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1. Introduction, the Alon–Pach–Solymosi theorem, and Rödl’s theorem

A cornerstone of Ramsey theory due to Erdős–Szekeres [15] states that every n-vertex graph contains

a clique or stable set of size at least 1
2 log n; and random graph examples show that this cannot be

substantially improved: indeed, Erdős [14] showed that a typical n-vertex graph has no clique or stable

set with at least 2 log n vertices. The picture, however, seems to change dramatically when one considers

graphs with a forbidden induced subgraph. Formally, for a graph G, an induced subgraph of G is a

subgraph obtained from G only by removing vertices. For a graph H, say that G is H-free if H is not

isomorphic to any induced subgraph of G. Erdős and Hajnal [11], about five decades ago, posed the

following problem which remains open:

Conjecture 1.1 (Erdős–Hajnal). For every graph H, there exists c > 0 such that every H-free graph G

has a clique or stable set of size at least |G|c.

In other words, this conjecture asserts that in stark contrast to general graphs, graphs with an excluded

induced subgraph behave very differently. Conjecture 1.1 lies at the intersection of graph Ramsey theory

(diagonal Ramsey numbers under additional restrictions) and structural graph theory (general properties

of H-free graphs), and exhibits a sharp local-global phenomenon in graph theory.

Say that H has the Erdős–Hajnal property if it satisfies Conjecture 1.1. Until now only a few graphs

are known to have this property; simple examples include the complete graphs (via Ramsey bounds),

the four-vertex path P4 (Exercise 1.1), and the four-cycle C4. The following fundamental result of Alon–

Pach–Solymosi [1] gives a way to build graphs with the Erdős–Hajnal property from smaller graphs:

Theorem 1.2 (Alon–Pach–Solymosi). If H1, H2 have the Erdős–Hajnal property, then the graph H

obtained from H1 by substituting H2 for v also has the Erdős–Hajnal property.

Here, the graph H obtained from H1 by substituting H2 for v ∈ V (H1) is the graph obtained from the

disjoint union of H1 \ v and H2 by adding all edges between NH1(v) and V (H2). In what follows, a copy

of H in G is an injective map φ : V (H) → V (G) such that for all distinct u, v ∈ V (H), uv ∈ E(H) if and

only if φ(u)φ(v) ∈ E(G); then G is H-free if and only if there is no copy of H in G. Also, for S ⊆ V (G),

let G[S] denote the subgraph of G induced on S.

Proof of Theorem 1.2. Let f(G) := max(α(G), ω(G)) for every graph G, and let f(S) := f(G[S]) for

every S ⊆ V (G). Then, H has the Erdős–Hajnal property if and only if there is some positive integer

k = k(H) such that every H-free graph G satisfies f(G)k > |G|, which means that there is a copy of H

in G whenever f(G)k ≤ |G|.
Now, for i ∈ {1, 2}, let ki be such that every Hi-free graph G satisfies f(G)ki > |G|. Let h1 := |H1|;

we claim that

k = k(H) := k1h1 + k2

verifies that Conjecture 1.1 is upheld for H. To this end, let G be a graph with f(G)k ≤ |G| =: n; we

need to show that there is a copy of H in G. Put r := f(G)k1 < f(G)k ≤ |G|, then for every S ⊆ V (G) of

size r we see that f(S)k1 ≤ f(G)k1 = r = |S|, so there is a copy of H1 in G[S]. By counting the number
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of pairs (φ, S) where φ is a copy of H1 in G and S ⊆ V (G) such that φ(V (H1)) ⊆ S, it follows that the

number of copies of H1 in G is at least(
n

r

)/(
n− h1
r − h1

)
=
n(n− 1) · · · (n− h1 + 1)

r(r − 1) · · · (r − h1 + 1)
≥

(n
r

)h1

.

Now, observe that the number of copies of H1 \ v in G is at most nh1−1. Hence, by double counting

#(φ,φ′), there is a copy φ of H1 \ v in G such that there are at least (n/r)h1/nh1−1 = n/rh1 copies φ′ of

H1 in G with φ′|V (H1\v) = φ. Let F := G[φ(V (H1)\v)], and let T be the set of vertices u ∈ V (G)\V (F )

such that there is a copy φ′ of H1 in G with φ′|V (H1\v) = φ and φ′(v) = u; then |T | ≥ n/rh1 . Thus

|T | ≥ n

rh1
≥ f(G)k

f(G)k1h1
= f(G)k2 ≥ f(T )k2 ,

so there is a copy of H2 in G[T ]. Therefore there is a copy of H in G, as desired. ■

Theorem 1.2 says that graphs with the Erdős–Hajnal property are closed under substitution. Thus,

an approach to Conjecture 1.1 is to verify the Erdős–Hajnal property of prime graphs, where a graph

H is prime if there do not exist graphs H1, H2 with |H1|, |H2| < |H| such that H can be obtained by

substituting H2 for any vertex of H1. For example, P4, known to have the Erdős–Hajnal property, is the

smallest prime graph with at least two vertices and also the only prime graph on four vertices. What

about prime graphs with at least five vertices? Proving the Erdős–Hajnal property of all five-vertex

(prime) graphs remained a challenge for a few decades which was only finished very recently:

• the bull , proved by Chudnovsky–Safra 2008 [8] (with optimal exponent 1/4, see Exercise 1.2);

• the five-cycle C5, proved by Chudnovsky–Scott–Seymour–Spirkl 2023 [9]; and

• the five-vertex path P5, proved by Nguyen–Scott–Seymour 2024+ [22].

Regarding prime graphs, there was also a question of Chudnovsky [7] that asks whether there is a

prime graph on at least six vertices that satisfies the Erdős–Hajnal property. This was answered recently

in the positive [23] via a construction that builds a sequence of infinitely many such graphs.

Exercise 1.1. A cograph is a P4-free graph. Show that for every cograph G, either G or G is discon-

nected; then deduce that α(G)ω(G) ≥ |G| and max(α(G), ω(G)) ≥
√
|G|.

Exercise 1.2. Show that for every c > 0, there is a bull-free graph G with max(α(G), ω(G)) < |G|1/4+c.

Exercise 1.3. Show that H has the Erdős–Hajnal property if and only if there are c, η > 0 such that

every H-free graph G satisfies max(α(G), ω(G)) ≥ η|G|c.

Regarding the general properties of H-free graphs, perhaps one of the most well-known results in this

topic is a theorem of Rödl [27] on the edge distribution of such graphs. To state the result, for ε > 0,

say that a graph G is ε-sparse if it has maximum degree at most ε|G|, ε-dense if its complement G is

ε-sparse, and ε-restricted if it is ε-sparse or ε-dense. Then Rödl’s theorem says:

Theorem 1.3 (Rödl). Let ε ∈ (0, 12) and let H be a graph. Then the following hold:

• there is some δ = δ(H, ε) > 0 such that every H-free graph G has an ε-restricted induced subgraph

on at least δ|G| vertices; and
• there is some δ = δ(H, ε) > 0 such that for every H-free graph G, there exists X ⊆ V (G) with

|X| ≥ δ|G| and G[X] having at most ε|X|2 edges.

Sketch of proof. To see how the second statement implies the first statement, we apply the second

statement with ε′ := ε/4 and get δ′ = δ(H, ε′). Put δ := δ′/2. Let G be an H-free graph. We may

assume without loss of generality that there is some X ⊆ V (G) such that |X| ≥ δ′|G| and G[X] has at

most ε′|X|2 ≤ ε|X|2/4 edges. Let Y be the set of vertices in X with degree at least ε|X|/2 in G[X].
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Then |Y | · ε|X|/2 ≤ ε|X|2/4 which implies |Y | ≤ |X|/2, so |X \ Y | ≥ |X|/2 ≥ δ′|G|/2 = δ|G|. It follows
that G[X \ Y ] has maximum degree at most ε|X|/2 ≤ ε|X \ Y |, as desired.

Here is a sketch to prove the second statement. Given an H-free graph G, we apply the regularity

lemma with parameter ε′ = ε′(H, ε) and lower bound m = m(H, ε) to obtain an ε′-regular partition

of V (G) into k subsets where m ≤ k ≤ T (H, ε). We then apply Turán’s theorem to obtain R(n, n, n)

pairwise ε′-regular subsets among them where n = n(H, ε). Then by Ramsey’s theorem, there are n

subsets among these such that either every pair of them has density at most ε, or every pair of them

has density at least 1 − ε, or every pair of them has density between ε and 1 − ε. The first case gives

some X ⊆ V (G) with |X| ≥ δ|G| such that G[X] has at most ε|X|2 edges, the second case gives some

X ⊆ V (G) with |X| ≥ δ|G| such that G[X] has at most ε|X|2 edges, and the third case gives a copy of

H (cf. the embedding lemma). ■

It is not hard to see that the last step of the above proof sketch actually gives more than just one copy

of H. By working out the numbers one can recover the following theorem of Nikiforov [26].

Theorem 1.4 (Nikiforov). For every ε ∈ (0, 12) and every graph H, there exists δ > 0 such that every

graph G with indH(G) < (δ|G|)|H| has an ε-restricted induced subgraph on at least δ|G| vertices.

How much does δ depend on ε in Theorems 1.3 and 1.4? The regularity argument sketched above

gives tower-type dependence which perhaps will only be useful when ε is a fixed constant. Fox and

Sudakov [17] conjectured that in Theorem 1.3, δ can be taken as a power of ε (whose exponent depends

solely on |H|); and recently in [23] it was conjectured that the same conclusion holds for Theorem 1.4

as well. More precisely, let us say that H has the polynomial Rödl property if there exists d ≥ 1 such

that for every ε ∈ (0, 12), every H-free graph G contains an ε-restricted induced subgraph on at least

δ|G| vertices; and that H is viral if there exists d ≥ 1 such that for every ε ∈ (0, 12), the same conclusion

actually holds for every graph G with indH(G) < (δ|G|)|H|. Then it is not hard to check that the viral

property implies the polynomial Rödl property, which in turns yields the Erdős–Hajnal property. Here we

present an argument by Bucić–Fox–Pham [4] that shows the equivalence of all of these three properties.

