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The story of 33

Via computer, Booker obtained (at “five past nine in the
morning on the 27th of February 2019”)

(8866128975287528)3 + (−8778405442862239)3

+ (−2736111468807040)3 = 33.

Remark
See the Youtube video “33 and all that” for a nice talk by
Booker (with T-shirt and mug links) on the discovery of this
and related results. (And for some drama involving an old
version of Browning’s website.)

Exercise
Try Google Calculator, then Wolfram Alpha.
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https://www.youtube.com/watch?v=so6VBxWwWVI


Main qualitative results (roughly)

Theorem (W., 2021)

Assume certain standard NT conjectures on

I L-functions (Langlands-type conjectures, GRH, the Ratios
Conjectures, and an effective Krasner-type lemma), and

I “unlikely” divisors (the Square-free Sieve Conjecture).

Then the following hold:

1. Integral diagonal cubic equations in 6 variables satisfy the
Hasse principle.

2. Almost all (i.e. asymptotically 100% of) integers
t 6≡ ±4 mod 9 are sums of three integer cubes.

3. A positive fraction of integers are sums of three
nonnegative integer cubes.
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Main qualitative results (roughly; cont’d)

Theorem (W., 2021)

Assume certain standard NT conjectures on L-functions and
“unlikely” divisors. Then the following hold:

1. Integral diagonal cubic equations in 6 variables satisfy the
Hasse principle.

2. Almost all (i.e. asymptotically 100% of) integers
t 6≡ ±4 mod 9 are sums of three integer cubes.

3. A positive fraction of integers are sums of three
nonnegative integer cubes.

Remark (Based on Cassels–Guy, 1966)

In the analog of (2) for the ternary cubic 5x3 + 12y 3 + 9z3,
“almost all” cannot be replaced with “all”.
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Homogeneously expanding point counts

Definition
Given a polynomial P ∈ Z[x ] in s ≥ 2 variables, let

NP,Ω(X ) := #{x ∈ Zs ∩ XΩ : P(x) = 0}

for each nice region Ω ⊂ Rs (e.g. a finite union of boxes) and
scalar X > 0.

Example
I If Ω = [−1, 1]s , then NP,Ω(X ) is the number of integral

solutions x ∈ [−X ,X ]s to P(x) = 0.

I Say P = y 3
1 + y 3

2 + y 3
3 − t ∈ Z[y ]. If Ω = [0, 1]3 and

X ≥ t1/3, then NP,Ω(X ) is r3(t), the number of ways to
write t as a sum of three nonnegative integer cubes.
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A randomness heuristic (intro)

Fix s ≥ 2 and let P0 := x3
1 + · · ·+ x3

s . Fix a nice Ω ⊂ Rs .

Question
As X →∞, how are the � X s points x ∈ Zs ∩ XΩ distributed
among the fibers {P0 = t} (t ∈ Z) of P0 : Zs → Z?

Observation
The fiber {P0(x) = t} (x ∈ Zs ∩ XΩ) has NP0(x)−t,Ω(X )
points. Therefore, NP0(x)−t,Ω(X ) is

I 0 if |t| � X 3 is sufficiently large, and

I � X s−3 on average (in `1) over t � X 3.
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A randomness heuristic (cont’d)

Fix s ≥ 3 and let P0 := x3
1 + · · ·+ x3

s . Fix a nice Ω ⊂ Rs .

Observation
For t ∈ Z, the point count NP0(x)−t,Ω(X ) is

I 0 if |t| � X 3 is sufficiently large, and

I � X s−3 on average (in `1) over t � X 3.

Remark
This is a real observation. More precise real considerations,
alongside p-adic analogs, lead to the Hardy–Littlewood
prediction, a “randomness heuristic” roughly of the form

NP0(x)−t,Ω(X ) ∼ cfin
HL,P0

(t) · c∞HL,P0,Ω
(t/X 3) · X s−3 (X →∞).
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A randomness heuristic (cont’d2)

Fix s ≥ 3 and let P0 := x3
1 + · · ·+ x3

s . Fix a nice Ω ⊂ Rs .

Remark
Let t := 0, or hold t/X 3 constant. Then for fibers P0(x) = t,
the Hardy–Littlewood prediction roughly takes the form

NP0(x)−t,Ω(X ) ∼ cfin
HL,P0

(t) · c∞HL,P0,Ω
(t/X 3) · X s−3 (X →∞),

where cfin
HL,P0

(t) is a product of p-adic densities.

