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The story of 33

Via computer, Booker obtained (at “five past nine in the
morning on the 27th of February 2019”)

(8866128975287528)3 + (−8778405442862239)3

+ (−2736111468807040)3 = 33.

Remark
See the Youtube video “33 and all that” for a nice talk by
Booker (with T-shirt and mug links) on the discovery of this
and related results. (And for some drama involving an old
version of Browning’s website.)

Exercise
Try Google Calculator, then Wolfram Alpha.
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https://www.youtube.com/watch?v=so6VBxWwWVI


Main qualitative results (roughly)

Theorem (W., 2021)

Assume certain standard conjectures on

I L-functions (e.g. GRH and the Ratios Conjectures), and

I “unlikely” divisors (the Square-free Sieve Conjecture).

Then the following hold:

1. 100% of admissiblea integers are sums of three cubes.

2. A positive fraction are sums of three nonnegative cubes.

ai.e. locally represented; i.e. 6≡ ±4 mod 9

Remark (Based on Cassels–Guy, 1966)

In the analog of (1) for the ternary cubic 5x3 + 12y 3 + 9z3,
“almost all” cannot be replaced with “all”.
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1. In particular, we are proving results of an “additive” flavor
under hypotheses of a “multiplicative” flavor.

2. It would be interesting to see how much one could prove in the
function field setting.



Homogeneously expanding point counts

Definition
Given P ∈ Z[x ] in s ≥ 2 variables, let

NP,Ω(X ) := #{x ∈ Zs ∩ XΩ : P(x) = 0}

for each nicea region Ω ⊂ Rs and scalar X > 0.

asay compact, semi-algebraic

Example
I If Ω = [−1, 1]s , then NP,Ω(X ) is the number of integral

solutions x ∈ [−X ,X ]s to P(x) = 0.

I Say P = y 3
1 + y 3

2 + y 3
3 − b ∈ Z[y ]. If Ω = [0, 1]3 and

X ≥ b1/3, then NP,Ω(X ) = r3(b).
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1. This slide defines point counts in homogeneously expanding
regions.

2. A finite union of (compact) boxes is certainly nice.
3. We must avoid sets like Qs , and (maybe?) Ω ∩ {P = 0} being

(say) like a fat Cantor set. So some restriction on Ω is
necessary/convenient.

4. For nice Ω, one can define the real density via ε-thickenings
(with respect to P) of Ω ∩ {x ∈ Rn : P(x) = 0}.

5. Suppose P is homogeneous and V = V (P) is (smooth) Fano.
Let T ⊆ V (Q) denote a thin set, and let N ′P,Ω(X ) count x
with [x ] /∈ T . Suppose N ′P,w (X ) ≈ cHL,P,wX

s−deg P holds for

all w ∈ C∞c (Rs). Then N ′P,K (X ) ≈ cHL,P,KX
s−deg P holds for

all nice compact K (upper bound: take decreasing opens
Ui → K and use wi that are 1 on Ki and 0 outside U; error
bound: take εi → 0 and use wi that are 1 on
Ui ∩ ({P = 0} \ K ) and 0 outside an εi -neighborhood thereof;
use the fact that {P = 0} \ K has null boundary in {P = 0}).



The usual randomness heuristic in `1 (intro)

Fix P0 := x3
1 + · · ·+ x3

s (s ≥ 2) and Ω ⊂ Rs (nice, non-null).
For X > 0, the map

Zs ∩ XΩ
P0−→ Z

has images P0(x)� X 3 and fibers

{P0(x) = b}︸ ︷︷ ︸
size NP0(x)−b,Ω(X )

→ b.

Observation
As X →∞, the total space Zs ∩ XΩ has � X s points x , each
with P0(x)� X 3. So NP0(x)−b,Ω(X ) is

I 0 if |b| � X 3 is sufficiently large, and

I � X s−3 on average (in `1) over b � X 3.
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The usual randomness heuristic in `1 (cont’d)

Fix P0 := x3
1 + · · ·+ x3

s (s ≥ 3) and Ω ⊂ Rs (nice, non-null).

Observation
As X →∞, the point count NP0(x)−b,Ω(X ) is

I 0 if |b| � X 3 is sufficiently large, and

I � X s−3 on average (in `1) over b � X 3.

Remark
This is a real observation. More precise real considerations,
alongside p-adic analogs, lead to the Hardy–Littlewood
prediction, a “randomness heuristic” roughly of the form

NP0(x)−b,Ω(X ) ≈ cfin
HL,P0

(b) · c∞HL,P0,Ω
(b/X 3) · X s−3

(X →∞; b/X 3 fixed).
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1. When s ≤ 4, the Hardy–Littlewood prediction sometimes takes
a subtler form.