We start with a primitive version of the Kleitman–Winston graph container method [2, 20].

Lemma 1.5. Let 0 ≤ ℓ ≤ k be integers, let ε ∈ (0, 1), and let G be a graph. Let r ≥ (1 − ε)ℓ|G|, and
assume that G has no ε-sparse induced subgraph on at least r vertices. Then G has at most rk−ℓ|G|ℓ

stable sets of size k.

Proof. Induction on ℓ + |G|. If ℓ = 0 then the lemma is true. Now, assume that 0 < ℓ ≤ k and the

lemma is true for ℓ+ |G| − 1; we shall prove it for ℓ+ |G|. Since G is not ε-sparse, there exists v ∈ V (G)

with degree at least ε|G| in G. Let S be the set of nonneighbours of v in G; then |S| ≤ (1− ε)|G| and so

(1 − ε)ℓ−1|S| ≤ (1 − ε)ℓ|G| ≤ r. Since G[S] has no ε-sparse induced subgraph on at least r vertices, by

induction (with k, ℓ replaced by k−1, ℓ−1), G[S] has at most r(k−1)−(ℓ−1)|S|ℓ−1 ≤ rk−ℓ|G|ℓ−1 stable sets

of size k − 1; and so G has at most rk−ℓ|G|ℓ−1 stable sets of size k that contain v. Now, by induction,

G\(S∪{v}) has at most rk−ℓ(|G|−1)ℓ stable sets of size k. Thus, since |G|ℓ−1+(|G|−1)ℓ ≤ |G|ℓ because
(1− 1/|G|)ℓ ≤ 1− 1/|G|, the number of stable sets of size k in G is at most rk−ℓ|G|ℓ−1+ rk−ℓ(|G|− 1)ℓ ≤
rk−ℓ|G|k−ℓ. This proves Lemma 1.5. ■

Putting r := δ|G|, ℓ := ⌈1ε log
1
δ ⌉, and k := 2ℓ in Lemma 1.5 gives the following.

Lemma 1.6. Let ε, δ ∈ (0, 12), and let k := 2⌈1ε log
1
δ ⌉. Then every graph G has either an ε-sparse

induced subgraph on at least δ|G| vertices or at most (δ1/2|G|)k stable sets of size k.

The following is a product of Lemma 1.6 and an Alon–Pach–Solymosi type argument (see Theorem 1.2).
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Lemma 1.7. Let f : [2,∞) → [2,∞) be an increasing function. Let n ≥ 2 be an integer, and let G be a

graph such that at least half of the n-vertex induced subgraphs of G contain a clique or stable set of size

at least 8f(n) log n. Then G has a 1/f(n)-sparse or 1/f(n)-dense induced subgraph on at least n−4|G|
vertices.

Proof. Suppose not. Let ε := 1/f(n) and k := 2⌈4f(n) log n⌉ ≤ ⌈8f(n) log n⌉; then by Lemma 1.6 (with

δ = n−4), there are at most (n−2|G|)k cliques of size k and at most (n−2|G|)k stable sets of size k in G.

Now, for n = ⌈1ε⌉ ≤
2
ε , at least half of the n-vertex induced subgraphs of G contain a clique or stable set

of size at least ⌈8f(n) log n⌉ ≥ k. Therefore

2(n−2|G|)k
(
|G| − k

n− k

)
≥ 1

2

(
|G|
n

)
.

Since
(|G|−k

n−k

)
/
(|G|

n

)
≤ (n/|G|)k, it follows that 2n−k ≥ 1

2 , a contradiction since n ≥ 2 and k ≥ 2. This

proves Lemma 1.7. ■

Now, to see how a graph H would be viral if it has the Erdős–Hajnal property, let c > 0 be such that

every H-free graph G satisfies max(α(G), ω(G)) ≥ |G|c, let f(n) be any sufficiently small power of n

such that 8f(n) log n ≤ nc for all large n, and let n be a suitable power of ε−1. We remark that the same

trick can be applied to the Erdős–Hajnal bound 2c
√
logn (see Theorem 2.1) to show that in Theorems 1.3

and 1.4 one can take δ = 2C(log 1
ε
)2 for some suitable C = C(H) < 0 which was previously proved by

Fox–Sudakov [17]; and with the log log improvement (see Theorem 3.1) this can be strengthened further

to δ = 2C(log 1
ε
)2/ log log 1

ε . We omit the details.
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2. The Erdős–Hajnal bound and the density Fox–Sudakov theorem

Qualitatively, Conjecture 1.1 implies that H-free graphs have much larger cliques or stable sets than

a typical graph does. If one does not ask for strict polynomial bounds as the conjecture predicts, then

Erdős and Hajnal already verified this qualitative statement when they first posed the problem. In

more details, the bound 2c
√

log|G| was claimed in their 1977 paper [11] where Conjecture 1.1 was first

introduced, and was later proved rigorously in a 1989 paper [12].

Theorem 2.1 (Erdős–Hajnal). For every graph H, there exists c > 0 such that every H-free graph G

has a clique or stable set of size at least 2c
√

log|G|.

To achieve this, Erdős and Hajnal employed the following “density” result for H-free graphs:

Theorem 2.2 (Erdős–Hajnal). For every graph H, there exists d ≥ 1 such that for every x ∈ (0, 12) and

every H-free graph G with |G| > x−d, there are disjoint A,B ⊆ V (G) with |A|, |B| ≥ xd|G| such that A

is x-sparse or x-dense to B.

Let us see how this lemma implies Theorem 2.1. In what follows, for a graph G let µ(G) := maxF |F |
where the maximum ranges through all induced subgraphs F of G that are cographs. Note that µ(G) ≥
max(α(G), ω(G)) ≥

√
µ(G) (cf. Exercise 1.1); and so Theorem 2.1 is equivalent to the following.

Theorem 2.3. For every graph H, there exists c > 0 such that every H-free graph G satisfies µ(G) ≥
2c
√

log|G|.

Proof of Theorem 2.3, assuming Theorem 2.2. Let d ≥ 1 be given by Theorem 2.2; we shall prove

by induction on |G| that c := 1/(2d) satisfies the theorem. Assume that |G| ≥ 2, and that the theorem

holds for all induced subgraphs of G with fewer than |G| vertices. Note that µ(G) ≥ 2 since |G| ≥ 2.

Let µ := µ(G), and let x := µ−2 ≤ 1/4. If G ≤ x−d then µ2 ≥ |G|1/d so µ ≥ |G|1/(2d) ≥ |G|c and we

are done; and so we may assume |G| > x−d. By the choice of d, there are disjoint A,B ⊆ V (G) with

|A|, |B| ≥ xd|G| > 1 such that A is x-sparse or x-dense to B. By the symmetry, let us assume that A is

x-sparse to B. Since |A| < |G|, the induction hypothesis gives S ⊆ A such that G[S] is a cograph and

|S| ≥ 2c
√

log|A|, which is equivalent to (log|S|)2 ≥ c2 log|A|. Thus log|S| ≥ c2 log|A|/ logµ; that is

|S| ≥ |A|c2/ log µ.

Let B′ be the set of vertices in B with no neighbour in S; then since |S| ≤ µ = x−1/2 ≤ 1
2x

−1, we have

that |B′| ≥ |B|− |S| ·x|B| ≥ 1
2 |B| ≥ 1

2x
d|G|. Again by induction and in a similar manner as above, there

exists T ⊆ B′ such that G[T ] is a cograph and

|T | ≥ |B′|c2/ logµ.

Now, G[S ∪ T ] is a cograph of G since G has no edge between S, T . Hence, because |A|, |B′| ≥ 1
2x

d|G| ≥
xd+1|G| ≥ x2d|G|, we deduce that

µ(G) ≥ |S ∪ T | ≥ |A|c2/ logµ + |B′|c2/ log µ ≥ 2(x2d|G|)c2/ log µ ≥ |G|c2/ logµ

where the last inequality holds since (x2d)c
2/ logµ = (x2d)−2c2/ log x = 2−4c2d = 2−1/d ≥ 1/2 by the choice

of c. Thus µ ≥ 2c
√

log|G|, completing the induction step and proving Theorem 2.3. ■

It is not hard to see from the above proof that one would only need a µ(G)−2-sparse or µ(G)−2-dense

pair of size at least |G|/µ(G)2d in order to make the induction step work. It is still open whether one

can completely get rid of the “noise” between such a pair; that is, every H-free graph G with |G| ≥ 2

contains a pure pair of size at least |G|/µ(G)b for some b ≥ 1 depending on H only. It is worth noting

that this is a direct consequence of Conjecture 1.1.

Another well-known weakening of Conjecture 1.1 is the following “one-sided Erdős–Hajnal” theorem

of Fox–Sudakov [18] which was first proved by the dependence random choice method.
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Theorem 2.4 (Fox–Sudakov). For every graph H, there exists c > 0 such that every H-free graph G

either has a stable set of size at least |G|c, or a complete bipartite subgraph whose parts each have size

at least |G|c.

In what follows we will present a proof of a common generalization [24] of both Theorem 2.2 and

Theorem 2.4:

Theorem 2.5 (Nguyen–Scott–Seymour). For every graph H, there exists d ≥ 2 such that for every

x ∈ (0, 12) and every H-free graph G, either:

• G has an x-sparse induced subgraph on at least xd|G| vertices; or
• there are disjoint A,B ⊆ V (G) with |A|, |B| ≥ xd|G| such that A is x-dense to B.

