
NOTES ON TWO GRAPH THEORY PROBLEMS
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1. Problem 1: Computational topology of complex graphs

In Summer 2017, I began researching computational topology in Grenoble through the
generous MIT-France Program, under Profs. Francis Lazarus and Arnaud de Mesmay. One
fundamental open problem is to determine the “smallest” surface embedding of a complex
network, with “size” measured by the topological genus of the surface. Practical motivation
(for this basic research) includes a recent “growing interest in addressing combinatorial opti-
mization problems using algorithms that exploit embeddings on surfaces to achieve provably
higher-quality output or provably faster running times” [1]. In this vein, we seek new algo-
rithms and theoretical results for the embeddability of graphs on surfaces. The plane R2 and
sphere S2 are well-understood, but other surfaces, such as the torus T 2 (surface of a donut)
and projective plane RP2, are not.

From a theoretical angle, we seek to find useful characterizations of graphs embeddable
in surfaces. An embedding is a drawing of a graph G in a surface S, such that every two
edges intersect 0 times (“combinatorial intersection number” 0”). Two other fruitful notions
are Z/2-embeddings, where every two (non-adjacent) edges intersect an even number of
times (“Z/2-intersection number” 0); and Z-embeddings (“signed intersection number” 0).
A priori, on any surface S, embeddability implies Z-embeddability, which in turn implies
Z/2-embeddability. A striking classical result of Hanani and Tutte says that if S ∈ {R2, S2},
then the reverse implications also hold: Z/2-embeddability guarantees Z-embeddability and
normal embeddability! The result is also known when S = RP2, but in August 2017, R. Fulek
and J. Kynčl showed that the Hanani–Tutte theorem is false when S is the surface of a donut
with four or more holes [2]. However, we suspect that there are fruitful notions other than
Z/2-embeddability and Z-embeddability, for which a modified version of the Hanani–Tutte
theorem should still be true.

From an algorithmic angle, we care mostly about the efficiency of theoretical characteri-
zations. For example, Z/2-embeddability is easy to test when S ∈ {R2, S2}, so the Hanani–
Tutte theorem gives rise to a known efficient algorithm for testing graph embeddability on
S. However, even though the Hanani–Tutte theorem is true for S = RP2, there is no known
efficient algorithm for testing Z/2-embeddability in that case.

For both angles, we suspect that a deeper understanding may come from an area of
algebraic topology known as obstruction theory, which has recently started to find its way
into combinatorial (as opposed to topological) problems. Obstruction theory provides a
motivating framework for Z-embeddability and Hanani–Tutte when S = R2, as well as a
natural context for the known efficient algorithms on S. When S = RP2 (in the realm of
the unknown), we are cautiously optimistic about a possible quaternion group algorithm
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for testing Z/2-embeddability. But serious technical difficulties remain, because while the
fundamental group π1(R2 × R2 \∆, ∗) = Z (arising through obstruction theory, where ∆ is
the diagonal) is Abelian, the group π1(RP2 × RP2 \∆, ∗) = Q8 is non-Abelian (outside the
reach of classical obstruction theory).

2. Problem 2: Ramsey theory of complex graphs

The transitive tournament on N vertices is the directed graph on vertices 1, 2, . . . , N with
an edge i → j whenever i < j. A classical result of Erdős and Szekeres states that any
2-coloring of the edges of the N -vertex transitive tournament has a monochromatic directed
path with dN1/2e vertices. As Motzkin would say, “complete disorder is impossible”. This is
the philosophy of Ramsey theory, a fundamental part of extremal combinatorics, with broad
applications to computer science and other parts of math and science.

To prove Erdős–Szekeres, say with colors red and blue, one defines a canonical Record
map as follows: assign to vertex i the pair (Ri, Bi), where Ri (resp. Bi) denotes the vertex-
length of the longest red (resp. blue) path ending at i. These N pairs must all be distinct,
so by pigeonhole, the longest monochromatic path has length at least N1/2. The argument
immediately generalizes to show that any k-colored tournament has a monochromatic path
of length at least N1/k. Recently, Loh [5] introduced the simplest unsolved variant of these
foundational Ramsey-theoretic questions.

Question 2.1 (Tournaments formulation). Must every 3-coloring of the edges of the N-
vertex transitive tournament contain a 1-color-avoiding directed path (i.e. path using only
two of three colors) with at least N2/3 vertices?

I have always enjoyed sharing and discussing this natural question and its history. Yet
at the same time, it seems deep, important, and rich in connections. For instance, it is
completely equivalent to the more geometric Question 2.3 below.

Definition 2.2. Call a set of triples S ⊆ R3 ordered if the triples can be listed as L1, . . . , L|S|
such that for every i < j, the coordinate-wise difference Lj − Li has at least two strictly
positive coordinates.

Question 2.3 (Triples formulation). Must an ordered set S ⊆ [n]3 satisfy |S| ≤ n3/2?

It turns out that there is a “trivial” bound |S| ≤ n2. Loh [5] improved the bound to
|S| ≤ n2/elog

∗(n) using a powerful multipurpose tool (the triangle removal lemma), where
log∗ is the iterated logarithm. However, the method cannot give a power bound |S| ≤ nα

with α < 2, due to the Behrend construction from additive combinatorics. Gowers and Long
[3] later proved such a power bound inductively, but their method apparently cannot achieve
the conjectured α = 3/2 exponent.

To prove the reduction from Question 2.1 to 2.3, Loh [5] used a canonical Record map
analogous to that from the proof of Erdős–Szekeres. Loh also used a non-canonical Color
map to reduce Question 2.3 to 2.1. Jonathan Tidor, Ben Yang, and I instead used a canonical
Color map to make a stronger reduction, ultimately showing in [7] that Questions 2.1 and
2.3 are both equivalent to an easier question about a more structured class of tournaments,
which we called geometric RGBK-tournaments (capturing both the combinatorics and the
geometry of the situation).

In other words, the maps Color and Record yield extra transitivity structure “for free”.
This, together with an inductive Cauchy–Schwarz argument, resolves our question in some
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special cases (including some addressed independently by Wagner [8]), but perhaps more
importantly suggests directions for future innovation:

• I can try finding new transformations as useful as Color and Record.
• The Cauchy–Schwarz tournaments satisfy a global-to-local principle, so that any coun-
terexample must contain a more extreme counterexample inside. New progress may
reveal interesting new global-to-local arguments.

Thinking about the equivalent Question 2.3 has led to even more possible directions:

• We established a rigorous connection, [7, Theorem 4.8], from a geometric problem of
independent interest [6]. So progress on [6] would lead to progress on Question 2.3.
• We raised a natural and stronger L2-question on slice-counts [7, Question 4.12], and

suggested several plausible approaches. I suggested one approach, [7, Section 4.4.2],
via the foundational “sum of squares of dimensions” theorem from representation
theory. If successful, this would differ from typical applications of representation
theory to extremal combinatorics based on character theory.
• Ben noted in [7, Observation 4.16] that some of the tight examples for Question 2.3

are also tight examples for the joints problem from incidence geometry. The joints
problem originated from computer science, but has a surprisingly clean proof using
elementary algebraic geometry [4]. However, joints have simple algebraic structure,
while the triples in Question 2.3 do not. Thus any geometric progress would likely
reveal new phenomena and provide an interesting comparison with the joints problem.
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