From stingy ternary to rich senary, via `2 (intro)

Let P0 := y 3
1 + y 3

2 + y 3
3 ∈ Z[y ]. Let F := x3

1 + · · ·+ x3
6 ∈ Z[x ].

If x = (y ,−z), then

P0(y) = P0(z) ⇐⇒ F (x) = 0.

Observation (Second moment method)

Let Ω := [−1, 1]6. If NF ,Ω(X )� X 3 = X 6−3 (X →∞), then
{b ∈ Z : r3(b) > 0} has positive lower density in Z.

One can go further by variance analysis. For critical problems
like P0(y) = b, cf. Ghosh–Sarnak (2017).1

1They study the Markoff-type equations x2 + y2 + z2 − xyz = b.
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From stingy ternary to rich senary, via `2 (cont’d)

Let P0 := y 3
1 + y 3

2 + y 3
3 ∈ Z[y ]. Let F := x3

1 + · · ·+ x3
6 ∈ Z[x ].

Theorem (Cf. S. Diaconu, 2019)

Say for all nice Ω ⊂ R6, Hooley’s conjecturea holds on Ω. Then
100% of admissible b ∈ Z are sums of three cubes.

aof the form NF ,Ω(X ) ≈ cHLH,F ,Ω · X 3

Remark (Cf. S. Diaconu, 2019)

To capture 100% of b’s, we must let Ω deform.a

aFor each fixed Ω, there is a “stingy” arithmetic progression of b’s.

8



1. The remark holds even if we assume a “weak approximation”
version of Hooley’s conjecture.



The senary state of art

Let F := x3
1 + · · ·+ x3

6 ∈ Z[x ] and Ω := [−1, 1]6. Then

NF ,Ω(X ) =

∫
R/Z

dθ |T (θ)|6,

where T (θ) :=
∑
|x |≤X e(θx3). What is known here?

I Hua (1938) proved NF ,Ω(X )� X 7/2+ε, by Cauchy
between

∫
R/Z dθ |T (θ)|4 � X 2+ε (structure) and∫

R/Z dθ |T (θ)|8 � X 5+ε (randomness).

I By isolating a new source of randomness,2 Vaughan (1986,
2020) gave a more robust proof of Hua’s bound, ultimately
leading to NF ,Ω(X )� X 7/2(logX )ε−5/2 (X →∞).

I Under standard conjectures on L-functions (e.g. GRH),
Hooley (1986, 1997) proved NF ,Ω(X )� X 3+ε.

2“typical divisors” of integers x � X
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Senary randomness and structure

Let F := x3
1 + · · ·+ x3

6 . For Ω ⊂ R6 nice, Hardy–Littlewood
predicts ≈ cHL,F ,Ω · X 6−3 solutions x ∈ XΩ to F (x) = 0
“arising randomly” (as X →∞). But F (x) = 0 also has
� X 6/2 “special structured” solutions x � X .

Definition
Call x ∈ Z6 trivial (or diagonal-type) if there exists π ∈ S6 such
that xπ(1) + xπ(2) = xπ(3) + xπ(4) = xπ(5) + xπ(6) = 0.

Theorem (Hooley, 1986’)

There exists Ω ⊂ R6 nice, and δ > 0, such that (as X →∞)

NF ,Ω(X ) ≥ δX 3 +max
(
cHL,F ,Ω · X 3,#{trivial x ∈ Z6 ∩ XΩ}

)
.
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Hooley’s conjecture (interpreted for general Ω)

(Let F := x3
1 + · · ·+ x3

6 .)

Definition
Call x ∈ Z6 trivial (or diagonal-type) if there exists π ∈ S6 such
that xπ(1) + xπ(2) = xπ(3) + xπ(4) = xπ(5) + xπ(6) = 0.

If x ∈ Z6 is trivial, then F (x) = 0.

Conjecture (Hooley, 1986’, interpreted generally)

For any nice Ω ⊂ R6, we have (as X →∞)

NF ,Ω(X ) = cHL,F ,Ω · X 3 + #{trivial x ∈ Z6 ∩ XΩ}+ o(X 3).

(Under this conjecture, Diaconu’s methods show that 100% of
admissible b ∈ Z are sums of three cubes.)
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The delta method (intro)

Let F := x3
1 + · · ·+ x3

6 and Ω := [−1, 1]6.

