions 1/L(s,Vc) are the
main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2’, roughly)

For certain holomorphic f (s), e.g. es
2
, we have

E′c�X 1/2

∣∣∣∣∫
(σ)

ds
ζ(2s)−1L(s + 1/2,V (F ))−1

L(s,Vc)
· f (s)N s

∣∣∣∣2 �f N

(σ > 1/2; 1� N � X 3/2).

I There are no logN or logX factors on the RHS! Such
factors are determined by the “symmetry type” of the
underlying family of L-functions.

I This is enough “RMT input” for NF ,K (X )� X 3.
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More on mean values (Cancellation over c)
Also, for some δ > 0, one expects the following:

Conjecture (R1, roughly)

E′c�X 1/2

 1

L(s,Vc)
− ζ(2s)L(s + 1/2,V (F ))︸ ︷︷ ︸

polar factors

AF (s)

�σ,t X
−δ

(over ∆(c) 6= 0) (for X ≥ 1; s = σ + it; σ > 1/2)
Here AF (s)� 1 for <(s) ≥ 1/2− δ.

Remark
For NF ,K (X )� X 3, we only use (R2’). But for HLH (which
requires “cancellation over c”), we need a “slight adelic
perturbation” of (R1).
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Applications to sums of 3 cubes

Let g := x3 + y 3 + z3.

Question (Integral Hasse principle)

Is every admissiblea integer a represented by g (over Z)?

ai.e. locally represented; i.e. 6≡ ±4 mod 9

Theorem (S. Diaconu ’19 + ε)

Say, ∀ nice K ⊂ R6, HLH holds. Then 100% Hasse holds.

Theorem (W.)

Assume standard NT conj’s on L-functions (e.g. Hypo HW +
“RMT”) & “unlikely” divisors (“p2 | ∆(c)”). Then 100%
(resp. > 0%) of admiss. ints lie in g(Z3) (resp. g(Z3

>0)).
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The story of 33

Via computer, Booker obtained (at “five past nine in the
morning on the 27th of February 2019”)

(8866128975287528)3 + (−8778405442862239)3

+ (−2736111468807040)3 = 33.

Remark
See the Youtube video “33 and all that” for a nice talk by
Booker (with T-shirt and mug links) on the discovery of this
and related results.

Exercise
Try Google Calculator, then Wolfram Alpha.
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