We shall in fact relax the condition “H-free” into “not too many copies of H”. Formally, let indH(G)

denote the number of copies of H in G; then our goal in the remainder of this section is the following.

Theorem 2.6. For every graph H, there exists d ≥ 2 such that for every x ∈ (0, 12) and every graph G

with indH(G) < xd|G||H|, either:

• G has an x-sparse induced subgraph on at least xd|G| vertices; or
• there are disjoint A,B ⊆ V (G) with |A|, |B| ≥ xd|G| such that A is x-dense to B.

The key idea behind the proof of Theorem 2.6 is to “fill in” the missing edges of H one at a time;

more precisely, if G has too few copies of H but enough copies of H with a missing edge added then

there has to be a dense pair of polynomial size. This idea is made rigorous by the following lemma.

Lemma 2.7. Let H be a graph with at least one nonedge, and let e ∈ E(H). Let x ∈ (0, 12), and let G

be a graph. Then for every a, b ≥ 1, one of the following holds:

• indH+e(G) < xa|G||H|;

• indH(G) ≥ x2a+b+5|G||H|; and

• there are disjoint A,B ⊆ V (G) with |A|, |B| ≥ xa+3|G| such that G has at most xb|A||B| nonedges
between A and B.

Proof. Assume that the first and the third outcomes do not hold. Let u, v be the endpoints of e, and let

H ′ := H \{u, v}. For every copy φ′ of H ′ in G, let Sφ′ be the set of copies φ of H in G with φ|V (H′) = φ′.

Let T be the set of copies φ′ of H ′ in G with |Sφ′ | ≥ 1
2x

a|G|2. Since the first outcome of the lemma does

not hold, we have that

xa|G||H| ≤ indH+e(G) ≤ |T | · |G|2 + |G||H|−2 · 1
2x

a|G|2 = |T ||G|2 + 1
2x

a|G||H|

and so |T | ≥ 1
2x

a|G||H|−2. We claim the following.

Claim 2.8. For every φ′ ∈ T , there are at least xa+b+4|G|2 copies ψ of H in G with ψ|V (H′) = φ′.

Subproof. Let X := {φ(u) : φ ∈ Sφ′}, and let Y := {φ(v) : φ ∈ Sφ′}.
If u, v are twins1 in H then X = Y . Then, since G[X] = G[Y ] has at least 1

2 |Sφ′ | ≥ 1
4x

a|G|2 edges,

there is a partition (A,B) of X = Y such that G has at least 1
4 |Sφ′ | ≥ 1

8x
a|G|2 edges between A,B.

Thus |A||B| ≥ 1
8x

a|G|2; and so |A|, |B| ≥ 1
8x

a|G| ≥ xa+3|G|.
If u, v are not twins in H then X ∩ Y = ∅. In this case let A := X and B := Y ; then G has at least

|Sφ′ | ≥ 1
2x

a|G| edges between A,B. Thus |A||B| ≥ 1
2x

a|G|2; and so |A|, |B| ≥ 1
2x

a|G| ≥ xa+1|G|.
Hence, since the third outcome of the lemma does not hold, in any case G has at least xb|A||B|

nonedges between A,B; and so the number of copies ψ of H in G with ψ(V (H ′)) = φ′ is at least

1
2 · xb|A||B| ≥ 1

16x
a+b|G|2 ≥ xa+b+4|G|2

which proves Claim 2.8. □

1Two vertices u, v ∈ V (H) are twins in H if they have the same neighbourhood in V (H) \ {u, v}.
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Now, Claim 2.8 implies that

indH(G) ≥ |T | · xa+b+4|G|2 ≥ 1
2x

2a+b+4|G||H| ≥ x2a+b+5|G||H|.

This proves Lemma 2.7. ■

Lemma 2.9. Let x > y > 0. Let G be a graph with nonempty disjoint A,B ⊆ V (G) such that G has at

most y|A||B| edges between A and B. Then there are at least (1− y
x)|A| vertices in A each with at most

x|B| neighbours in B.

Proof. This is because there are at most y
x |A| vertices in A each with at least x|B| neighbours in B. ■

Lemma 2.10. Let H be a graph with at least one edge, and let e ∈ E(H). Let x ∈ (0, 12), and let G be

a graph. Then for every a, one of the following holds:

• indH+e(G) < xa|G||H|;

• indH(G) ≥ x2a+7|G||H|; and

• there are disjoint A,B ⊆ V (G) with |A|, |B| ≥ xa+4|G| such that A is x-dense to B in G.

Proof. Assume that the first two outcomes do not hold. Then by Lemma 2.7 with b = 2, there are

disjoint A,B ⊆ V (G) with |A|, |B| ≥ xa+3|G| such that G has at most x2|A||B| nonedges between

A and B. Let A′ be the set of vertices in A with at most 2x2|B| ≤ x|B| nonneighbours in B; then

|A′| ≥ 1
2 |A| ≥ xa+4|G| and A′ is x-dense to B. This proves Lemma 2.10. ■

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let {e1, . . . , ek} be the edges of H. Let H0 := K|H|, and for every i ∈ [k] let

Hi := H0 \ {e1, . . . , ei}; then H = Hk. By Exercise 2.1, there exists s ≥ 1 such that every graph G with

indK|H|(G) < xs|G||H| has an x-sparse induced subgraph with at least xs|G| vertices. Let s0 := s; and

for every i ∈ [k], let si := 2si−1 + 7.

We claim that d := sk satisfies the theorem. To this end, let G be a graph with indH(G) < xd|G||H|,

and suppose that none of the outcomes of the theorem holds. We claim the following.

Claim 2.11. indHi(G) ≥ xsi |G||H| for every i ∈ {0, 1, . . . , k}.

Subproof. The claim is true for i = 0 by the choice of s. For i ≥ 1, assume that the claim is true for

i − 1; let us prove it for i. Since Hi−1 = Hi + ei, Lemma 2.10 with a,H, e replaced by si−1, Hi−1, ei

respectively implies that one of the following holds:

• indHi−1(G) < xsi−1 |G||H|;

• indHi(G) ≥ x2si−1+7|G||H| = xsi |G||H|; and

• there are disjoint A,B ⊆ V (G) with |A|, |B| ≥ xsi−1+3|G| ≥ xd|G| such that A is x-dense to B.

Since the first bullet cannot hold by the induction hypothesis and the third bullet cannot hold by our

supposition, the second bullet holds. This completes the induction step, proving Claim 2.11. □

Now, Claim 2.11 with i = k gives indH(G) = indHk
(G) ≥ xsk |G||H| = xd|G||H|, contrary to the

hypothesis. This proves Lemma 2.10. ■

Exercise 2.1. Without using the equivalence of the Erdős–Hajnal property and the viral property, show

that for every x ∈ (0, 12) and every complete graph K, there exists s ≥ 1 such that every graph G with

indK(G) < xs|G||K| has an x-sparse induced subgraph with at least xs|G| vertices.
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3. A log log step towards Erdős–Hajnal

The goal of this section is the following result [5], which improves Theorem 2.1 by a log log factor.

Theorem 3.1 (Bucić–Nguyen–Scott–Seymour). For every graph H, there exists c > 0 such that every

H-free graph G has a clique or stable set of size at least 2c
√

log|G| log log|G|.

In order to approach the bound in Theorem 3.1, Conlon, Fox, and Sudakov [10] proposed the following

“polynomial versus linear” conjecture.

Conjecture 3.2 (Conlon–Fox–Sudakov). For every graph H, there exists d ≥ 2 such that for every

ε ∈ (0, 12) and every H-free graph G with |G| ≥ 2, there are disjoint A,B ⊆ V (G) with |A| ≥ xd|G| and
|B| ≥ 1

d |G| such that B is x-sparse or x-dense to A.

This remains open even when H is a triangle, but is known to be true when H = C5. If Conjecture 3.2

is true, then by taking x to be a suitably small power of |G|−1, one could obtain the following which is

still open also when H = C3.

Conjecture 3.3 (Conlon–Fox–Sudakov). For every graph H, there exists c > 0 such that every H-free

graph G with |G| ≥ 2 contains a pure pair (A,B) with |A| ≥ |G|c and |B| ≥ c|G|.

For a graph G, a blockade in G is a sequence (B1, . . . , Bℓ) of disjoint (and possibly empty) subsets of

V (G); its length is ℓ and its width is mini∈[ℓ]|Bi|. For k,w ≥ 0, this blockade is a (k,w)-blockade if its

length is at least k and its width is at least w; and for x > 0, it is x-sparse in G if Bj is x-sparse to Bi in

G for all i, j ∈ [ℓ] with i < j, and x-dense in G if it is x-sparse in G. While Conjecture 3.2 is open, the

following weakening is sufficient to deduce Theorem 3.1 in the same manner that Theorem 2.2 implies

Theorem 2.1.

Theorem 3.4. For every graph H, there exists b ≥ 2 such that for every x ∈ (0, |H|−2) and every H-free

graph G, there is an x-sparse or x-dense (12 log
1
x , ⌊x

b|G|⌋)-blockade in G.

The rest of this section will be devoted to proving Theorem 3.4. The heart of its proof is the following

“bipartite” lemma, which extends the idea behind Lemma 2.7 by using a more “local” counting scheme.

Lemma 3.5. Let H be a graph, and let x ∈ (0, 12). Let G be a graph with nonempty disjoint A,B ⊆ V (G)

such that every vertex in A has at least x|B| nonneighbours in B. Let a, b > 0, and let c := (a+2)|H|+
b− 1. Then for every g ∈ V (H), one of the following holds:

• there exists v ∈ A with indH\g(G[Bv]) < xb|Bv||H|−1 where Bv is the nonneighbourhood of v in B;

• indH(G) ≥ xc|A||B||H|−1; and

• there are A′ ⊆ A and B′ ⊆ B with |A′| ≥ xc|A| and |B′| ≥ xc|B| such that G has at most xa|A′||B′|
edges between A′ and B′.