I Under Hypothesis HW (practically “modularity, plus
GRH”) for certain Hasse–Weil L-functions, Hooley (1986,
1997) proved NF ,Ω(X )� X 3+ε.3

I Hooley used an “upper-bound precursor” to the delta
method. The latter has the advantage that it is an
equality rather than an inequality.4

Remark
In a nutshell, the delta method relates NT of a “+” flavor to
NT of a “×” flavor. It is a modern version of the “completed
averaging” method of H. Kloosterman (1926).

3Actually, a large-sieve hypothesis a la Bombieri–Vinogradov would
suffice (W., 2021).

4See DFI (1993) and Heath-Brown (1996, 1998).
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The delta method (cont’d)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the circle
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑′

a mod q

∑
x∈Z6

w(x/X ) · eq(aF (x)),

where “w ≈ 1Ω” (w ∈ C∞c ), and “′” means a ⊥ q. (Here
eq(t) := e2πit/q.)

Remark
In this setting, H. Kloosterman (1926) would suggest

1. averaging over a (q fixed), and

2. “completing” incomplete sums over x ,

in either order.

13



The delta method (cont’d2)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the circle
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑′

a mod q

∑
x∈Z6

w(x/X ) · eq(aF (x)).

Remark
H. Kloosterman (1926) would rewrite the sum above as∑

q≤X 3/2

1

qX 3/2

∑
c∈Z6

Sc(q) · (X/q)6ŵ(Xc/q),

where
Sc(q) :=

∑′

a mod q

∑
x mod q

eq(aF (x) + c · x).
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The delta method (cont’d3)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the delta
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑
c∈Z6

Sc(q) · (X/q)6ŵ(Xc/q),

where
Sc(q) :=

∑′

a mod q

∑
x mod q

eq(aF (x) + c · x).

Observation (Partly classical; used in Hooley, 1986)

F is homogeneous, so Sc(mn) = Sc(m)Sc(n) if (m, n) = 1.

Also, if p - c , then p−7/2Sc(p) ≈ Ẽc(p), where Ẽc(p) measures
the “bias modulo p” of the cubic 3-fold Vc : F (x) = c · x = 0.

Here if p - ∆(c), then |Ẽc(p)| ≤ 10 (Weil conjectures).
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The delta method (cont’d4)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the delta
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑
c∈Z6

Sc(q) · (X/q)6ŵ(Xc/q). (1)

If ∆(c) 6= 0, then the normalized sums S̃c(q) := q−7/2Sc(q)
look (to first order) like the coefficients µc(q) of the reciprocal
Hasse–Weil L-function 1/L(s,Vc) associated to the cubic 3-fold
Vc := V (F , c · x)/Q (Hooley, 1986).

Exercise (Cf. Hooley, 1986)

Assuming that ∆(c) 6= 0 for all c , that S̃c(q) = µc(q) for all
c , q, and that

∑
n≤N µc(n)�ε ‖c‖εN1/2+ε for all c ,N

(N ≥ 1), show that the sum (1) above is �ε X
3+ε.
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1. The modern definition of L(s,Vc) (see Taylor, 2004) is a bit
technical, and is based on the Galois representation
H3(Vc ×Q,Q`) for a choice of auxiliary prime `. (The choice
of ` should not matter; for our specific representations, this is
probably known unconditionally.)



Main quantitative results (roughly)

Theorem (W., 2021)

Assume certain standard conjectures on

I L(s,Vc) and some “second-order” relatives (“Hypothesis
HW2”, the Ratios Conjectures, and an effective
Krasner-type lemma), and

I “unlikely” divisors (the Square-free Sieve Conjecture for
the discriminant polynomial ∆ ∈ Z[c ]).

Then for 6-variable diagonal cubic forms F ∈ Z[x ], and for nice
Ω ⊂ R6 with Ω ∩ hessF = ∅,a we have NF ,Ω(X )�F ,Ω X 3, and
in fact Hooley’s conjectureb holds for F ,Ω.

aThis is general enough for our main qualitative needs.
bof the form NF ,Ω(X ) = (cHLH,F ,Ω + o(1)) · X 3
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1. The condition Ω ∩ hessF = ∅ could probably be removed with
enough work.

2. Our hypotheses for NF ,Ω(X )�F ,Ω X 3 are a bit cleaner than
those for Hooley’s conjecture.



“Glossary” (for our hypotheses)

1. “Second-order” relatives: L(s,Vc ,
∧2) and L(s,V (F )).

