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Sec 0: Sums of three cubes (Intro)

Let g := x3 + y3 + Z3, so that g(Z3) consists of sums of three
cubes, i.e. integers a represented by g over Z.

Question (Integral Hasse principle)

Is every admissible® integer a represented by g (over Z)?

%i.e. locally represented; i.e. # £4 mod 9

Example
» Booker '19: YES for a = 33, since

(8866128975287528)° + (—8778405442862230)?
+ (—2736111468807040)% = 33.

> Wooley '95+: YES for > A% ints a < A (A — 00).

V.




Example (Cont'd)

» Hooley '86+: YES for >, A€ ints a < A, under Hypo
HW (=~ modularity + GRH for Hasse-Weil L-functions).

v

Theorem (W.)

Assume standard NT conj's on L-functions (e.g. Hypo HW +
“RMT") & “unlikely” divisors (“p? | A(c)”). Then 100%
(resp. > 0%) of admiss. ints lie in g(Z3) (resp. g(Z3,)).

Remark (Re: 100% Hasse)
» For 5x3 + 12y3 4 923 (in place of x* + y* + z%), 3 Hasse
failures (Cassels—Guy '66 + ¢).

» For x2 + y? + z2 — xyz (Markoff), 3 uncond. proof of
100% Hasse (Ghosh—Sarnak '17).




Sec (*: Zero/Level sets (Counting basics)

For P=x}+---+x3 (s =3,6), K C R* nice (cpt, semi-alg),
X — 00, let Np_, x(X) =#{x € Z°NXK : P = a} (a € Z).

Example

K=[-11F = XK =[-X,X],

72nxKk 27
x — P < X3

So Np_, k(X) is < X*73 on avg (in () over a < X3.

V.

HL (*“randomness”) prediction: Np_, x(X) =~ X[, 0.
(Here and elsewhere, ~~ means | may be lying a bit.)



Sec ¢%: Doubling (Rags to riches)

Let g == y3 + y3 + y3. From Z3 & 7, get (the 2nd moment
map, or “fiber-wise square”)

LT % 22 ={(y,2) € (Z°) : g(y) = &(2)}.
Here g(y) = 8(2) <= F(y,—2) =0 (Fi=x} + - + ).

Observation (Classical)

Let K =[—1,1]° If Npx(X) < X3 (X — 00), then > 0% of
Z lies in g(Z3,).

Proof.
C-S ineq (2nd moment method). O




Hooley '86a: HL (“randomness”) prediction misses triv. sol's
(e.g. x1+x2 = X3+ x4 = x5 + X6 = 0); maybe the truth is HLH?

Conjecture (HLH)
For any nice K C R®,

NF7K(X) = CHL,F,K ° X3 + #{triv. X € Z6 N XK} + O(X3)

(X — 0).

Theorem (S. Diaconu 19 + ¢)
Say, ¥V nice K C R®, HLH holds. Then 100% Hasse holds.

Proof.

Something like a variance analysis (cf. Ghosh—-Sarnak '17 for
“borderline” problems like g = a). The details are subtle. [
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Sec 3: What's known?

Hua '38: Ne k(X) < X7/2+¢ (by Cauchy b/w structure and
randomness in 4,8 vars, resp.).

Vaughan '86+: “" < X7/?(log X)<~°/2 (by new source of
randomness).

Hooley '86+: “" < X3¢, under Hypo HW (=~ modularity +
GRH for Hasse-Weil L-functions).

Remark

A large-sieve hypo? would suffice (W.).

(It's open! But)

J uncond. apps to x? + y3 + z* (W., via Briidern '91 +
Duke—Kowalski '00 + Wiles et al).

?a la Bombieri-Vinogradov




Hooley used an “upper-bound precursor” to the d-method.

Proposition (§-method: Kloosterman '26,
Duke—Friedlander—lwaniec '93, Heath-Brown '96)

NF7K(X) R IEC<<X1/2En§X3/2[n_15c(n)] =%

(c € Z°), where

= Z/ Z en(aF (x) + ¢ - x).

amod n xe(Z/n)®

v

(en(t) := €?/") (Don't worry about the “/"; it means a L n)

Remark

Here ¢ = 0 captures major arcs (roughly speaking), producing
HL but not full HLH. And ¢ # 0 captures. ..




lle’l )
ldea (“Kloosterman method™) is to treat classical major and

minor arcs uniformly (using Poisson summation?), and average
over a mod n.

Ne k(X) =~ Z # ZI Z e.(aF(x)) (o-method)

n<Xx3/2 amod n x&X
]. “ - "
AR W]Ec«n/X[Sc(n)] (“complexity” n/X)

ngx3/2
~a B Eeexie[nSe(n)] = *.
Idea’: In gen'l (for n>> X large), > 0>, o x €n(aF(x)) is

incomplete mod n, but still a wt'd avg of the complete sums
Sc(n), if we sample over enough c's (Nyquist-Shannon). [

awith ¢ = 0 “purely probabilistic”, and ¢ # 0 subtler




The Sc(n)'s relate to V. := {[x] € P*: F(x) = ¢ - x = 0}.
Fact: 3 disc poly A € Z[c| measuring singularities of V.

Lemma (Hooley)

If A(c) # 0, then Sc(n) := n~7/25.(n) look (to 1st order) like
the coeffs pc(n) of 1/L(s, Ve) (Ve := (Ve)o)-

4

Partial proof sketch.