Proof. Assume that the first and the third outcomes do not hold; it suffices to prove the second outcome.

To this end, let h := |H|, let {g1, . . . , gk} be the neighbours of g in H, and for 0 ≤ i ≤ k, let Hi be the

graph obtained from H by removing the edges ggi+1, ggi+2, . . . , ggk. Then Hk = H and H0 is the graph

obtained from H \ g by adding an isolated vertex. For every i, a copy φ of Hi in G is split if φ(g) ∈ A

and φ(g′) ∈ B for all g′ ∈ V (H \ g). Let d := a+ 1; then c = (d+ 1)h+ b− 1 ≥ kd+ b+ h− 1. We shall

prove the following claim by induction.

Claim 3.6. For every 0 ≤ i ≤ k, there are at least xid+b+h−1|A||B|h−1 split copies of Hi in G.

Subproof. Since the first out come of the lemma does not hold, for every v ∈ A we have

indH\g(G[Bv]) ≥ xb|Bv|h−1 ≥ xb(x|B|)h−1 = xb+h−1|B|h−1.
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Thus there are at least xb+h−1|A||B|h−1 split copies of H0 in G, proving the base case i = 0.

Now, assuming that the claim holds for i, we prove it for i+1. Put y := 1
2x

id+b+h−1; then by induction

there are at least 2y|A||B|h−1 split copies of Hi in G. Let H ′
i := H \ {g, gi+1}; and for every copy φ′ of

H ′
i in G[B], let Sφ′ be the set of split copies φ of Hi in G with φ|V (H′

i)
= φ′. Let T be the set of copies

φ′ of H ′
i in G[B] with |Sφ′ | ≥ y|A||B|. Since there are at most |B|h−2 copies of H ′

i in G[B], there are at

most y|A||B|h−1 split copies φ of Hi in G with φ|V (H′
i)
/∈ T ; so there are at least y|A||B|h−1 split copies

φ of Hi in G with φ|V (H′
i)
∈ T . Hence ∑

φ′∈T
|Sφ′ | ≥ y|A||B|h−1.

Fix φ′ ∈ T . Let A′ be the set of vertices v ∈ A for which there exists φ ∈ Sφ′ with φ(g) = v; and let

B′ be the set of vertices u ∈ B for which there exists φ ∈ Sφ′ with φ(gi+1) = u. Then |Sφ′ | counts the

number of nonedges of G between A′ and B′, and so |A′||B′| ≥ |Sφ′ | ≥ y|A||B| which gives |A′| ≥ y|A|
and |B′| ≥ y|B|. Thus, since (note that x < 1

2)

y = 1
2x

id+b+h−1 ≥ xid+b+h ≥ xc

and the third outcome of the lemma does not hold, G has at least xa|A′||B′| edges between A′ and

B′. Therefore, by definition, there are at least xa|A′||B′| ≥ xa|Sφ′ | split copies φ of Hi+1 in G with

φ|V (H′
i)
= φ′. Since this holds for every φ′ ∈ T , the number of split copies of Hi+1 in G is thus at least∑

φ′∈T
xa|Sφ′ | ≥ xay|A||B|h−1 ≥ xaxid+b+h|A||B|h−1 = x(i+1)d+b+h−1|A||B|h−1,

completing the induction step. This proves Claim 3.6. □

Now, by Claim 3.6 with i = k, there are at least xkd+b+h−1|A||B|h−1 ≥ xc|A||B|h−1 split copies of

Hk = H in G. This proves Lemma 3.5. ■

Here is a refinement of Lemma 3.5 that strengthens Theorem 2.6 (see Exercise 3.1).

Lemma 3.7. Let H be a graph, and let x ∈ (0, 12). Let G be a graph with nonempty disjoint A,B ⊆ V (G)

such that every vertex in A has at least x|B| nonneighbours in B. Let a, b > 0, and let c := (a+3)|H|+b.
Then for every g ∈ V (H), one of the following holds:

• there exists v ∈ A with indH\g(G[Bv]) < xb|Bv||H|−1 where Bv is the nonneighbourhood of v in B;

• indH(G) ≥ xc|A||B||H|−1; and

• there are A′ ⊆ A and B′ ⊆ B with |A′| ≥ xc|A| and |B′| ≥ xc|B| such that A′ is xa-sparse to B′.

Proof. We may assume the first two outcomes do not hold; then Lemma 3.5 gives A0 ⊆ A and B ⊆ B

with |A0| ≥ xc−1|A| and |B0| ≥ xc−1|B| such that G has at most xa+1|A0||B′| edges between A0 and

B′. Let A′ be the set of vertices in A0 with at most xa|B′| neighbours in B′; then |A′| ≥ (1− x)|A0| ≥
x|A0| ≥ xc|A|. Thus the third bullet holds. This proves Lemma 3.7. ■

For graphs G,H with V (H) = {g1, . . . , gh} and x > 0, an x-blowup ofH in G is a sequence (A1, . . . , Ah)

of nonempty disjoint subsets of V (G) such that for all i, j ∈ [h] with i < j,

• if gigj ∈ E(H), then Aj is x-dense to Ai; and

• if gigj /∈ E(H), then Aj is x-sparse to Ai.

Lemma 3.8. If x > 0 and there is an x-blowup (A1, . . . , Ah) of H in G, then there are at least (1 −(
h
2

)
x)|A1| · · · |Ah| copies φ of H in G with φ(gi) ∈ Ai for all i ∈ [h].

Proof. For each i ∈ [h], let vi be a uniformly random element of Ai, such that v1, . . . , vh are chosen

independently. Since (A1, . . . , Ah) is an x-blowup of H, for every distinct i, j ∈ [h], vi, vj have the

same adjacency type in G as gi, gj in H with probability at least 1 − x. Hence by a union bound,
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φ : V (H) → V (G) defined by φ(gi) := vi for all i ∈ [h] is a copy of H in G with probability at least

1−
(
h
2

)
x. This proves Lemma 3.8. ■

Lemma 3.9. Let H be a graph with V (H) = {g1, . . . , gh}. Then for each b > 0, there exists d > 2 such

that for every graph G and every x ∈ (0, h−2), one of the following holds:

• indH\gh(G[B
′]) < xb|B′|h−1 for some B′ ⊆ V (G) with |B′| ≥ xc|G|;

• indH(G) ≥ (xc|G|)h; and
• there are disjoint A,B ⊆ V (G) with |A| ≥ ⌊xc|G|⌋ and |B| ≥ 1−hx

h−1 |G| such that B is x-sparse or

x-dense to A.

Proof. Let ah := 1; and for k = h, h− 1, . . . , 1 in turn, let ck := (ak + 3)b+ h and ak−1 := ak + ck. Let

d1 := 2; and for k = 2, 3, . . . , h in turn, let dk := max(ck + dk−1, (k − 1)ck + 2). Finally, let c := dh + 3.

Now, let G be a graph, and let x ∈ (0, h−2). If xc|G| < 1 then the third bullet trivially holds; so we

may assume xc|G| ≥ 1, in particular |G| > 1/x. Suppose for the sake of contradiction that all three

bullets do not hold. Let Hk := H[{g1, . . . , gk}] for all k ∈ [h]; we prove by induction the following claim.

Claim 3.10. For every k ∈ [h], G contains an xak-blowup (A1, . . . , Ak) of Hk with xdk |G| ≤ |Ai| ≤ x|G|
for all i ∈ [k].

Subproof. The case k = 1 holds since ⌊x|G|⌋ ≥ 1
2x|G| ≥ x2|G|. For k ≤ h, assume that G contains

an xak−1-blowup (A1, . . . , Ak−1) of Hk−1 with xdk−1 |G| ≤ |Ai| ≤ x|G| for all i ∈ [k − 1]. Put A :=

A1 ∪ · · · ∪ Ak−1; then |A| ≤ (k − 1)x|G|. For every i ∈ [k − 1], let Ci be the set of vertices in V (G) \ A
such that

• if gigk ∈ E(H), then every vertex in Ci has fewer than x|Ai| neighbours in Ai; and

• if gigk /∈ E(H), then every vertex in Ci has fewer than x|Ai| nonneighbours in Ai.

Then |Ci| < 1−hx
h−1 |G| ≤

1−kx
k−1 |G| for every i ∈ [k − 1] by the hypothesis. It follows that

|G| − |A| − (|C1|+ · · ·+ |Ck−1|) > |G| − (k − 1)x|G| − (1− kx)|G| = x|G|,

and so there exists B ⊆ (V (G) \A) \ (C1 ∪ · · · ∪ Ck−1) with |B| = ⌊x|G|⌋ ≥ 1
2x|G| > x2|G|. Note that

• if gigk ∈ E(H), then every vertex in B has at least x|Ai| neighbours in Ai; and

• if gigk /∈ E(H), then every vertex in B has at least x|Ai| nonneighbours in Ai.

Let B1 := B. For i = 2, 3, . . . , k in turn, assume that we are given Bi−1 ⊆ B with

|Bi−1| ≥ x(i−2)ck |B| ≥ x(k−1)ck+2|G| ≥ xdk |G| ≥ xc−1|G|.

In particular, there is no B′ ⊆ Bi−1 with |B′| ≥ x|Bi−1| and indH\gh(G[B
′]) < xb|B′|h−1. Since x|Ai| ≥

xdk−1+1|G| ≥ xc−1|G| and

indH(G) < (xc|G|)h = xc(xc−1|G|)h ≤ xdk−1 |Ai|h−1|Bi−1|,

Lemma 3.7 with (a, b) = (ak, b) gives A′
i ⊆ Ai and Bi ⊆ Bi−1 with |A′

i| ≥ xck |Ai| and |Bi| ≥ xck |Bi−1|
such that

• if gigk ∈ E(H), then every vertex in Bi has at most xak |A′
i| nonneighbours in A′

i; and

• if gigk /∈ E(H), then every vertex in Bi has at most xak |A′
i| neighbours in A′

i.

