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Summary
Weight regain after weight loss is a substantial challenge in obesity therapeutics.
Dieting leads to significant adaptations in the homeostatic system that controls
body weight, which promotes overeating and the relapse to obesity. In this review,
we focus specifically on the adaptations in white adipose tissues that contribute to
the biological drive to regain weight after weight loss. Weight loss leads to a
reduction in size of adipocytes and this decline in size alters their metabolic and
inflammatory characteristics in a manner that facilitates the clearance and storage
of ingested energy. We present the hypothesis whereby the long-term signals
reflecting stored energy and short-term signals reflecting nutrient availability are
derived from the cellularity characteristics of adipose tissues. These signals are
received and integrated in the hypothalamus and hindbrain and an energy gap
between appetite and metabolic requirements emerges and promotes a positive
energy imbalance and weight regain. In this paradigm, the cellularity and meta-
bolic characteristics of adipose tissues after energy-restricted weight loss could
explain the persistence of a biological drive to regain weight during both weight
maintenance and the dynamic period of weight regain.
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Introduction

Over 60% of adults and close to 20% of children in the
United States are overweight or obese (1,2). Weight loss
strategies are only transiently effective for most people, as
the vast majority of individuals who attempt to lose weight
are not able to achieve and maintain a 10% reduction over
a year (3). Over a third of lost weight tends to return within
the first year and the majority is gained back within 3 to 5
years (4,5). A number of reasons have been proposed for
the high recidivism rates (5,6), but there is substantial
evidence for a biological drive to regain weight after weight
loss (7,8). The objective of this review is to summarize the
contribution of white adipose tissue to this biological drive
and discuss how changes in its cellularity and metabolic
characteristics may facilitate weight regain.

The biological drive to regain weight

The biological control of body weight involves a complex
feedback loop between the brain and periphery. The brain
receives signals from the periphery regarding long-term
energy stores (i.e. adipose tissue triglyceride) and short-
term nutrient availability (i.e. immediate availability of cir-
culating nutrients) and based upon these integrated signals,
adjusts energy balance to meet both the long-term and
short-term objectives of energy homeostasis. This feedback
system adapts when energy intake is cognitively (in
humans) or forcefully (in animal models) restricted.

In a previous review (7), we summarized the adaptations
to energy-restricted weight loss that are thought to promote
weight regain (Fig. 1). This adaptive response involves
coordinated changes in the brain, gut, muscle, liver, adipose
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tissue and neuroendocrine system, which culminate in a
concerted effect on energy balance. Peripheral signals
create an ‘anabolic’ neural profile in the hypothalamus and
hindbrain, increasing appetite and sending neuroendocrine
efferent signals to enhance metabolic efficiency in periph-
eral tissues. Metabolic requirements decline as a function of
(i) lost mass, (ii) reduced consumption of food and (iii)
increased metabolic efficiency of peripheral tissues. Periph-
eral tissues clear circulating nutrients more effectively and
utilize fuels more efficiently to produce the energy they
need. Signals from the periphery convey to the brain that
energy stores are depleted and nutrient availability is low
and these signals integrate in key circuits of the hypothala-
mus and hindbrain that serve as the primary control centres
for energy balance regulation. The response to these inte-
grated signals is that appetite increases and the expenditure
of energy declines. We have referred to this quantitative
difference between the caloric value reflecting appetite and
expenditure requirements as the energy gap (9–11). To
maintain the reduced weight, food intake must be

cognitively (in humans) or forcefully (in animals) restricted
to the level that expended energy is suppressed. During
weight maintenance after weight loss, this energy gap
reflects the magnitude of the daily burden that thwarts
cognitive efforts to maintain the reduced weight. When
efforts to restrict intake fail, overfeeding occurs, and the
excess nutrients are rapidly cleared and stored, and the
relapse to obesity begins. This pressure to continue to over-
feed generally persists until the lost weight returns. In some
cases, the biological pressures may lead to weight gain that
surpasses the original weight.