2. Hypothesis HW2: Need modularity, and need 1/L(s) to be
holomorphic on the region <(s) > 1/2. And other
technical things (e.g. basic expected properties of
conductors and γ-factors).

3. Ratios Conjectures: Give predictions of Random Matrix
Theory (RMT) type for the mean values of 1/L(s,Vc) and
1/L(s1,Vc)L(s2,Vc) over natural families of c ’s.

4. Effective Krasner-type lemma: Need control on c-variation
of the local factors Lp(s,Vc) (easy if e.g. p - ∆(c)).

5. Square-free Sieve Conjecture: Need

Pr
[
c ∈ [−Z ,Z ]6 : ∃ sq-full q ∈ [Q, 2Q] with q | ∆(c)

]
to be � Q−δ, uniformly over Z ≥ 1 and Q ≤ Z 6.
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Proof ideas and themes (overview)

In the delta method for NF ,Ω(X ), one roughly encounters∑
c∈Z6

∑
q≤X 3/2

1

qX 3/2
· q7/2S̃c(q) · (X/q)6ŵ(Xc/q),

for various w ∈ C∞c (R6) with w(0) = 0.

1. Roughly speaking, the conjectured main term cHLH,F ,Ω · X 3

comes, unconditionally, from the locus ∆(c) = 0.

2. Meanwhile, conditionally, the remaining sum (over
∆(c) 6= 0) is roughly (at least in key ranges) like∑

finite set

(typically bounded)× (RMT-type sum).

GRH would only prove these “RMT-type sums” to be
Oε(X

3+ε). But conditionally, each sum is 0 + O(X 3−δ), in
part because w(0) = 0 and w ∈ C∞c .
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Proof ideas and themes (extracting main terms)

The main term cHLH,F ,Ω · X 3 comes from the locus ∆(c) = 0.

1. The “randomness prediction” cHL,F ,Ω · X 3 comes from
c = 0.

2. On the other hand, #{trivial x ∈ Z6 ∩ XΩ} comes from
c 6= 0 with ∆(c) = 0.

Remark

For random c , one expects S̃c(n)�ε n
ε (most n). But for

some special c , we have |S̃c(n)| �ε n
1/2−ε (many/all n).
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Proof ideas and themes (sums to primes)

Let Vc ⊆ P5 be cut out by x3
1 + · · ·+ x3

6 = c · x = 0.

Side Conjecture (Randomness vs. structure over Fp)

If p ≥ 100 and c ∈ F6
p with |#Vc(Fp)−#P3(Fp)| ≥ 1010p3/2,

then Vc mod p contains a plane P ⊆ V mod p, i.e. there exists
π ∈ S6 with c3

π(1) − c3
π(2) = c3

π(3) − c3
π(4) = c3

π(5) − c3
π(6) = 0.

Remark (R. Kloosterman)

A characteristic 0 analog of a stronger version of the conjecture
(in the nodal case) holds (with a Hodge-theoretic proof).

We prove partial results towards the conjecture, by combining
work of Katz (1991) or Skorobogatov (1992) on the one hand
with work of Lindner (2020) on the other. We then apply these
partial results with the aid of the Square-free Sieve Conjecture.
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1. Lindner (2020) proves partial results towards the “stronger
version of the conjecture”.

2. One can think of Katz/Skorobogatov as providing general
“worst-case” information, and Lindner as providing helpful
“average-case” information.



Proof ideas and themes (sums to prime powers)

We prove new boundedness and vanishing criteria for sums of
the form S̃c(p≥2). Again, we apply these results in conjunction
with the Square-free Sieve Conjecture.
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Proof ideas and themes (integrals)

I lied a bit. In the delta method, the archimedean (integral)
factors are more complicated than (X/q)6ŵ(Xc/q).

Remark
In reality, we prove new oscillatory integral estimates (using a
more precise stationary phase analysis than that of Hooley or
Heath-Brown), somewhat parallel to our work on S̃c(p≥2), to
establish some decay for small moduli q (which if not handled
would lose a critical X ε).
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Proof ideas and themes (typical boundedness)

Remark (Worst- vs. average-case behavior)

Let q denote a prime power � X 3/2. For all c ∈ Z6 with
∆(c) 6= 0, Hooley (1986) roughly gives |S̃c(q)| �
I q≥1/2+δ for cube-full q | ∆(c), (c1 · · · c6)∞ (very few q),

I q1/2 for the remaining q | ∆(c) (a few q), and

I 10 for the rest (most q).

For conjecturally typical c ∈ Z6,a W. (2021) roughly gives

I |S̃c(q)| � 1010 for all q.

In general, we “interpolate” between this and Hooley (1986).

ae.g. c with ∆(c) “nearly” square-free
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Proof ideas and themes (RMT-type predictions)

Remark (Ratios Conjectures)

Conrey–Farmer–Zirnbauer (2008) give a heuristic recipe for
predicting all the main terms (up to a power-saving error term)
for mean values of L-function ratios (e.g. L, 1/L, L/L) over
natural families of L-functions.

I The recipe for 1/L’s is fairly simple; “randomness”
pervades. One essentially replaces “incomplete” local
averages with their “complete” analogs.

I The recipe for L’s is more complicated, and involves
“duality”. While we do not need this directly, it supports
our overall belief in the validity of the recipe.
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1. Only “randomness” features in the recipe for 1/L’s, while a
mixture of “randomness” and “structure” appears in the recipe
for L’s.



More on RMT-type predictions

How does c 7→ L(s,Vc) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery–Dyson,
and “near 1/2” from Katz–Sarnak. CFKRS (2005) developed
full main term predictions for L-powers, and CFZ (2008) for
L-ratios; e.g. for some δ > 0, one expects the following:

Conjecture (R1, roughly)

Over ∆(c) 6= 0, we have (for X ≥ 1; s = σ + it; σ > 1/2)

E′c�X 1/2

 1

L(s,Vc)
− ζ(2s)L(s + 1/2,V )︸ ︷︷ ︸

polar factors

AF (s)

�σ,t X
−δ.

Here AF (s)� 1 for <(s) ≥ 1/2− δ.
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A sample corollary of the Ratios Conjectures

We really care about integrals over s.

Conjecture (R2’, roughly)

For certain holomorphic f (s), e.g. es
2
, we have

E′c�X 1/2

∣∣∣∣∫
(σ)

ds
ζ(2s)−1L(s + 1/2,V )−1

L(s,Vc)
· f (s)N s

∣∣∣∣2 �f N

(σ > 1/2; 1� N � X 3/2).

I There are no logN or logX factors on the RHS! The
numerator ζ(2s)−1L(s + 1/2,V )−1 serves as a mollifier,
and

∫
ds also helps.

I We use (R2’) for NF ,Ω(X )� X 3, and a “slight adelic
perturbation” of (R1) for HLH.
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A cartoon of today’s main players

1. Let P0(y) := y 3
1 + y 3

2 + y 3
3 first.

2. Let F (x) := x3
1 + · · ·+ x3

6 second.

A3 P0−→ A1 P0←− A3 ×P0 A3 ∼= {(y , z) ∈ (A3)2 : P0(y) = P0(z)}︸ ︷︷ ︸
Cf. Hardy–Littlewood (1925)

{(y , z) ∈ (A3)2 : P0(y) = P0(z)} ∼= {F (x) = 0} = C (V)

C (V) 99K V [x ]←− {([x ], [c ]) ∈ V × (P5)∨ : c · x = 0} [c]−→ (P5)∨︸ ︷︷ ︸
Cf. Kloosterman (1926), Heath-Brown (1983), Hooley (1986), . . .
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Analogs?

I c2 + b4 + a4 = t has some similarity to c3 + b3 + a3 = t.

I Allowing negative integers, one might go significantly
further with “exceptional sets” for non-critical problems,
like c2 + b3 + a3 = t or c2 + b2 + a3 = t, than for the
critical c3 + b3 + a3 = t. This could be interesting,
especially in view of lower bounds on such sets (from
Brauer–Manin obstructions).
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Deformations?

I Let N(q)(X ) := #{x ∈ Z6 ∩ [−X ,X ]6 : q | x3
1 + · · ·+ x3

6}.
It is routine to estimate N(q)(X ) if q ≤ X 1−δ. The delta
method gives a way to estimate N(q)(X ) for q > 6X 3.
What can be proven in between these extremes?

I (Based on a comment from Wooley.) Let N (γ)(X ) be the
number of integral solutions to

x3
1 + x3

2 + x3
3 = y 3

1 + y 3
2 + y 3

3

with x1, y1 ∈ [10X γ, 20X γ] and x2, y2, x3, y3 ∈ [X , 2X ].
Then N (3/2)(X ) � X 7/2 unconditionally, while
N (1)(X )� X 7/2 unconditionally and N (1)(X ) � X 3

conditionally. What about for γ ∈ (1, 3/2)?
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