Here F is homog (& a is summed) so Sc(n) is multiplicative.
Locally: If pt ¢, then Sc(p) = Ec(p) + O(p~Y/2), where
E.(p) := p32[#V.(F,) — #P3(F,)]. Now use LTF. O

4

Exercise (Cf. Hooley, “2x-Kloosterman”)

“Assume” Ve, n, N: A(c) # 0, Se(n) = pe(n),
> onen te(n) < [NV Then + < X3t
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Sec 4: What's new?

Theorem (W.)
Assume standard NT conj’s on

> (s, Ve), L(s, Ve, N2), L(s, V(F)) (Hypo HW2 + Ratios

Conj's + Krasner®), and

» “unlikely” divisors (Square-free Sieve Conjecture for A(c)).
Then for any nice K C R® w/ K Nhess F = ,° we have
Nek(X) < X3, & in fact HLH Conj. holds. (Actual hypo's for
former are cleaner than those for latter.)

a“effective version of Kisin's thesis (Local constancy in p-adic families

of Galois representations)”
bThis could probably be removed with enough work, but is mild enough

for our main qualitative needs.

v
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Glossary for hypo's

1. Hypo HW?2: Similar in spirit to Hooley's Hypo HW.

2. Ratios Conj's: Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s, V) and
1/L(s1, V¢)L(s2, V) over families of ¢’s.!

3. Krasner: Need L,(s, V¢) to only depend on
¢ mod pA(c)% (cf. Kisin's thesis).
4. SFSC: Need (for Z > 1, P < Z3)

Price[-Z,Z]°: 3 p€[P,2P] with p* | A(c)] < P°.

'How does ¢ ~ L(s, V) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery—Dyson, and “near
1/2" from Katz—Sarnak. CFKRS (2005) developed full main term
predictions for L-powers, and CFZ (2008) for L-ratios.
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Proof hint.
We want to bound/estimate (via §-method)

Ne(X) A~ BB pexon[n™ Sc(n)].

Exponent numerics over various loci (if d =3, s = 6):

+ 0 = (s - 2) + of4e]

S
s—d = =
S~~~ 2
c=0, n small
A(c)=0, n large A(c)#0

=3+ O(5%).

Main terms of HLH: A(c) = 0 (key: Sc(n) is biased for special
c's). Conditional/hardest part: A(c) # 0 (which “factors” into

certain mean-value and pointwise estimates over c).

O
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A sample mean-value ingredient

Over A(c) # 0, the reciprocal L-functions 1/L(s, V) are the
main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2', roughly)

For certain holomorphic f(s), e.g. e, we have

C@s) s +1/2 VE) T Ll
/U)ds s V) f(s)N°| <¢ N

/
C<<Xl/2

(0>1/2; 1< N < X32).

» There are no log N or log X factors on the RHS! Such
factors are determined by the “symmetry type” of the
underlying family of L-functions.

» This is enough “RMT input” for N x(X) < X3.
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More on mean values (Cancellation over c)
Also, for some § > 0, one expects the following:

Conjecture (R1, roughly)

, 1

. J/

e X1/2 m —¢(25)L(s +1/2, V(F)) Ar(s) | <ot X7°

polar factors

(over A(c) #0) (for X > 1, s=0+it; 0 >1/2)
Here Ap(s) < 1 for ®(s) > 1/2 — 4.

Remark

For N x(X) < X3, we only use (R2"). But for HLH (which
requires “cancellation over c¢"), we use a “slight adelic
perturbation” of (R1).
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A sample pointwise ingredient

We also use partial results? toward a conjectural dichotomy/F,,,
amusingly parallel to HLH:

Conjecture (Randomness vs. structure over F,)

If p> 100 and c € FS with [#Vc(F,) — #P3(F,)| > 101°p%/2,
then V. mod p contains a plane (i.e. ¢ = ¢ in pairs).

v

Remark (R. Kloosterman)

A char. 0 analog of a stronger conj. (in the nodal case) holds
(with a Hodge-theoretic proof).

(Lindner '20 proves partial results towards the “stronger
conjecture”.)

2proven using “worst-case” results of Skorobogatov '92 (or Katz '91)

and “average-case” results of Lindner '20
16



A cartoon of today’'s main players

1. Let g(y) == yi +y3 +y3 first.
2. Let F(x):=x3+ -+ x2 second.

A° S5 AT E A < A= {(y,2) € (A°) : g(y) = g(2)}

~
Cf. Hardy-Littlewood (1925)

{(y,2) € (A% : g(y) = 8(2)} = {F(x) = 0} = C(V)

V) -V {([x.[e]) € V x (B)" ¢ x = 0} % ()"

J

Cf. Kloosterman (1926), Heath-Brown (1983), Hooley (1986), ...
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Analogs?

» 2+ b* + a* =t has some similarity to ¢3 + b3 + a° = t.

» Allowing negative integers, one might go significantly
further with “exceptional sets” for non-critical problems,
like c® + b3 + a® = t or ¢® + b2 + a° = t, than for the
critical ¢ + b® + a® = t. Even conjecturally, the limits of
variance analysis are unclear, in view of Brauer—Manin
obstructions.
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Deformations?

> Let Ngy(X) =#{x € Z°N[-X, X]°: q | 53 + - -+ }.
It is routine to estimate N(g)(X) if ¢ < X*7°. The delta
method gives a way to estimate Ng)(X) for g > 6X3.
What can be proven in between these extremes?

> (Based on a comment from Wooley.) Let N (X) be the
number of integral solutions to

K+t =y+y+y

with xq, y1 € [10X7,20X"] and xz, y2, X3, y3 € [X,2X].
Then NG/2)(X) =< X7/2 unconditionally, while

N (X) < X7/2 unconditionally and NV(X) < X3
conditionally. What about for v € (1,3/2)7
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