Permanence conditions [EGAIV$_2$, §7]. Consider a property P of noetherian local rings. Denote by $\varphi: (A, m) \to (B, n)$ a local flat map of noetherian local rings.

(I) (Ascent) If $B \otimes_A \kappa(p)$ is geometrically P over $\kappa(p)$ for every prime ideal $p \subseteq A$, and if A is P, then B is P.

(II) (Descent) If B is P, then A is P.

(III) (Lifting) If there exists a nonzerodivisor $t \in A$ such that A/t is P, then A is P.

(IV) (Localization) If A is P, then A_p is P for every prime ideal $p \subseteq A$.

Theorem 1 [Mur, Thm. A(ii)]. Let P be a property of noetherian local rings such that regular implies P, and such that P satisfies (I)–(IV). Consider a closed flat morphism $f: Y \to X$ of locally noetherian schemes, where for all $x \in X$, the fibers of $O_{X,x} \to \hat{O}_{X,x}$ are geometrically P over $\kappa(x)$. Then, the following locus is stable under generization:

$$U_P(f) := \{x \in X \mid f^{-1}(x) \text{ is geometrically } P \text{ over } \kappa(x)\}$$

Department of Mathematics, Princeton University, Princeton, NJ 08544-1000, USA

Email address: takumim@math.princeton.edu

URL: https://web.math.princeton.edu/~takumim/