A fundamental understanding of this energy gap, dic-
tated solely by biological pressures, has emerged from pre-
clinical studies of weight regain in diet-induced obesity
(DIO) models. The energy gap at the maintenance-relapse
transition is influenced in predictable ways by diet compo-
sition (12), by the length of time in weight maintenance
after weight loss (10) and by physical activity levels (13).
Weight regain driven solely by this biological pressure
reflects a first-order growth curve (4,11,13) such that the

Figure 1 Homeostatic adaptations to weight loss that persist in weight maintenance.
Neuroendocrine signals from the periphery (green arrows) convey a message of energy depletion (low leptin and insulin) and low nutrient availability
(favouring signals of hunger over satiety/satiation) to the brain. Trafficking of absorbed nutrients (glucose, Glu; free fatty acids, FFA; triglycerides,
TGs) to and from circulation is shown for both postprandial and post-absorptive metabolic states (blue arrows). Enhanced nutrient clearance reduces
postprandial excursions in Glu and TGs and potentiates the postprandial suppression of FFAs, which may also convey a signal of nutrient
deprivation to the brain. The signals of energy depletion and nutrient deprivation create an ‘anabolic’ neural profile in the hypothalamus and
hindbrain, increasing appetite (solid black arrows) and sending efferent signals to enhance metabolic efficiency in peripheral tissues (purple arrows).
The reduced metabolic mass, enhanced metabolic efficiency and lower thermic effect of food contribute to the suppression of energy expenditure
(dotted black lines). A large energy gap is created between appetite and expenditure, and food intake must be cognitively (in humans) or forcefully
(in animals) restricted to maintain the reduced weight. Adapted from fig. 1 of reference (7).
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energy gap diminishes as the relapse to obesity progresses.
As such, the magnitude of the energy gap is greatest at the
nadir weight after weight loss (9,11,13). Furthermore, this
energy gap does not dissipate with time in weight mainte-
nance. Rather, studies indicate that the magnitude of the
energy gap gradually increases the longer an animal main-
tains their reduced weight with an energy-restricted diet
(10). The implications from these observations are that the
biological pressures may strengthen with time during
weight maintenance and with the amount of weight lost.

White adipose tissue is a critical node in the homeostatic
system that controls body weight and it plays a particularly
important role in the biological drive to regain lost weight.
Over the past several decades, adipose tissue has been
recognized as a dynamic, multifunctional organ with a
number of different types of cells (14,15). It houses the
majority of stored energy as triglyceride, which is thought
to be the primary targeted parameter for regulation in
long-term energy homeostasis. The adipocyte serves its
primary purpose of long-term storage of energy and as
weight is gained, lost and regained, adipocytes and their
support cells must undergo a substantial amount of remod-
elling to accommodate the gain or loss of stored energy
(16). As an integrated node in the feedback system, adipose
tissues must send and receive important signals to and from
the brain and other peripheral tissues to appropriately
adjust the level of stored energy.

Changes in adipocyte cellularity

Adipocyte size: highly modified
Weight loss is accompanied by a dramatic reduction in the
size of adipocytes (Fig. 2), which is reversed when weight is

regained (11,13,17–19). An individual adipose depot con-
tains adipocytes that vary with respect to their size, and a
size frequency distribution provides a clear picture of this
variability within a depot. Because adipose depots exhibit
differing cellularity profiles, a frequency distribution is
often more informative than an average diameter. Studies in
both humans and rodents suggest that adipocyte size is the
most changeable aspect of cellularity characteristics in
studies of weight loss and regain. During weight loss,
energy stores are mobilized from adipocytes and adipocytes
become smaller. During weight gain and weight regain,
energy is accumulated and adipocytes become larger. The
broad range for adipocyte size provides enormous flexibil-
ity for the amount of energy that can be stored at any one
time. However, as adipocytes change size with the mobili-
zation or accumulation of energy, the extracellular matrix
must be remodelled to accommodate the change or a con-
siderable mechanical strain will be imposed upon the
adipocytes (16). Mariman has hypothesized that weight
loss causes cellular stress in adipocytes, resulting in an
altered metabolic profile that would relieve the stress via
increased storage of lipid (8). From this perspective, one
portion of the biological drive to regain weight could be
based in the mechanical and molecular changes that are
working to relieve the cellular stress and mechanical strain
of the adipocyte.

