When does a p^1-linear map exist?

Land acknowledgment: I work on the traditional territories of The Three Fires People:
The Ojibwe (keepers of faith)
The Odawa (keepers of trade)
The Bodéwadmi (keepers of the fire)
I am giving this talk on the land of the Kiikaapoi.

Based on joint work with Takumi Murayama '20, Karen Smith '18,
& Takumi Murayama & Karen Smith in preparation.
Throughout R is a noetherian domain of prime char. $p > 0$ and

$$K := \text{Frac}(R).$$

Frobenius: $F^e : R \to F^e_* R$ \[\text{[Detects singularities of } R]\]

Here $F^e_* R$ is R as a ring but with R-mod structure given by

$$r \in R, \ x \in F^e_* R \implies r \cdot x = r^p x \ (\text{restriction of scalars})$$

A p^e-linear map is an R-linear map

$$\varphi : F^e_* R \to R.$$

Example: $R = \mathbb{F}_p[x, y]$, then $F_* R$ is a free R-mod with basis

$$x^i y^j, \quad 0 \leq i, j \leq p - 1.$$

$$\varphi : F_* R \to R$$

on the basis given by $\varphi(x^i y^j) = \begin{cases} 1 & \text{if } i = 0 = j \\ 0 & \text{otherwise} \end{cases}$.

This is a Frobenius splitting.
Why do we care about existence of nonzero p^{-e}-linear maps?

- Global variants of such maps on a variety X, especially splittings, imply X satisfies Kodaira vanishing \[\text{[Mehta-Ramanathan]}\]

 Kodaira vanishing fails in general in char. p (Raynaud)

- Used extensively in the theory of test ideals, a prime char. analogue of multiplier ideals

 \[\text{[Hochster, Huneke, Smith, Hara, Yoshida, Takagi, Watanabe, Lyubeznik, Aberbach, Enescu, Schwede, Blickle, Tucker, Sharp among others]}\]

- Used in the study of F-signature, and more recently, its non-local variant.

 \[\text{[Smith, Van den Bergh, Huneke, Leuschke, Tucker, Aberbach, Enescu, Yao, Singh, De Stefani, Polska among others]}\]

- Existence of "sufficiently many" such maps implies R is Cohen-Macaulay \[\text{[Hochster-Huneke]}\]

 Strongly F-regular rings.
• If $K = \text{Frac}(R)$ satisfies $[K : K^p] < \infty$, then existence of a nonzero p^{-1}-linear map implies R is excellent [Smith - D]

▷ Large class of rings that behave well under integral closures, completions, openness of regular and other loci.

▷ Deep thems such as Resolution of Singularities conjectured to hold for this class.

Question: When does R have nonzero p^{-e}-linear maps?

Example/Exercise: If $F : R \to F_*R$ is finite, then nonzero p^{-e}-linear maps exist!

If $[K : K^p] < \infty$, then existence of a nonzero p^{-e}-linear maps \Rightarrow Frobenius is finite. [Smith - D]
Above example and its converse give many examples of non-excellent rings with \neq nonzero p^e-linear maps.

Folklore: If R is “nice”, for example, if R is excellent, then does R admit nonzero p^e-linear maps?

Theorem A [Murayama-D]: For each integer $n > 0$, \exists

- excellent
- regular local
- Henselian

ring R of Krull dim n that does not admit any nonzero p^e-linear map.

Thus, \exists excellent F-pure rings that are NOT F-split.

Answers a long-standing question of Hochster, also raised by others like Smith, Zhang, Schwede, Blickle etc.

Folklore question has positive answer for large class of excellent, but non-F-finite rings.

Theorem B [Murayama-D]: If R is essentially of finite type over a complete local ring, then R has nonzero p^1-linear maps.

Furthermore, for such R, F-pure \Rightarrow F-split.
Open Question: Are there non-excellent local \(R \) that admit non-trivial \(\Phi^c \)-linear maps?

If we drop local hypothesis then can construct such examples (forthcoming work Murayama-D)

Thm A proof sketch Krull dim 1 : We use a construction from rigid analytic geometry.

A NA field \((k, \|\cdot\|)\) is a field equipped with

\[\|\cdot\|: k \to \mathbb{R}_{>0} \]

satisfying

1. \(\|x\| = 0 \iff x = 0 \)
2. \(\|xy\| = \|x\| \|y\| \)
3. \(\|x+y\| \leq \max\{\|x\|, \|y\|\} \) (ultrametric \(\Delta \)-inequality)

\((k, \|\cdot\|)\) becomes a metric space via \(\|x-y\| \) and we assume \(k \) is complete with this metric.

For such \(k \) have the Tate algebra

\[T_1(k) := \left\{ \sum_{i=0}^{\infty} a_i x^i \in k[[x]] : \|a_i\| \to 0 \text{ as } i \to \infty \right\}. \]

\(T_1(k) \) is regular (not local)
- excellent (Kiehl)
- Euclidean domain.
Murayama-D: For $(k, 11)$ of char $p > 0$, $T_i(k)$ has a nonzero p^e-linear map $\iff k$ has a nonzero continuous p^e-linear map.

Gabber/Blaszczyk (now Rzepka)-Kuhlmann: \exists NA fields k that do not admit continuous p^1-linear maps.

This uses non-Archimedean functional analysis.

To get local, Henselian counterexample you localize $T_i(k)$ at the max ideal (x) and then Henselize, for a NA field k given by Gabber/Rzepka-Kuhlmann.

BLACK LIVES MATTER!

INDIGENOUS LIVES MATTER!

LGBTQ LIVES MATTER!