For every i ∈ [k − 1], we have

|A′
i| ≥ xck |Ai| ≥ xck+dk−1 |G| ≥ xdk |G|.

Let A′
k := Bk; then since x|G| ≥ |B| > x2|G| and |Bi| ≥ x(i−1)ck |B1| = x(i−1)ck |B| for all i ∈ [k], we have

x|G| ≥ |B| ≥ |A′
k| = |Bk| ≥ x(k−1)ck |B| > x(k−1)ck+2|G| ≥ xdk |G|.

For all i, j ∈ [k − 1] with i < j, since xak−1 |Ai| ≤ xak−1−ck |Ai| = xak |A′
i| and (A1, . . . , Ak−1) is an

xak−1-blowup of Hk−1,
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• if gigj ∈ E(H), then every vertex in A′
j has at most xak−1 |Ai| ≤ xak |A′

i| nonneighbours in A′
i; and

• if gigj /∈ E(H), then every vertex in A′
j has at most xak−1 |Ai| ≤ xak |A′

i| neighbours in A′
i.

Therefore (A′
1, . . . , A

′
k−1, A

′
k) is an xak -blowup of Hk in G with xdk |G| ≤ |A′

i| ≤ x|G| for all i ∈ [k],

completing the induction step. This proves Claim 3.10. □

Now, Claim 3.10 with k = h yields an x-blowup (A1, . . . , Ah) of H in G with |Ai| ≥ xdk+2|G| for all

i ∈ [h]. Thus, since 1−
(
h
2

)
x ≥ 1

2 > x for all i ∈ [h− 1] (recall that x ∈ (0, h−2)), Lemma 3.8 implies that

indH(G) ≥ x · (xdh+2|G|)h ≥ (xdh+3|G|)h = (xc|G|)h,

a contradiction. This proves Lemma 3.9. ■

For x > 0, an x-threshold blockade in a graph G is a blockade (B1, . . . , Bℓ) in G such that for every

i ∈ [ℓ], Bi+1 ∪ · · · ∪ Bℓ is x-sparse or x-dense to Bi. (This is related to the notion of threshold graphs,

where a graph F is threshold if every induced subgraph J of F contains v ∈ V (J) that is complete or

anticomplete to V (J) \ {v}.) We now iterate Lemma 3.9 to obtained the following “symmetric” result.

Lemma 3.11. For every graph H with h = |H| ≥ 1, there exists d ≥ 2 such that for every graph G and

every x ∈ (0, h−2), if indH(G) < (xd|G|)h then G contains an x-threshold (log 1
x , ⌊x

d|G|⌋)-blockade.

Proof. We proceed by induction on h. For h = 1 we can choose d = 1; so let us assume h ≥ 2. Let

g ∈ V (H), and let d′ > 0 be chosen for H \ g by induction. Let c > 0 be chosen from Lemma 3.9 with

b = d′(h− 1), let s := log h, and let d := d′ + c+ s. We claim that d satisfies the theorem.

To this end, let x ∈ (0, h−2), and let G be a graph with indH(G) < (xd|G|)h. If xd|G| < 1 then we are

done since G contains an x-threshold blockade of any given length and width at least zero. Thus we may

assume xd|G| ≥ 1. Let ℓ ≥ 0 be maximal such that G contains an x-threshold blockade (B1, . . . , Bℓ−1, Bℓ)

with |Bi| ≥ ⌊xd|G|⌋ for all i ∈ [ℓ − 1] and |Bℓ| ≥ h1−ℓ|G|. If ℓ − 1 ≥ log(1/x) then we are done; so we

may assume ℓ− 1 < log(1/x). Then

|Bℓ| ≥ h1−ℓ|G| > h− log(1/x)|G| = xs|G|.

By Lemma 3.9, one of the following holds:

• indH\g(G[B
′]) < xb|B′|h−1 = (xd

′ |B′|)h−1 for some B′ ⊆ Bℓ with |B′| ≥ xc|Bℓ| ≥ xc+s|G|;
• indH(G) ≥ (xc|G|)h ≥ (xd|G|)h; and
• there are disjoint A,B ⊆ Bℓ with |A| ≥ ⌊xc|Bℓ|⌋ and |B| ≥ 1−hx

h−1 |Bℓ| such that either every vertex

in B has at most x|A| neighbours in A or every vertex in B has at most x|A| nonneighbours in A.
The second bullet cannot happen since indH(G) < (xd|G|)h; and the third bullet cannot happen by

the maximality of ℓ and

|A| ≥ ⌊xc|Bℓ|⌋ ≥ ⌊xc+s|G|⌋ ≥ ⌊xd|G|⌋,

|B| ≥ 1− hx

h− 1
|Bℓ| ≥ h−ℓ|G|,

where the last inequality holds since 1−hx
h−1 > 1

h (note that x ∈ (0, h−2)). Thus the first bullet holds, and

so the choice of d′ gives an x-threshold blockade in G[B′] of length at least log(1/x) and width at least

⌊xd′ |B′|⌋ ≥ ⌊xd′+c+s|G|⌋ = ⌊xd|G|⌋. This completes the induction step, proving Lemma 3.11. ■

It is now not hard to derive Theorem 3.4 from Lemma 3.11 by noting that every n-vertex threshold

graph has a clique or stable set of size at least 1
2n.

Exercise 3.1. Deduce Theorem 2.6 from Lemma 3.7.
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4. Graphs of bounded VC-dimension and ultra-strong regularity

For a family F of subsets of a ground set V , a subset S ⊆ V is shattered by F if for every A ⊆ S

there exists F ∈ F with A = F ∩ S. The VC-dimension of F (with respect to V ) is the largest size

of a subset of V shattered by F . For a graph G, its VC-dimension is the VC-dimension of the family

{NG(v) : v ∈ V (G)} with respect to V (G). We start with the following simple characterization of graphs

of bounded VC-dimension; and in what follows, a bigraph is a bipartite graph H with a fixed bipartition.

Lemma 4.1. For every bigraph H, there exists d ≥ 1 such that every graph of VC-dimension at least d

contains a bi-induced copy of H. Conversely, for every d ≥ 1, there is a bigraph H such that every graph

with a bi-induced copy of H has VC-dimension at least d.

Proof. The second statement is trivial. To prove the first statement, it suffices to show that for every

bigraph H with bipartition (X,Y ) where |X| = |Y | =: k, there is a bi-induced copy of H in every graph

G of VC-dimension at least k+ log(2k). To see this, let S ⊆ V (G) with |S| ≥ k+ log(2k) such that S is

shattered by {NG(v) : v ∈ V (G)}. Let A ∪ B be a partition of S with |A| = k and |B| ≥ log(2k); then

there are distinct subsets B1, . . . , B2k of B. Let ψ be a bijection from X to A. For every u ∈ Y and every

i ∈ [2k], there exists vui ∈ V (G) such that NG(v
u
i ) ∩ S = ψ(NH(u)) ∪ Bi; then vu1 , . . . , v

u
2k are distinct

and so at least k of them are not in A, say vu1 , . . . , v
u
k /∈ A. Now it is not hard to greedily construct an

injective map ϕ : Y → V (G) \A such that ϕ(u) ∈ {vu1 , . . . , vuk} for all u ∈ Y . Then ψ and ϕ together give

a bi-induced copy of H in G, as desired. This proves Lemma 4.1. ■

For two bigraphs F with bipartition (A,B) and H with bipartition (X,Y ), say that (F,A,B) bi-

contains (H,X, Y ) if there is a bi-induced copy φ of H in F with φ(X) ⊆ A,φ(Y ) ⊆ B. To refine

Lemma 4.1 into a “proper” forbidden induced subgraphs characterization of graphs of bounded VC-

dimension, we need the following two results, the first of which was proved by Erdős–Hajnal–Pach [13]

and the second of which results from a simple random bipartite graph argument.

Theorem 4.2 (Erdős–Hajnal–Pach). For every bigraph H with bipartition (X,Y ), there exists a ≥ 1

such that for every bigraph F with bipartition (A,B) where |A|, |B| ≥ 2a and (F,A,B) does not bi-contain

(H,X, Y ), there is a pure pair (C,D) in F with C ⊆ A, D ⊆ B, |C|a ≥ |A|, and |D|a ≥ |B|.

Lemma 4.3. For every integer n ≥ 2, there is a bigraph F with bipartition (A,B) such that |A| = |B| = n

and there is no pure pair (C,D) in F with C ⊆ A, D ⊆ B, and |C|, |D| ≥ 2 log n.

Exercise 4.1. Prove Theorem 4.2 and Lemma 4.3.

A split graph is a graph whose vertex set is the disjoint union of a clique and a stable set. Via an

application of the Erdős–Hajnal theorem 2.1, a graph missing a bi-induced copy of a bigraph if and

only if it avoids a bipartite graph, the complement of a bipartite graph, and a split graph as induced

subgraphs. The following proof can also be found in [3].

Lemma 4.4. For every two bipartite graphs H1, H2 and every split graph J , there is a bigraph F such

that there is no bi-induced copy of F in any {H1, H2, J}-free graph.

Proof. Let c > 0 be given by Theorem 2.1 with H = H1. Let (X1, Y1) be a bipartition of H1, (X2, Y2)

be a bipartition of H2, and U ∪ V be a partition of V (J) such that U is a clique in J and V is stable in

J . Let H ′
2 be the bigraph obtained from H2 by making X2, Y2 stable, and let J ′ be the bigraph obtained

from J by making U stable. By Theorem 4.2, there exists a ≥ 1 such that for every bigraph F with

bipartition (A,B) for which |A|, |B| ≥ 2a and (F,A,B) does not bi-contain at least one of (H1, X1, Y1),

(H ′
2, X2, Y2), (J

′, U, V ), and (J ′, V, U), there is a pure pair (C,D) in F with C ⊆ A, D ⊆ B, |C|a ≥ |A|,
and |D|a ≥ |B|.
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Now, let n ≥ 1 be such that 2c
√
logn ≥ (2 log n)a, and let F be a bigraph with bipartition (A,B)

and |A| = |B| = n given by Lemma 4.3; we claim that F satisfies the lemma. To this end, let G be a

{H1, H2, J}-free graph; and suppose that there is a bi-induced copy of F in G. Thus we may assume

V (F ) ⊆ V (G). By the choice of c, since each of G[A], G[B] is H1-free, there are P ⊆ A,Q ⊆ B with

|P |, |Q| ≥ 2c
√
logn ≥ (2 log n)a ≥ 2a such that each of P,Q is a clique or stable set inG. Let F ′ := F [P∪Q];

then since G is {H1, H2, J}-free, (F ′, P,Q) does not bi-contain at least one of (H1, X1, Y1), (H
′
2, X2, Y2),

(J ′, U, V ), and (J ′, V, U). Hence, by the choice of a, there is a pure pair (C,D) in F ′ (and so in F and

G) with C ⊆ P , D ⊆ Q, |C|a ≥ |P |, and |D|a ≥ |Q|; but then |C|a, |D|a ≥ 2c
√
logn ≥ (2 log n)a which

yields |C|, |D| ≥ 2 log n, contrary the choice of F . This proves Lemma 4.4. ■

By combing Lemmas 4.1 and 4.4, we obtain the following forbidden induced subgraphs characterization

of graphs of bounded VC-dimension.

Lemma 4.5. For every bigraphs H1, H2 and every split graph J , there exists d ≥ 1 such that every

{H1, H2, J}-free graph has VC-dimension at most d. Conversely, for every d ≥ 1, there are bigraphs

H1, H2 and a split graph J such that every graph of VC-dimension at most d is {H1, H2, J}-free.

For ε > 0 and a graph G, an ultra-strong ε-partition of G is an equipartition (V1, . . . , VL) of G such

that all but at most an ε fraction of the pairs (Vi, Vj) are ε-pure. The rest of this section deals with

the following partitioning result of Lovász–Szegedy [21] for graphs of bounded VC-dimension, which

significantly strengthens the regularity lemma for these graphs.

Theorem 4.6 (Lovász–Szegedy). For every d ≥ 1, there exists K ≥ 2 such that for every ε ∈ (0, 12),

every graph G of VC-dimension at most d admits an ultra-strong ε-regular partition into L parts for

some integer L ∈ [ε−1, ε−K ].

We shall present a proof of this result by Fox–Pach–Suk [16]. First, we require the well-known Sauer–

Shelah–Perles lemma [28, 29].

Theorem 4.7 (Sauer–Shelah–Perles). Let F be a family of subsets of VC-dimension d ≥ 1 of a ground

set V . Then for every S ⊆ V ,

|{F ∩ S : F ∈ F}| ≤
d∑

j=0

(
|S|
j

)
≤ 2|S|d.

Next we require a simple application of Theorem 4.7, which is a weaker version (with an additional

polylog factor) of Haussler’s packing lemma [19].

Lemma 4.8. For every d ≥ 1, there exists Cd ≥ 1 for which the following holds for every q ≥ 1. Let F
be a family of subsets of VC-dimension at most d of a ground set V , such that |A∆B| ≥ |V |/q for all

distinct A,B ∈ F . Then |F| ≤ Cd(q ln q)
d ≤ Cdq

2d.

Proof. Let k := ⌈2q ln|F|⌉ ≤ 4q ln|F|. Let v1, . . . , vk be uniformly random elements of V chosen

independently with repetition. For every two distinct A,B ∈ F , the probability that A∆B contains

none of v1, . . . , vk is at most

(1− 1/q)k ≤ e−k/q ≤ |F|−2.

Thus, with positive probability, A∆B contains at least one of v1, . . . , vk for all distinct A,B ∈ F . Hence

there exists S ⊆ V with |S| ≤ k such that (A∆B) ∩ S ̸= ∅ for all distinct A,B ∈ F ; and so

|F| = |{F ∩ S : F ∈ F}| ≤ 2kd ≤ 22d+1(q ln|F|)d

where the second equation is due to Theorem 4.7. Thus there exists Cd ≥ 1 such that

|F| ≤ Cd(q ln q)
d ≤ Cdq

2d
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as was to be shown. This proves Lemma 4.8. ■

Intuitively, a bigraph with not too few edges and not too few nonedges should have one side with a

decent number of vertices of not too small degree and antidegree. This intuition is made rigorous by the

following lemma.

Lemma 4.9. Let G be a bigraph with bipartition (A,B). Let ε ∈ (0, 1), and assume that G has at least

ε|A||B| and at most (1− ε)|A||B| edges between A,B. Let a denote the number of pairs (e, e′) such that

e ∈ E(G), e′ /∈ E(G), and e ∩ e′ ⊆ A, and let b denote the number of pairs (e, e′) such that e ∈ E(G),

e′ /∈ E(G), and e∩e′ ⊆ B. Then a|A|+b|B| ≥ ε(1−ε)|A|2|B|2 and so a+b ≥ ε(1−ε)|A||B|min(|A|, |B|).

Proof. Let a1, a2 be random vertices of A chosen independently and uniformly with repetition, and let

b1, b2 be random vertices of B chosen independently and uniformly with repetition. Then

P[a1b1 ∈ E(G), a2b2 /∈ E(G)] = (|A||B|)−1|E(G)| · (|A||B|)−1|E(G)| ≥ ε(1− ε).

Observe that if a1b1 ∈ E(G) and a2b2 /∈ E(G) then either a1b1 ∈ E(G) and a1b2 /∈ E(G), or a1b2 ∈ E(G)

and a2b2 /∈ E(G). Therefore, since a = |A||B|2 · P[a1b1 ∈ E(G), a1b2 /∈ E(G)] and b = |A|2|B| · P[a1b2 ∈
E(G), a2b2 /∈ E(G)], the proof of Lemma 4.9 is complete. ■

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6 by Fox–Pach–Suk. Let Cd ≥ 1 be given by Lemma 4.8; we claim that K :=

logCd + 18d + 5 satisfies the theorem. To see this, let G be a graph with VC-dimension at most d.

We may assume |G| > ε−K , for otherwise letting L := max(|G|, ⌈ε−1⌉) would work. In what follows,

let N(v) := NG(v) for all v ∈ V (G). Let q := 27ε−2, and let k ≥ 1 be maximal such that there exists

S = {v1, . . . , vk} ⊆ V (G) with |N(vi)∆N(vj)| ≥ |G|/q for all i, j ∈ [k]. Then k = |S| ≤ Cdq
2d =

Cd2
14dε−4d by the choice of Cd. By the maximality of k, there is a partition (A1, . . . , Ak) of V (G) with

|N(v)∆N(vi)| ≤ |G|/q for all i ∈ [k] and v ∈ Ai; then |N(u)∆N(v)| ≤ 2|G|/q for all u, v ∈ Ai. Let

L := ⌈8kε−1⌉; then ε−1 ≤ L ≤ 16kε−1 ≤ Cd2
14d+4ε−4d−1 ≤ ε−K since ε ∈ (0, 12) and by the choice of K.

Let (u1, . . . , u|G|) be an ordering of V (G) such that for all 1 ≤ i < j ≤ |G|, if there exists ℓ ∈ [k] with

ui, uj ∈ Aℓ then up ∈ Aℓ for all p ∈ {i, i + 1, . . . , j}. Let (V1, . . . , VL) be an equipartition of V (G) such

that for all 1 ≤ i < j ≤ |G|, if there exists ℓ ∈ [L] with ui, uj ∈ Aℓ then up ∈ Vℓ for all p ∈ {i, i+1, . . . , j}.
Let I be the set of indices ℓ ∈ L for which Vℓ ⊆ Ai for some i ∈ [k], and let J := [L] \ I; then |J | ≤ k.

Thus there are at most kL pairs (Vi, Vj) that are not ε-pure and satisfy j ∈ J .

Now, let Q denote the set of pairs {i, j} ∈
(
I
2

)
such that (Vi, Vj) are not ε-pure. Let R := {(e, e′) :

e ∈ E(G), e ∈ E(G), |e ∩ e′| = 1}. By Lemma 4.9, for each {i, j} ∈ Q, since |Vi|, |Vj | ≥ ⌊|G|/L⌋ ≥
⌈|G|/L⌉ − 1 ≥ 1

2⌈|G|/L⌉, there are at least

ε(1− ε)⌊|G|/L⌋3 ≥ 2−4ε⌈|G|/L⌉3

pairs (e, e′) ∈ R with e, e′ ∈ Vi × Vj . On the other hand, by the definition of I, for every i ∈ I there are

at most

(2|G|/q)
(
⌈|G|/L⌉

2

)
≤ (|G|/q)⌈|G|/L⌉2

pairs (e, e′) ∈ R with |e ∩ Vi| = |e′ ∩ Vi| = 1 and e ∩ e′ ̸⊆ Vi. Hence there are at most L(|G|/q)⌈|G|/L⌉2

pairs (e, e′) ∈ R such that there exists i ∈ I with |e ∩ Vi| = |e′ ∩ Vi| = 1 and e ∩ e′ ̸⊆ Vi. It follows that

|Q| · 2−4ε⌈|G|/L⌉3 ≤ L(|G|/q)⌈|G|/L⌉2

and so |Q| ≤ 24ε−1L2/q. Therefore, since q = 27ε−2 and L = ⌈8kε−1⌉, the number of pairs {i, j} ∈
(
[L]
2

)
such that (Vi, Vj) are not ε-pure is at most

24ε−1L2/q + kL ≤ (26ε−1/q + 4k/L)

(
L

2

)
= ε

(
L

2

)
.
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This proves Theorem 4.6. ■

Exercise 4.2. Show that Theorem 4.6 is no longer true without the bounded VC-dimension assumption.

More precisely, show that if C is a hereditary class of graphs such that for every d ≥ 1 there is a graph

in C of VC-dimension at least d, then for every K ≥ 2 there exist G ∈ C and ε ∈ (0, 12) so that G admits

no ultra-strong ε-regular partition into L parts for any integer L ∈ [ε−1, ε−K ].

Theorem 4.10. For every bigraph H, there exists K ≥ 2 such that for every ε ∈ (0, 12) and every

graph G with no bi-induced copy of H, there exists L ∈ [ε−1, ε−K ] for which there is an equipartition

V (G) = V1 ∪ · · · ∪ VL such that all but at most an ε fraction of the pairs (Vi, Vj) are ε-pure.

We use Theorem 4.10 to obtain a blockade that is (strongly) ε-pure and large (more specifically, we

want the length and width to have polynomial dependence on ε). This will be useful in the proof of the

Erdős–Hajnal conjecture for graphs with bounded VC-dimension (Theorem 5.1).

Theorem 4.11. For every bigraph H, there exists b ≥ 1 such that for every ε ∈ (0, 12) and every graph

G with |G| ≥ ε−b and no bi-induced copy of H, there is an (ε−1, εb|G|)-blockade (B1, . . . , Bℓ) in G such

that

• |B1| = · · · = |Bℓ| ≤ ε2|G|; and
• for all distinct i, j ∈ [ℓ], Bi, Bj are ε-sparse to each other in G or G.

Proof. Let K ≥ 2 be given by Theorem 4.10; we claim that b := 5K satisfies the theorem. To this end,

by Theorem 4.10 with ε4 in place of ε, if G is a graph with no bi-induced copy of H, then there is an

equipartition V (G) = V1 ∪ · · · ∪ VL with L ∈ [ε−4, ε−4K ] such that all but at most an ε4 fraction of the

pairs (Vi, Vj) are weakly ε4-pure. By Turán’s theorem, there exists J ⊆ [L] with |J | ≥ 1
2ε

−4 such that

(Vi, Vj) is weakly ε
4-pure for all distinct i, j ∈ J . Then there exists I ⊆ J with |I| ≥ 1

2 |J | ≥
1
4ε

−4 ≥ ε−1

such that |Vi| = |Vj | for all distinct i, j ∈ I. Let ℓ := ⌈ε−1⌉; it follows that there exists I ⊆ J with I = [ℓ]

such that |Vi| = |Vj | for all distinct i, j ∈ I. For every i ∈ I, let Bi be the set of vertices v in Vi such

that for every j ∈ I \ {i},
• v has at most 1

2ε|Vj | neighbours in Vj if (Vi, Vj) is weakly ε
4-sparse in G; and

• v has at most 1
2ε|Vj | nonneighbours in Vj if (Vi, Vj) is weakly ε

4-sparse in G.

Then

|Bi| ≥ |Vi| − (ℓ− 1) · 2ε3|Vi| ≥ |Vi| − ε−1 · 2ε3|Vi| = (1− 2ε2)|Vi| ≥ |Vi|/2

and by removing vertices if necessary we may assume that |Bi| = ⌈|Vi|/2⌉ = ⌈m/2⌉ where m = |Vi|. It

follows that for all distinct i, j ∈ I, Bi, Bj are ε-sparse to each other in G or G. Also, since

m ≥ ⌊|G|/L⌋ ≥ |G|/(2L) ≥ ε4K+1|G|

(as |G| ≥ ε−b = ε−5K), it follows that for each i ∈ I,

|Bi| ≥ m/2 ≥ ε4K+2|G| ≥ ε5K |G| = εb|G|

and

|Bi| ≤ m ≤ ⌈|G|/L⌉ ≤ 2|G|/L ≤ 2ε4|G| ≤ ε2|G|.

This proves Theorem 4.11. ■
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5. Iterative sparsification and Erdős–Hajnal for graphs of bounded VC-dimension

The goal of this section is to prove the following theorem [25], which was conjectured independently

by Fox–Pach–Suk [16] and Chernikov–Starchenko–Thomas [6].

Theorem 5.1 (Nguyen–Scott–Seymour 2024+). For every d ≥ 1, there exists c > 0 such that every

graph G of VC-dimension at most d has a clique or stable set of size at least |G|c.

Via Lemma 4.1, Theorem 5.1 is equivalent to the following result.

Theorem 5.2. For every bigraph H, there exists c > 0 such that every graph G with no bi-induced copy

of H has a clique or stable set of size at least |G|c.

The proof of Theorem 5.2 uses the framework of iterative sparsification, which was introduced in [23, 24]

and later also employed in [22]. Recall that a graph is ε-restricted if either the graph or its complement

is ε-sparse. The goal is to find an ε-restricted induced subgraph of size at least poly(ε)|G|. Rather than
doing this in one step, we will instead attempt to move through a sequence of induced subgraphs that are

successively more restricted: given a y-restricted induced subgraph F , we search for an induced subgraph

that is poly(y)-restricted and is at most a poly(y) factor smaller. Provided we can start the process, and

it does not get stuck on the way, the following lemma shows that the process gives the required subset.

Lemma 5.3. Let c ∈ (0, 1), a ≥ 2, and t ≥ 1. Suppose that x ∈ (0, c), and G is a graph satisfying:

• there is a c-restricted induced subgraph of G with at least ct|G| vertices; and
• for every y ∈ [x, c] and every y-restricted induced subgraph F of G with |F | ≥ y2t|G|, there is a

ya-restricted induced subgraph of F with at least yat|F | vertices.
Then G contains an x-restricted induced subgraph with at least x2at|G| vertices.

Proof. By the first condition of the lemma, there exists y ∈ [xa, c] minimal such that G has a y-restricted

induced subgraph F with |F | ≥ y2t|G|. If y ≥ x, then by the second condition of the lemma and since

a ≥ 2, F has a ya-restricted induced subgraph with at least yat|F | ≥ yat+2t|G| ≥ y2at|G| vertices; but
this contradicts the minimality of y since xa ≤ ya < y. Thus xa ≤ y < x; and so F is x-restricted, and

|F | ≥ y2t|G| ≥ x2at|G|. This proves Lemma 5.3. ■

We will find a subgraph satisfying the first bullet by using Rödl’s theorem 1.3, with a suitable t = t(c).

However, finding a subgraph that satisfies the second bullet is more challenging, and we need to allow

for an alternative “good” outcome. We will show in Lemma 5.8 that if we get stuck then we can instead

find a large complete or anticomplete blockade (note that this is much stronger than being pure; and

the blockades given by Theorem 4.11 are only ε-pure). Let us show that, if we can find sufficiently large

complete or anticomplete blockades, then we can obtain the Erdős–Hajnal result (see [30] for an early

version of this idea).

Lemma 5.4. Let C be a hereditary class of graphs. Suppose that there exists d ≥ 2 such that for every

x ∈ (0, 2−d) and every G ∈ C, either:
• G has an x-restricted induced subgraph with at least xd|G| vertices; or
• there is a complete or anticomplete (k, |G|/kd)-blockade in G, for some k ∈ [2, 1/x].

Then there exists a ≥ 2 such that every n-vertex graph in C has a clique or stable set of size at least n1/a.

Proof. A cograph is a graph with no induced four-vertex path; and it is well-known that every k-vertex

cograph has a clique or stable set of size at least k1/2. Thus, it suffices to prove by induction that

every G ∈ C contains an induced cograph of size at least |G|1/(2d2). We may assume |G| > 22d
2
. Let

x := |G|−1/(2d) ∈ (0, 2−d). By the hypothesis, either:

• there exists S ⊆ V (G) with |S| ≥ xd|G| such that G[S] is x-threshold; or
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• there is a complete or anticomplete (k, |G|/kd)-blockade in G, for some k ∈ [2, 1/x].

If the first bullet holds, then since |S| ≥ xd|G| ≥ x−1, Turán’s theorem gives a clique or stable set in

G[S] of size at least (2x)−1 > x−1/2 = |G|1/(4d). If the second bullet holds, then by induction and since

k ≥ 2, G contains an induced cograph of size at least

k(|G|/kd)1/(2d2) = k1−1/(2d)|G|1/(2d2) > |G|1/(2d2).

This proves Lemma 5.4. ■

The key step in making the iterative sparsification strategy work is therefore to show that if the second

bullet of Lemma 5.3 does not hold then we can find a sufficiently large complete or anticomplete blockade.

We will show this in Lemma 5.7: given a y-restricted graph F with no bi-induced H, we will prove that

we can either pass to the desired poly(y)-restricted subgraph or find a complete or anticomplete blockade

whose length and width depend polynomially on y. We will argue by induction on |H|, and grow the

blockade one block at a time. The first step (Lemma 5.5) is to find a complete or anticomplete pair

(A,B), where A has size poly(y)|F | and B contains all but a small fraction of the rest of F ; we then

(Lemma 5.7) repeat the argument inside B, continuing until we obtain a blockade that is long enough.

Restricted graphs can either be dense or sparse: we will assume for the moment that our restricted graph

is sparse, and handle the dense case later by taking complements.

Lemma 5.5. Let H be a bigraph, and let v ∈ V (H). Let b ≥ 1 be given by Theorem 4.11. Assume there

exists a ≥ 2 such that every n-vertex graph with no bi-induced copy of H \ v contains a clique or stable

set of size at least n1/a. Let y ∈ (0, 1/|H|), and let F be a y-sparse graph with no bi-induced copy of H.

Then either:

• F has a y2a-restricted induced subgraph with at least y3ba
2 |F | vertices; or

• there is an anticomplete pair (A,B) in F with |A| ≥ y3ba
2 |F | and |B| ≥ (1− 3y)|F |.

Proof. We have a sparse graph, and want to find an anticomplete pair (A,B). We will do this by first

using ultraregularity to find a large, nearly-pure blockade and then looking at how the rest of the graph

attaches to it. So let ε := y3a
2
, and suppose that the first outcome does not hold; then |F | > y−3ba2 = ε−b.

By Theorem 4.11, F has a (ε−1, εb|F |)-blockade (B1, . . . , Bℓ) with ℓ = ⌈ε−1⌉, such that:

• |B1| = · · · = |Bℓ| ≤ 2ε2|F |; and
• for all distinct i, j ∈ [ℓ], Bi, Bj are ε-sparse to each other in F or F .

Let D := V (F ) \ (B1 ∪ · · · ∪ Bℓ) and m := |B1|. For i ∈ [ℓ], a vertex v ∈ D is mixed on Bi if it has a

neighbour and a nonneighbour in Bi.

Claim 5.6. Every vertex in D is mixed on at most yℓ of the blocks B1, . . . , Bℓ.

Subproof. Suppose there is a vertex w ∈ D mixed on at least yℓ of the blocks B1, . . . , Bℓ, say B1, . . . , Br

where r ≥ yℓ ≥ yε−1 = y1−3a2 . Let J be the graph with vertex set [r] where for all distinct i, j ∈ [r],

ij /∈ E(J) if and only if Bi, Bj are ε-sparse to each other in F .

We claim that there is no bi-induced copy of H \ v in J . Suppose that there is; and we may assume

V (H \v) ⊆ V (J). We assume that v ∈ V1(H) without loss of generality. For each u ∈ V2(H), let wu be a

neighbour of w in Bu if uv ∈ E(H) and a nonneighbour of w in Bu if uv /∈ E(H). For each z ∈ V1(H)\{v}
and u ∈ V2(H), since uz /∈ E(H) if and only if uz /∈ E(J) if and only if Bu, Bz are ε-sparse to each

other in F , wu is adjacent in F to at most ε|Bz| vertices in Bz if uz /∈ E(H) and nonadjacent in G to

at most ε|Bz| vertices in Bz if uz ∈ E(H). Thus, for each z ∈ V1(H) \ {v}, there are at least (note that

ε ≤ y < 1/|H|)
|Bz| − |V2(H)|ε|Bz| ≥ |Bz| − |H|y|Bz| > 0
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vertices z′ ∈ Bz such that for every u ∈ Y , wuz
′ ∈ E(F ) if and only if uz ∈ E(H); let wz be such a

vertex. It follows that {w} ∪ {wz : z ∈ V1(H) \ {v}} ∪ {wu : u ∈ Y } forms a bi-induced copy of H in F ,

a contradiction.

Thus, there is no bi-induced copy of H \ v in J . By the choice of a, J thus contains a clique or stable

set I with |I| ≥ |J |1/a ≥ (y1−3a2)1/a = y−3a+1/a. Let S :=
⋃

i∈I Bi; then |S| = |I|m since |Bi| = m for

all i ∈ I. If I is a stable set in J , then F [S] has maximum degree at most

m+ |I|εm = (1/|I|+ ε)|I|m ≤ (y3a−1/a + y3a)|S| ≤ 2y3a−1|S| ≤ y2a|S|;

and similarly, if I is a clique in J , then F [S] has maximum degree at most y2a|S|. Thus F [S] is y2a-

restricted which is the first outcome of the lemma, a contradiction. This proves the claim. □

Now, by the claim, there exists i ∈ [ℓ] such that there are at most y|D| vertices in D that are mixed

on Bi. Since F is y-sparse, there are at most y|F | vertices in D that are complete to Bi. Thus, since

|B1|+ · · ·+ |Bℓ| ≤ ℓε2|F | ≤ 2ε|F | = 2y3a
2 |F | ≤ y|F |,

there are at least

|F | − y|D| − y|F | − (|B1|+ · · ·+ |Bℓ|) ≥ (1− 3y)|F |

vertices in F with no neighbour in Bi. Because |Bi| ≥ εb|F | = y3ba
2 |F |, the second outcome of the lemma

holds. This proves Lemma 5.5. ■

We now apply Lemma 5.5 repeatedly to move from an anticomplete pair to an anticomplete blockade.

Lemma 5.7. Let H be a bigraph, and let v ∈ V (H). Let b ≥ 1 be given by Theorem 4.11. Assume there

exists a ≥ 2 such that every n-vertex graph with no bi-induced copy of H \ v contains a clique or stable

set of size at least n1/a. Let 0 < y ≤ 2−12|H|, and let F be a y-sparse graph with no bi-induced copy of

H. Then either:

• F has a ya-restricted induced subgraph with at least y2ba
2 |F | vertices; or

• there is an anticomplete (y−1/2, y2ba
2 |F |)-blockade in F .

Proof. Suppose that the second outcome does not hold. Let n ≥ 0 be maximal such that there is a

blockade (B0, B1, . . . , Bn) in F with |Bn| ≥ (1 − 3y1/2)n|F | and |Bi−1| ≥ y2ba
2 |F | for all i ∈ [n]. Since

the second outcome does not hold, n < y−1/2; and so, since y ≤ 2−12,

|Bn| ≥ (1− 3y1/2)n|F | ≥ 4−3y1/2n|F | ≥ 4−3|F | ≥ y1/2|F |.

Hence F [Bn] has maximum degree at most y|F | ≤ y1/2|Bn|; and so Lemma 5.5 (with y1/2 in place of y,

note that y1/2 ≤ 2−6|H| < 1/|H|) implies that either:

• there exists S ⊆ Bn with |S| ≥ y3ba
2/2|Bn| such that F [S] is ya-restricted; or

• there is an anticomplete pair (A,B) in F [Bn] with |A| ≥ y3ba
2/2|Bn| and |B| ≥ (1− 3y1/2)|Bn|.

If the second bullet holds, then (B0, B1, . . . , Bn−1, A,B) would be a blockade contradicting the maximal-

ity of n since |A| ≥ y3ba
2/2|Bn| ≥ y3ba

2/2+1/2|F | ≥ y2ba
2 |F |. Thus the first bullet holds; and so S ⊆ V (F )

is ya-restricted in F and satisfies |S| ≥ y3ba
2/2|Bn| ≥ y3ba

2/2+1/2|G| ≥ y2ba
2 |F |. Hence the first outcome

of the lemma holds. This proves Lemma 5.7. ■

For a bigraph H, its bicomplement is the bigraph H with the same bipartition and edge set {uv : u ∈
V1(H), v ∈ V2(H), uv /∈ E(H)}. We can now prove that the conditions of Lemma 5.4 are satisfied.

Lemma 5.8. For every bigraph H, there exists d ≥ 2 such that for every x ∈ (0, 2−d) and every graph

G with no bi-induced copy of H, either:

• G has an x-restricted induced subgraph with at least xd|G| vertices; or
• there is a complete or anticomplete (k, |G|/kd)-blockade in G, for some k ∈ [2, 1/x].
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Proof. We argue by induction on |H|. We may assume that |H| ≥ 2. Choose v ∈ V (H). By Lemma 5.4

and the induction hypothesis applied to H \ v, there exists a ≥ 4 such that every n-vertex graph with no

bi-induced copy of H \ v contains a clique or stable set of size at least n1/a. By taking complements, it

follows that every n-vertex graph with no bi-induced copy of H \ v contains a clique or stable set of size

at least n1/a. Let c := 2−12|H|, and let b ≥ 1 be given by Theorem 4.11. By Rödl’s theorem 1.3, we can

choose some t ≥ ba2 such that every graph G with no bi-induced copy ofH contains a c-restricted induced

subgraph with at least ct|G| vertices. We claim that d := 2max(at, |H|) ≥ 8t satisfies the theorem.

To show this, let x ∈ (0, 2−d) ⊆ (0, c), and suppose that G has no bi-induced copy of H. Suppose

that the second outcome of the lemma does not hold; that is, there is no k ∈ [2, 1/x] such that there is

a complete or anticomplete (k, |G|/kd)-blockade in G.

Claim 5.9. For every y ∈ [x, c] and every y-restricted induced subgraph F of G with |F | ≥ y2t|G|, there
is a ya-restricted induced subgraph of F with at least yat|F | vertices.

Subproof. We claim that either:

• F has a ya-restricted induced subgraph with at least y2ba
2 |F | ≥ y2t|F | ≥ yat|F | vertices; or

• there is a complete or anticomplete (y−1/2, y2ba
2 |F |)-blockade in F .

If F is y-sparse, then one of the bullets holds by Lemma 5.7. If not, then F is y-sparse and H -free, and

contains no bi-induced copy of H \ v, and so one of the bullets holds by Lemma 5.7 applied to F .

If the second bullet holds, then since y2ba
2 |F | ≥ y4t|G| ≥ yd/2|G| by the choice of d, there would be a

complete or anticomplete (y−1/2, yd/2|G|) blockade in G, which contradicts that the second outcome of

the lemma does not hold (note that y1/2 ≤ c1/2 ≤ 1
2). Thus the first bullet holds, proving the claim. □

Lemma 5.3 and the claim imply that G has an x-restricted induced subgraph with at least x2at|G| ≥
xd|G| vertices, which is the first outcome of the theorem. This proves Lemma 5.8. ■

Proof of Theorem 5.2. Combine Lemmas 5.4 and 5.8. ■
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Int. Math. Res. Not. IMRN, (12):9991–10004, 2024. 8

[6] A. Chernikov, S. Starchenko, and M. E. M. Thomas. Ramsey growth in some NIP structures. J. Inst. Math. Jussieu,

20(1):1–29, 2021. 16
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