Adipocyte number: modified unidirectionally
Weight loss does not lead to any discernible change in the
number of adipocytes in adipose tissue (11,13,17–19)
(Fig. 2). The number of adipocytes in a normal, healthy
individual remains relatively constant throughout adult-
hood (20), but there are conditions in which the number of

Figure 2 Adipocyte cellularity changes with weight loss and weight regain.
Representative adipocytes are shown in the context of obesity, after weight loss and after weight regain. Weight loss would reduce the average size
of resident adipocytes. Weight regain could involve both hypertrophy and hyperplasia. Changes in the neuroendocrine inputs (SNS tone and T3) that
may be contributing to the adaptive response to weight loss are shown for each metabolic context. Likewise, changes in the secretion of the
long-term adipose signal reflecting stored energy (leptin and insulin) are shown for each metabolic context. Finally, the systemic impact on nutrient
availability is presented as the relative flux of glucose, triglycerides (TG) and free fatty acids (FFA). Both long-term (leptin) and short-term (nutrients
and their surrogate signals) would be sensed by the hypothalamus and hindbrain to regulate appetite and metabolic requirements.
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adipocytes in particular adipose depots may increase. Our
studies in a rodent paradigm of weight loss and regain
suggest that the metabolic conditions during the relapse to
obesity may provide the conditions that promote hyperpla-
sia. Early in the relapse process, we observed the emergence
of a population of very small (<20 μm) adipocytes, which
was accompanied by an increase in total number of
adipocytes in the depot (9). This increase in cell number
persisted throughout the relapse process as all of the
adipocytes became larger. We have speculated that this
increased cell number partially explains animals in this
model surpassing their pre-weight loss weight following
relapse (11,13). While substantiating the temporal changes
in cell size frequency distribution and total cell number in
humans presents a logistical challenge, a hypercellularity
phenomenon with similar characteristics has been reported
in post-obese humans (21). Even so, this relapse-induced
hyperplasia of adipose tissue, if it does occur, is likely
limited to individuals who have a genetic predisposition for
obesity. We have yet to observe an increase in cell number
in diet-resistant rats or in DIO mice, which tend to relapse
to their previous weight. Regardless, increasing the number
of adipocytes in a depot in effect increases the overall
capacity of that depot for triglyceride storage, and what
flexibility exists for changing cell number appears to be
unidirectional. There is very little evidence that the number
of adipocytes is ever reduced under normal metabolic con-
ditions associated with changes in weight. The implication
is that increasing the number of adipocytes in a depot
represents a permanent increase in the overall capacity of
that depot to store triglyceride.

Adipocyte turnover: a tightly controlled balance
Because the number of adipocytes was observed to be rela-
tively stable in normal, healthy adults, it was long thought
that the adipocytes produced by puberty represented the
population of cells that persisted throughout life. Tracer
studies have discounted this notion by revealing that new
adipocytes are being produced and mature adipocytes are
being cleared with some regularity (22,23). A wide demo-
graphic study of Swedish adults observed that the turnover
rate for adipocytes is approximately 8–10% per year. The
generation of new adipocytes involves two distinct steps: (i)
the proliferation of preadipocytes and (ii) the differentia-
tion of preadipocytes into functioning adipocytes, capable
of storing and releasing energy. The clearance of mature
adipocytes is less understood, but is known to involve the
recruitment of macrophages. The crown-like structures
that are observed in adipose tissues represent adipocytes
targeted for clearance, surrounded by the recruited
macrophages (24). While the regulatory mechanisms for
the generation and clearance of adipocytes are very differ-
ent, they must be tightly linked to some global regulatory
system that keeps them balanced, otherwise adipocyte

number would be much less stable. The development of
obesity is accompanied by a higher absolute amount of
turnover, which is reflected in their greater fat mass and
higher number of total adipocytes in their depots (16). The
generation of new cells and clearance of mature cells
remains, in general, balanced at a higher level in the obese.
When adjusted for the difference in fat mass, the actual rate
of cell turnover per unit fat mass is similar. At present, we
do not know how adipocyte turnover is affected with
weight loss or during the process of weight regain.
However, if hyperplasia does occur, there must be some
transient imbalance between new cell generation and
mature cell clearance to account for the difference in cell
number. Our ongoing studies will likely clarify how and
when this balance is altered to elicit the hyperplasia we
observed in our rodent paradigm of weight regain.

Metabolic capacity of the adipocyte

Changes in global gene expression
Adipose tissues experience a global down-regulation of
gene expression in obese subjects in response to energy-
restricted weight loss (25), which includes all of the key
metabolic pathways. However, this effect is partly reversed
at the transition to weight maintenance. With weight main-
tenance and during weight regain, an expression profile
that would enhance energy conservation and the repletion
of energy stores emerges (25–31). Markers of oxidative
stress and inflammatory cytokines, which are also known
to suppress appetite and increase expenditure, decline
(29,32,33). The impaired induction of lipogenesis by
insulin, glucose and feeding associated with obesity (34–
37) resolves after energy-restricted weight loss (9,29,38–
40). Finally, the enhanced metabolic response to ingested
energy enhances nutrient clearance during weight mainte-
nance and during sustained periods of overfeeding. These
adaptive responses in the adipocyte prime the tissue to
replete energy stores when nutrients once again become
readily available.

Metabolic changes linked to adipocyte size
Insulin sensitivity is inversely related to size of the
adipocyte (41). Compared with large adipocytes, small
adipocytes exhibit higher rates of insulin-stimulated
glucose uptake, higher levels of glucose oxidation and a
lower sensitivity to antilipolytic action of insulin (42–44).
In addition, smaller adipocytes exhibit a lower basal and
catecholamine-induced lipolysis, have a lower rate of turn-
over of stored lipid and express genes favouring energy
storage (28,45,46). The higher lipolytic capacity and tri-
glyceride turnover in larger adipocytes is associated higher
levels of Adipocyte triglyceride lipase (ATGL), Hormone
sensitive lipase (HSL) and Lipoprotein lipase (LPL) (47–
50). De novo lipogenesis is also down-regulated as
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adipocytes increase in size (51–54). Varlamov et al. (55)
suggested that this relationship between cell size and meta-
bolic function serves to protect against lipid overload and
continual expansion, which could eventually have deleteri-
ous consequences for the health of the cell. It was suggested
that when the adipocyte size approaches a critical threshold
in an individual (∼100 μm), the capacity to take up and
store circulating nutrients becomes diminished. If such a
threshold exists, the implication is that an adipose tissue
depot has a limited capacity to store energy, based upon the
number of adipocytes it contains. Once that capacity is
reached, the generation of new adipocytes (increasing the
total capacity for storage) is the only avenue for storing
more energy in the depot.

Functional changes of the adipocyte?

Beyond the cellularity characteristics, there is growing evi-
dence to suggest that adipocytes have the capacity to alter
their metabolic profiles and engage in wholesale changes in
function, given the right metabolic context (14). White
adipocytes have been observed in vivo to undergo
transdifferentiation into brown adipocytes, which serve to
dissipate, rather than store energy (56–58). Likewise, white
adipocytes in the mammary gland have even been reported
to transdifferentiate into glandular milk-producing epithe-
lial cells during lactation, an effect that reverses after invo-
lution (57). These observations provide a novel perspective
of the versatility of adipocytes that was once unappreci-
ated. At present, few studies have considered such dramatic
functional transformations in the context of weight loss,
weight maintenance and weight regain studies. Given the
metabolic extremes that can occur with weight loss and
weight regain, it would be prudent for future studies to
consider the extent to which adipocytes might be altered
with energy restriction and gross overfeeding.

The versatility of metabolic profiles of adipocytes in
changing environments may partly depend on the origins of
the adipocytes. New adipocytes may primarily arise from
resident preadipocytes and progenitors of the mesenchymal
lineage, but recent findings demonstrate that bone marrow-
derived progenitors (BMP) of the hematopoietic lineage can
also migrate out of the skeleton and differentiate into
adipocytes (59–62). Although this phenomenon needs to be
demonstrated in humans, they may have an important role
during weight regain if hyperplasia occurs. For instance,
the observations of preferential homing and differentiation
in visceral depots and lower leptin expression than white
adipocytes suggest than BMP adipocytes could be a detri-
ment to energy balance and metabolic health (60). The
behaviour of these adipocytes during and after weight loss
has not been determined, but would be essential for
hypothesizing their relative role in energy balance and
weight regain.

Neuroendocrine signals affecting adipose tissue

Energy-restricted weight loss from obesity is accompanied
by a reduced sympathetic (SNS) tone (63–68) and reduced
thyroid hormone levels (63,69–71). In contrast to the
effects on SNS, the effect on thyroid hormones is observed
less consistently and/or is more transiently tied to the
early stages of weight loss (69,72,73). Collectively, these
neuroendocrine changes can act upon adipose tissues to
affect the size and number of resident adipocytes (Fig. 2).
The SNS has established effects on the metabolic state and
cellularity of adipose tissues (74,75) and a decline in SNS
tone in this tissue could explain the shift in metabolic state
favouring the uptake and deposition ingested energy, as
well as the hyperplasia. Other studies indicate that both
preadipocytes and adipocytes are responsive to Thyroid
Stimulating Hormone (TSH) and thyroid hormones in a
similar fashion (76–80). Both the SNS and thyroid hor-
mones have inhibitory effects on preadipocyte proliferation
and stimulatory effects on preadipocyte differentiation. As
such, a decline in SNS tone and thyroid axis activity during
weight maintenance may provide permissive conditions for
preadipocyte proliferation, while the reversal of these
neuroendocrine inputs during weight regain could underlie
the hyperplasia. While these neuroendocrine inputs provide
a plausible explanation for both metabolic and cellularity
adaptations with weight loss and regain, their actual con-
tribution to the adaptive response in adipose tissues
requires further study.

Adipose signals for long-term energy stores

Leptin and insulin are often referred to as ‘adiposity
signals’ because their levels generally reflect fat mass.
Fasting levels of both hormones decrease with the decline in
adiposity that occurs with weight loss (Fig. 2). The decline
in leptin is more intuitive because it is secreted directly from
adipocytes. The impact on insulin is indirect, reflecting the
improvement in insulin sensitivity that occurs with weight
loss (81–84). Interestingly, a number of studies have
observed that leptin and insulin are actually reduced to a
greater extent than would be expected for the amount of fat
mass (11,21,65,85,86). We speculate that this may occur
because leptin, and perhaps insulin, levels reflect both the
amount of stored lipid and the size of the constituent
adipocytes (87). Smaller adipocytes secrete less leptin and
result in lower circulating levels for a given fat mass.
Smaller adipocytes are also more insulin sensitive (45,46),
which presumably means they require lower circulating
levels of insulin to impart the same metabolic control. The
reduction in cell size and the loss of total fat mass, there-
fore, may contribute independently to the decline in leptin
and insulin. If new, very small adipocytes are generated
early in the relapse process, the impact of cell size could be
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compounded. Regardless, the integrated adiposity signal
conveyed to the brain is that the total energy reserves are
low and that the adipocytes are far below their maximal
capacity to store energy. The changes in these hormones
directly contribute to enhanced hypothalamic expression
of arcuate nucleus (ARC) neuropeptide Y (88–92) and
agouti-related peptide (91,92), as well as decreased expres-
sion of proopiomelanocortin (89) (Fig. 1). These changes
are the hypothalamic hallmark of an ‘anabolic’ state,
leading to a positive energy imbalance and weight gain.
Although the concept that the adiposity signals reflect both
total stores and the fraction of maximal capacity filled is
consistent with observations in weight loss studies, it needs
to be tested more rigorously.

What complicates the role of leptin and insulin as
‘adipose signals’ is that their relationship to adiposity is
maintained only during energy balance and the correlations
only apply to fasted levels of the hormones. When an
energy imbalance occurs, leptin and insulin reflect the
metabolic state (anabolic or catabolic) of adipose tissue, as
it deposits or mobilizes energy. Overfeeding increases cir-
culating levels of leptin and insulin (93) and, with persistent
overfeeding during weight regain, both leptin and insulin
resolve long before the weight is fully regained (7). For this
reason, leptin and insulin, by themselves, do not appear to
sustain the signal of energy depletion as weight is being
regained.

Nutrient availability as a reflection of the capacity
to store excess energy

To complement the signal of energy depletion from these
hormones, we have proposed that signals reflecting nutrient
availability play a more critical role during the dynamic
phases of weight regain (7). Signals could be either the
nutrients or their surrogate neuroendocrine signals. The
improvement in systemic metabolic regulation is often
accompanied by lower fasting levels of glucose, free fatty
acids (FFAs) and triglycerides (TGs), and more consistently
yields reduced postprandial excursions of glucose and TGs
with potentiated postprandial reductions in FFAs (7).
This wholesale, consistent change in circulating nutrients
undoubtedly imparts some homeostatic influence on the
signals of nutrient status (Fig. 1). Levels of glucose are
detected by nutrient-sensing systems in both the periphery
(94–98) and brain (96,99), with consequences to energy
balance and fuel utilization in the periphery. Triglycerides
may even be sensed via their putative effects on leptin
and insulin transport across the blood–brain barrier
(9,100,101). FFAs are sensed, such as glucose, in the central
and peripheral nutrient-sensing systems and can reduce
subsequent food intake when infused into the gut
(102,103), into the circulation (104) or directly into the
brain (105,106). The cellular and metabolic adaptations in

adipose tissues certainly contribute to the attenuated post-
prandial excursions of circulating nutrients following
weight loss. The consequence to systemic metabolism is
that postprandial glucose excursions would be attenuated
and the postprandial suppression of circulating FFAs
would be potentiated.

The ‘nutrient clearance’ hypothesis for the
dynamic phase of weight regain

This hypothesis suggests that the energy gap between appe-
tite and expended energy persists during weight regain as a
function of the capacity of adipose tissue to clear and store
excess energy (7) (Fig. 2). Early in relapse, the adipose
tissue’s capacity to clear excess energy is pitted against the
rate at which nutrients are ingested and absorbed. As
weight regain progresses, the adipocytes gradually increase
in size and their capacity to clear excess energy diminishes.
Excursions of glucose and TGs become larger and the
suppression of FFA under dynamic (postprandial) states of
metabolism would gradually become attenuated. Once the
adipocytes near a critical threshold of size and the maximal
capacity for stored energy is approached, the rate of weight
regain would diminish. As the pre-weight loss weight is
once again achieved, or surpassed if adipocyte hyperplasia
has occurred, the fasting and postprandial levels of circu-
lating nutrients would once again reflect the high levels
observed with the insulin resistant state.

This simplistic hypothesis integrates the long-term
adipose signals, reflecting the level of ‘stored energy’, with
short-term signals of nutrient availability, which essentially
reflect the ‘capacity to store energy’. Both signals are fun-
damentally rooted in the cellular and metabolic profiles of
adipose tissues. Conceptually, the long-term signals pro-
vided by leptin and insulin would establish the global ‘ana-
bolic’ tone in the hypothalamus, hindbrain and peripheral
tissues. In this anabolic context, circulating nutrients and
their surrogate neuroendocrine signals would become more
important under postprandial conditions and during
extended bouts of overfeeding while the weight is being
regained. The convergence of these long-term and short-
term signals in the energy homeostatic circuits of the brain
would then dictate the magnitude and persistence of the
energy gap.

The fundamental ideas behind this hypothesis are not
entirely novel and they certainly present a simplified picture
of the feedback system. Decades of research and numerous
publications have provided a basic understanding of the
key nodes of the homeostatic system controlling body
weight and of adipocyte biology. Practically, the picture
becomes much more complex as the integrated feedback
signal from adipose tissues includes feedback from multiple
adipose depots that have different metabolic and cellularity
characteristics (15). Dieting and weight regain tend to alter
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visceral adipose depots more than subcutaneous depots
(107–109), but less is understood about the interplay
between depots, how they collectively establish a capacity-
related ‘threshold’ for adipocyte size and about their rela-
tive contribution to the signals of energy depletion and
nutrient availability during weight maintenance and weight
regain. Furthermore, there is a large variability between
individuals with respect to the metabolic and cellularity
characteristics of their adipose depots (22). This variation
may translate into different ‘thresholds’ for adipocyte size
and, consequently, different maximal capacities for a given
adipocyte number. Even so, the value of this hypothesis is
that it provides a basic explanation for the persistence of
the energy gap driving weight regain in both static (during
weight maintenance) and dynamic (during weight regain)
phases of the relapse to obesity. In addition, it frames the
integration of long-term signals for stored energy and
short-term signals of nutrient availability in a manner that
links both to the cellular and metabolic characteristic of
adipose tissues.

Conclusions

Adipose tissues represent a key node in the homeostatic
system that regulates body weight. