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Overview

Let F(x) :=x + -+ + x3. This talk centers around
Diophantine equations and L-functions, especially

1. F(x) =0 over Z, as well as
2. F(x)=c-x=0over F, (as c, p vary), and
3. the associated Hasse-Weil L-functions L(s, V) (over

A(c) #0).
Problem (Many authors)

Estimate the number of integral solutions to F(x) =0 in
expanding boxes or other regions.

Remark (Many authors)

This problem is closely tied to the statistics of sums of 3 cubes.




The usual randomness heuristic (via level sets)

Let s := 6. For K C RR® nice (cpt, semi-alg), X — oo, and
acZ, let Ne_y(X) =#{x€ZNXK:F = a}.

Example
Say K =[—1,1]°. Then XK = [—X, X]*, and

F(Z° N XK) < X?® (since F =x +---+ xZ is cubic).

So Ne_ak(X) is < X3 on avg (in *) over a < X3.

Hardy-Littlewood (“randomness”) prediction for F = 0:

NF7K(X) ~ Xs_3 H Oy.
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Randomness and structure (for F := x3 + -+ + x?2)

Hooley '86a: HL (“randomness”) prediction misses triv. sol's
(x;i + x; = 0 in pairs); maybe the truth is HLH?

Conjecture (HLH)

For any nice K C RS,

Ne k(X) = cuLr.x - X2+ #{triv. x € Z° N XK} + o(X3).
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Remark (Around the square-root barrier)

1. The full HLH lies beyond the classical o-method (according
to square-root “pointwise” minor arc considerations).

2. But the -method opens the door to progress on HLH, by
harmonically decomposing the true minor arc contribution
in a “dual” fashion.
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What's known towards HLH?

1. Hua '38: N k(X) < X7/2+< (by Cauchy b/w structure
and randomness in 4,8 vars, resp.).

2. Vaughan '86+: “" < X"/2(log X)*=>/2 (by new source of
randomness).

3. Hooley '86+: “" < X3*¢, under Hypo HW (& modularity
+ GRH for the Hasse-Weil L-functions L(s, V¢)).

Hooley used an “upper-bound precursor” to the J-method.



The d-method

Proposition (§-method: Kloosterman '26,
Duke—Friedlander—lwaniec '93, Heath-Brown '96)

NF’K(X) RS EC<<X1/2E,,SX3/2[I‘I_1SC(I‘I)] = %
(c € 7°), where ~~ means | may be lying a bit, and

— Z/ Z en(aF(x) + ¢ - x).

amod n x&(Z/n)b
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(en(t) := €?/") (Don't worry about the “/"; it means a L n)

Remark

Here ¢ = 0 captures major arcs (roughly speaking), producing
HL but not full HLH. And ¢ # 0 captures. ..




lle’l )
ldea (“Kloosterman method™) is to treat classical major and

minor arcs uniformly (using Poisson summation?), and average
over a mod n.

Ne k(X) =~ Z # ZI Z e.(aF(x)) (o-method)

n<Xx3/2 amod n x&X
]. “ - "
AR W]Ec«n/X[Sc(n)] (“complexity” n/X)

ngx3/2
~a B Eeexie[nSe(n)] = *.
Idea’: In gen'l (for n>> X large), > 0>, o x €n(aF(x)) is

incomplete mod n, but still a wt'd avg of the complete sums
Sc(n), if we sample over enough c's (Nyquist-Shannon). [

awith ¢ = 0 “purely probabilistic”, and ¢ # 0 subtler




The Sc(n)’s relate to V. := {[x] € P°: F(x) = ¢ - x = 0}.
Fact: 3 disc poly A € Z[c| measuring singularities of V.

Lemma (Hooley)

If A(c) # 0, then Sc(n) := n~7/25.(n) look (to 1st order) like
the coeffs pc(n) of 1/L(s, Ve) (Ve := (Ve)o)-
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Partial proof sketch.

Here F is homog (& a is summed) so Sc(n) is multiplicative.
Locally: If pt c, then Se(p) = E<(p) + O(p~Y/2), where
Ec(p) := p~32[#V(F,) — #P3(F,)]. Now use LTF. O
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Exercise (Cf. Hooley, “2x-Kloosterman”)

“Assume” Ve, n, N: A(c) # 0, Se(n) = pe(n),
> onen te(n) < [NV Then + < X3t




By coincidence, the “double Kloosterman” misses HLH by e.

Theorem (Hooley '86+/Heath-Brown '98)

Ne k(X)) < X3T€, under Hypo HW (=~ modularity + GRH) for
L(s, V¢)'s (over A(c) #0).2

2A large-sieve hypo would suffice (W.). It's open! But 3 uncond. apps
to x? + y3 + z3 (W., via Briidern '91 + Duke—Kowalski '00 4 Wiles et al).
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Theorem (W.)

Roughly: Assume standard NT conjectures on L-functions
(e.g. Hypo HW + RMT-type predictions) and “unlikely”
divisors (“p* | A(c)”).

Then Ne x(X) < X3, and in fact HLH Conj. holds for a large
class of regions K .?

@This has nice applications to sums of 3 cubes (Diaconu '19 + ¢).




More precisely:

Theorem (W.)
Assume standard N'T conj's on
> (s, Ve), L(s, Ve, N2), L(s, V(F)) (Hypo HW2 + Ratios
Conj's + Krasner®), and
» “unlikely” divisors (Square-free Sieve Conjecture for A(c)).

Then for any nice K C R® w/ K Nhess F = (,> we have
Ne k(X) < X3, & in fact HLH Conj. holds. (Actual hypo's for
former are cleaner than those for latter.)

a“effective version of Kisin's thesis (Local constancy in p-adic families

of Galois representations)”
bThis could probably be removed with enough work, but is mild enough

for our main qualitative needs.
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Glossary for hypo's

1. Hypo HW?2: Similar in spirit to Hooley's Hypo HW.

2. Ratios Conj's: Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s, V) and
1/L(s1, V¢)L(s2, V) over families of ¢’s.!

3. Krasner: Need L,(s, V¢) to only depend on
¢ mod pA(c)% (cf. Kisin's thesis).
4. SFSC: Need (for Z > 1, P < Z3)

Price[-Z,Z]°: 3 p € [P,2P] with p* | A(c)] < P°.

'How does ¢ ~ L(s, V) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery—Dyson, and “near
1/2" from Katz-Sarnak. CFKRS (2005) developed full main term
predictions for L-powers, and CFZ (2008) for L-ratios.
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Proof hint.
We want to bound/estimate (via §-method)

NF’K(X) RS EC<<X1/2E,,§X3/2[I7715,_-(I7)] = *.

Exponent numerics over various loci (if d =3, s = 6):

s d
s-d =S40 =22+ 0t
¢=0, n small S—— N ~~ d

=3+ O(5%).

Main terms of HLH: A(c) = 0 (key: Sc(n) is biased for special
c's). Conditional/hardest part: A(c) # 0 (which “factors” into
certain mean-value and pointwise estimates over c). [l

v
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Remark (Some more details)

There are maybe 5 sources of € in Hooley/Heath-Brown,
incl. what I'll call “Special”, “Generic”", & “Badp”.

The locus A(c) = 0 in * unconditionally produces the conj'd
main term cyiy - X3. This resolves “Special” .

The remaining sum (over A(c) # 0) is conditionally

RS Z (typically O(1))? x (RMT-type sum).

finite set

» To prove “typical-O(1)" (under SFSC), re: “Badp”, need
partial results towards a conjectural dichotomy/IF,.

» Each “RMT-type sum” is 0 + O(X37°) (under Ratios),
improving on GRH bound O.(X3*¢) (cf. “Generic”).

Zneeds proof; loosely resembles Sarnak—Xue “density philosophy”
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A sample pointwise ingredient

Among other things, we need partial results® toward a
conjectural dichotomy/F,, amusingly parallel to HLH:

Conjecture (Randomness vs. structure over F,)

If p> 100 and c € FS with [#Vc(F,) — #P3(F,)| > 101°p%/2,
then V. mod p contains a plane (i.e. ¢ = ¢ in pairs).

Remark

R. Kloosterman told me that in the nodal case, a char. 0 analog
of a stronger conj. holds (w/ Hodge-theoretic proof). Lindner
'20 proved partial results towards the “stronger conjecture”.

2proven using “worst-case” results of Skorobogatov '92 (or Katz '91)
and “average-case” results of Lindner '20 (or Debarre-Laface-Roulleau
'17)
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A sample mean-value ingredient

Over A(c) # 0, the reciprocal L-functions 1/L(s, V) are the
main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2', roughly)

For certain holomorphic f(s), e.g. e, we have

C@s) s +1/2 VE) T Ll
/U)ds s V) f(s)N°| <¢ N

/
C<<Xl/2

(0>1/2; 1< N < X32).

» There are no log N or log X factors on the RHS! Such
factors are determined by the “symmetry type” of the
underlying family of L-functions.

» This is enough “RMT input” for N x(X) < X3.
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More on mean values (Cancellation over c)
Also, for some § > 0, one expects the following:

Conjecture (R1, roughly)

, 1

. J/

e X1/2 m —¢(25)L(s +1/2, V(F)) Ar(s) | <ot X7°

polar factors

(over A(c) #0) (for X > 1, s=0+it; 0 >1/2)
Here Ap(s) < 1 for ®(s) > 1/2 — 4.

Remark

For N x(X) < X3, we only use (R2"). But for HLH (which
requires “cancellation over "), we need a “slight adelic
perturbation” of (R1).
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Applications to sums of 3 cubes

Let g := x3 + y3 + 25,
Question (Integral Hasse principle)

Is every admissible® integer a represented by g (over Z)?

%i.e. locally represented; i.e. # +4 mod 9

Theorem (S. Diaconu 19 + ¢)
Say, V nice K C R®, HLH holds. Then 100% Hasse holds.

Theorem (W.)

Assume standard NT conj's on L-functions (e.g. Hypo HW +
“RMT") & “unlikely” divisors (“p? | A(c)”). Then 100%
(resp. > 0%) of admiss. ints lie in g(Z3) (resp. g(Z3,)).
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