Remark
When s ≤ 4, the Hardy–Littlewood prediction sometimes takes
a more complicated form (and the full truth even more so!).
But when s ≥ 5, the word “roughly” can be removed (in the
context of the prediction).
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A critical issue

Consider the critical case s = 3; let P0 := y 3
1 + y 3

2 + y 3
3 ∈ Z[y ].

Observation (S. Diaconu, 2019)

Fix a bounded region Ω ⊂ R3. For each t ∈ Z, let X := t1/3.
Then there exists an arithmetic progression a + dZ (a, d ∈ Z;
d 6= 0) on which P0(y) = t is locally solvable for all t’s, yet
NP0(y)−t,Ω(X ) = 0 for ≥ 99% of t’s.

Proof idea.
Arrange for “cfin

HL,P0
(t)” to be small over t ≡ a mod d .

Remark
P0(y) = t is locally unsolvable if and only if t ≡ ±4 mod 9.
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A critical fix

Consider the critical case s = 3; let P0 := y 3
1 + y 3

2 + y 3
3 ∈ Z[y ].

Observation (S. Diaconu, 2019)

Fix a bounded region Ω ⊂ R3. For each t ∈ Z, let X := t1/3.
Then there exists an arithmetic progression a + dZ (a, d ∈ Z;
d 6= 0) on which P0(y) = t “fails the XΩ-restricted Hasse
principle” for ≥ 99% of t’s.

But if we repeatedly enlarge Ω, the problem goes away: “every
few new digits”, we expect new solutions y ∈ Z3 to P0(y) = t,
for most if not all t 6≡ ±4 mod 9.1

1This is consistent with the folklore conjecture that perhaps all integers
t 6≡ ±4 mod 9 are sums of three cubes. (See e.g. Heath-Brown, 1992.)
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From stingy ternary to rich senary (intro)

I Even with larger regions Ω ⊂ R3 tailored to “producing”
small sums of three cubes (e.g.

Ωλ := {v ∈ [−λ, λ]3 : |v 3
1 + v 3

2 + v 3
3 | ≤ 3}

as λ→∞), the expected solution sets are still fairly
sparse (e.g. only larger by a factor of � log λ).

I But for all Ω, we can do better statistically, using the
second moment method (classical) or a variance analysis
(cf. Ghosh–Sarnak, 2017, for x2 + y 2 + z2 − xyz = t).

I The key players are the “first-moment map”

P0 : Z3 → Z, y 7→ P0(y)

and the “second-moment map”

{(y , z) ∈ (Z3)2 : P0(y) = P0(z)} → Z, (y , z) 7→ P0(y).

11



From stingy ternary to rich senary (cont’d)

Let F := x3
1 + · · ·+ x3

6 ∈ Z[x ]. If x = (y ,−z), then

P0(y) = P0(z) ⇐⇒ F (x) = 0.

Observation (Second moment method)

Let Ω := [−1, 1]6. If NF ,Ω(X )� X 3 = X 6−3 (X →∞), then
the set {t ∈ Z : r3(t) 6= 0} has positive lower density in Z.

Theorem (Based on Diaconu, 2019)

Suppose that for all nice regions Ω ⊂ R6, Hooley’s conjecturea

(interpreted on Ω) holds. Then almost all t 6≡ ±4 mod 9 are
sums of three cubes.

aof the form NF ,Ω(X ) ∼ cHLH,F ,Ω · X 3
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The senary state of art

Let F := x3
1 + · · ·+ x3

6 ∈ Z[x ] and Ω := [−1, 1]6. Then

NF ,Ω(X ) =

∫
R/Z

dθ |T (θ)|6,

where T (θ) :=
∑
|x |≤X e(θx3). What is known here?

I Hua (1938) proved NF ,Ω(X )� X 7/2+ε, by Cauchy
between

∫
R/Z dθ |T (θ)|4 � X 2+ε (divisor bound) and∫

R/Z dθ |T (θ)|8 � X 5+ε (Cauchy, then divisor bound).

I Via clever Cauchy, and other ideas, Vaughan (1986, 2020)
gave a more robust proof of Hua’s bound, ultimately
leading to NF ,Ω(X )� X 7/2(logX )ε−5/2 (X →∞).

I Under Langlands-type hypotheses and GRH (for certain
Hasse–Weil L-functions), Hooley (1986, 1997) proved
NF ,Ω(X )� X 3+ε.
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The senary failure of randomness (intro)

Let F := x3
1 + · · ·+ x3

6 . Recall that for a nice region Ω ⊂ R6,
Hardy–Littlewood predicts ∼ cHL,F ,Ω · X 6−3 solutions to
F (x) = 0 “arising randomly”. But this is not the full truth!

Proposition (Randomness failure)

If Ω := [−1, 1]6, then NF ,Ω(X )− cHL,F ,Ω · X 3 � X 3 (X →∞).

Proof sketch.
Recall that if Ω := [−1, 1]6, then NF ,Ω(X ) =

∫
R/Z dθ |T (θ)|6.

Now choose sensible major and minor arcs M,m. Then∫
M
dθ |T (θ)|6 ∼ cHL,F ,Ω · X 6−3. But

∫
m
dθ |T (θ)|2 � X , so

Hölder implies
∫
m
dθ |T (θ)|6 � X 3.
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The senary failure of randomness (cont’d)

(Let F := x3
1 + · · ·+ x3

6 .) One can show more.

Definition
Say x ∈ Z6 is of diagonal type if there exists π ∈ S6 such that
xπ(1) + xπ(2) = xπ(3) + xπ(4) = xπ(5) + xπ(6) = 0.

If x ∈ Z6 is of diagonal type, then F (x) = 0.

Theorem (Hooley, 1986’)

There exists a nice region Ω ⊂ R6, and a real number δ > 0,
such that NF ,Ω(X ) is (for all sufficiently large X � 1)

≥ δX 3 + max
(
cHL,F ,Ω · X 3,#{diagonal-type x ∈ Z6 ∩ XΩ}

)
.
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Hooley’s conjecture (interpreted for general Ω)

(Let F := x3
1 + · · ·+ x3

6 .)

Definition
Say x ∈ Z6 is of diagonal type if there exists π ∈ S6 such that
xπ(1) + xπ(2) = xπ(3) + xπ(4) = xπ(5) + xπ(6) = 0.

If x ∈ Z6 is of diagonal type, then F (x) = 0.

Conjecture (Hooley, 1986’, interpreted generally)

For any nice region Ω ⊂ R6, we have (as X →∞)

NF ,Ω(X ) ∼ cHL,F ,Ω · X 3 + #{diagonal-type x ∈ Z6 ∩ XΩ}.

(Under this conjecture, Diaconu’s methods show that almost all
t 6≡ ±4 mod 9 are sums of three cubes.)
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The delta method (intro)

Let F := x3
1 + · · ·+ x3

6 and Ω := [−1, 1]6.

I Under Langlands-type hypotheses and GRH (for certain
Hasse–Weil L-functions), Hooley (1986, 1997) proved
NF ,Ω(X )� X 3+ε.

I Using the delta method, Heath-Brown (1996, 1998) gave a
slightly more systematic proof of Hooley’s conditional
bound NF ,Ω(X )� X 3+ε (under the same hypotheses).

Remark
In a nutshell, the delta method relates NT of a “+” flavor to
NT of a “×” flavor. It is a modern version of the “completed
averaging” method of H. Kloosterman (1926).
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The delta method (cont’d)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the circle
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑′

a mod q

∑
x∈Z6

w(x/X ) · eq(aF (x)),

where w is a smooth weight “approximating” Ω, and a mod q
is restricted to residues coprime to q. (Here eq(t) := e2πit/q.)

Remark
In this setting, H. Kloosterman (1926) would suggest

1. averaging over fractions a/q with q fixed, and

2. using Poisson summation (over each fixed x mod q) to
“complete” incomplete exponential sums over x ,

in either order.
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The delta method (cont’d2)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the circle
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑′

a mod q

∑
x∈Z6

w(x/X ) · eq(aF (x)).

Remark
H. Kloosterman (1926) would rewrite the sum above as∑

q≤X 3/2

1

qX 3/2

∑
c∈Z6

Sc(q) · (X/q)6ŵ(Xc/q),

where
Sc(q) :=

∑′

a mod q

∑
x mod q

eq(aF (x) + c · x).
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The delta method (cont’d3)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the delta
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑
c∈Z6

Sc(q) · (X/q)6ŵ(Xc/q),

where
Sc(q) :=

∑′

a mod q

∑
x mod q

eq(aF (x) + c · x).

Observation (Partly classical; used in Hooley, 1986)

F is homogeneous, so Sc(mn) = Sc(m)Sc(n) if (m, n) = 1.

Also, if p - c , then p−7/2Sc(p) ≈ Ẽc(p), where Ẽc(p) measures
the “bias modulo p” of the cubic 3-fold Vc : F (x) = c · x = 0.

Here if p - ∆(c), then |Ẽc(p)| ≤ 10 (Weil conjectures).
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The delta method (cont’d4)

Let F := x3
1 + · · ·+ x3

6 . Fix a nice Ω ⊂ R6. In the delta
method for NF ,Ω(X ), one encounters sums resembling∑

q≤X 3/2

1

qX 3/2

∑
c∈Z6

Sc(q) · (X/q)6ŵ(Xc/q). (1)

If ∆(c) 6= 0, then the normalized sums S̃c(q) := q−7/2Sc(q)
look (to first order) like the coefficients µc(q) of the reciprocal
Hasse–Weil L-function 1/L(s,Vc) associated to the cubic 3-fold
Vc := V (F , c · x)/Q (Hooley, 1986).

Exercise (Cf. Hooley, 1986)

Assuming that ∆(c) 6= 0 for all c , that S̃c(q) = µc(q) for all
c , q, and that

∑
n≤N µc(n)�ε ‖c‖εN1/2+ε for all c ,N

(N ≥ 1), show that the sum (1) above is �ε X
3+ε.
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Main quantitative results (roughly)

Theorem (W., 2021)

Assume certain standard NT conjectures on

I the Hasse–Weil L-functions L(s,Vc) and some
“second-order” relatives (Langlands-type conjectures, GRH,
the Ratios Conjectures, and an effective Krasner-type
lemma), and

I “unlikely” divisors (the Square-free Sieve Conjecture for
the discriminant polynomial ∆ ∈ Z[c ]).

Then for diagonal cubic forms F ∈ Z[x ] in 6 variables, and for
a large classa of regions Ω ⊂ R6, Hooley’s conjectureb

(interpreted for F ,Ω) holds.

alarge enough for our main qualitative needs
bof the form NF ,Ω(X ) ∼ cHLH,F ,Ω · X 3
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Some details on the hypotheses

1. “Second-order” relatives: L(s,Vc ,
∧2) and L(s,V (F )).

2. Langlands-type conjectures and GRH: Need Selberg-type
axioms (analytic continuation, Ramanujan bound, etc.) to
hold, and need 1/L(s,Vc) to be holomorphic on the region
<(s) > 1/2. And other technical things (e.g. basic
expected properties of conductors and γ-factors).

3. Ratios Conjectures: Give predictions of Random Matrix
Theory (RMT) type for the mean values of 1/L(s,Vc) and
1/L(s1,Vc)L(s2,Vc) over natural families of c ’s.

4. Effective Krasner-type lemma: Need limited c-variation of
the local factors Lp(s,Vc) (easy if e.g. p - ∆(c)).

5. Square-free Sieve Conjecture: Need

Pr
[
c ∈ [−Z ,Z ]6 : ∃ sq-full q ∈ [Q, 2Q] with q | ∆(c)

]
to be � Q−δ, uniformly over Z ≥ 1 and Q ≤ Z 6.
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Proof ideas and themes (overview)

In the delta method for NF ,Ω(X ), one roughly encounters∑
c∈Z6

∑
q≤X 3/2

1

qX 3/2
· q7/2S̃c(q) · (X/q)6ŵ(Xc/q),

for various w ∈ C∞c (R6) with w(0) = 0.

1. Roughly speaking, the conjectured main term cHLH,F ,Ω · X 3

comes, unconditionally, from the locus ∆(c) = 0.

2. Meanwhile, conditionally, the remaining sum (over
∆(c) 6= 0) roughly decomposes, at least in key ranges, as
a finite linear combination of products of the form

(typically bounded)× (RMT-susceptible sums).

GRH would only prove these “RMT-susceptible sums” to
be Oε(X

3+ε). But conditionally, each sum is 0 + O(X 3−δ),
in part because w(0) = 0 and w ∈ C∞.
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Proof ideas and themes (extracting main terms)

The main term cHLH,F ,Ω · X 3 comes from the locus ∆(c) = 0.

1. The “randomness prediction” cHL,F ,Ω · X 3 comes from
c = 0.

2. On the other hand, #{diagonal-type x ∈ Z6 ∩ XΩ}
comes from c 6= 0 with ∆(c) = 0.

Remark

For random c , n, one heuristically expects S̃c(n)�ε n
ε—which

can be formalized in a way key to the locus ∆(c) 6= 0—but key
to the locus ∆(c) = 0 is that for certain special c ’s, the truth
can easily be a factor of �ε n

1/2−ε larger. (Thus whereas the
locus ∆(c) 6= 0 centers around L-functions, the the locus
∆(c) = 0 centers around algebraic geometry.)
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Proof ideas and themes (sums to primes)

Let Vc ⊆ P5 be cut out by x3
1 + · · ·+ x3

6 = c · x = 0.

Side Conjecture (Randomness vs. structure over Fp)

If p ≥ 1000 and c ∈ F6
p with |#Vc(Fp)−#P3(Fp)| ≥ 1010p3/2,

then Vc mod p contains a plane P ⊆ V mod p, i.e. there exists
π ∈ S6 with c3

π(1) − c3
π(2) = c3

π(3) − c3
π(4) = c3

π(5) − c3
π(6) = 0.

Remark (R. Kloosterman)

A characteristic 0 analog of a stronger version of the conjecture
in the case c1 · · · c6 6= 0 holds (with a Hodge-theoretic proof).

We prove partial results towards the conjecture, by combining
work of Katz (1991) or Skorobogatov (1992) on the one hand
with work of Lindner (2020) on the other. We then apply these
partial results with the aid of the Square-free Sieve Conjecture.
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Proof ideas and themes (sums to prime powers)

We prove new boundedness and vanishing criteria for sums of
the form S̃c(p≥2). Again, we apply these results in conjunction
with the Square-free Sieve Conjecture.
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Proof ideas and themes (integrals)

I lied a bit. In the delta method, the archimedean (integral)
factors are more complicated than (X/q)6ŵ(Xc/q).

Remark
In reality, we prove new oscillatory integral estimates (using a
more precise stationary phase analysis than that of Hooley or
Heath-Brown), somewhat parallel to our work on S̃c(p≥2), to
establish some decay for small moduli q (which if not handled
would lose a critical X ε).
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Proof ideas and themes (RMT-type predictions)

Remark (Ratios Conjectures)

Conrey–Farmer–Zirnbauer (2008) give a heuristic recipe for
predicting all the main terms (up to a power-saving error term)
for mean values of L-function ratios (e.g. L, 1/L, L/L) over
natural families of L-functions.

I The recipe for 1/L’s is fairly simple.a One essentially
replaces “incomplete” local averages with their “complete”
analogs.

I The recipe for L’s is more complicated, and involves
“duality” (specifically, the approximate functional equation
for L). While we do not need this directly, it supports our
overall belief in the validity of the recipe.

aThis is morally related to “Möbius randomness” heuristics.
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A cartoon of today’s main players

1. Let P0(y) := y 3
1 + y 3

2 + y 3
3 first.

2. Let F (x) := x3
1 + · · ·+ x3

6 second.

A3 y 7→P0(y)−−−−−→ A1 P0(y)←−−− {(y , z) ∈ (A3)2 : P0(y) = P0(z)}︸ ︷︷ ︸
Cf. Hardy–Littlewood (1925)

{(y , z) ∈ (A3)2 : P0(y) = P0(z)} ∼= {F (x) = 0} = C (V)

C (V) 99K V [x ]←− {([x ], [c ]) ∈ V × (P5)∨ : c · x = 0} [c]−→ (P5)∨︸ ︷︷ ︸
Cf. Kloosterman (1926), Heath-Brown (1983), Hooley (1986), . . .
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Analogs?

I c2 + b4 + a4 = t has some similarity to c3 + b3 + a3 = t.

I Allowing negative integers, one might go significantly
further with “exceptional sets” for non-critical problems,
like c2 + b3 + a3 = t or c2 + b2 + a3 = t, than for the
critical c3 + b3 + a3 = t. This could be interesting in view
of lower bounds on such sets (from Brauer–Manin
obstructions).
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Deformations?

I Let N(q)(X ) := #{x ∈ Z6 ∩ [−X ,X ]6 : q | x3
1 + · · ·+ x3

6}.
It is routine to estimate N(q)(X ) if q ≤ X 1−δ. The delta
method gives a way to estimate N(q)(X ) for q > 6X 3.
What can be proven in between these extremes?

I (Based on a comment from Wooley.) Let N (γ)(X ) be the
number of integral solutions to

x3
1 + x3

2 + x3
3 = y 3

1 + y 3
2 + y 3

3

with x1, y1 ∈ [10X γ, 20X γ] and x2, y2, x3, y3 ∈ [X , 2X ].
Then N (3/2)(X ) � X 7/2 unconditionally, while
N (1)(X )� X 7/2 unconditionally and N (1)(X ) � X 3

conditionally. What about for γ ∈ (1, 3/2)?
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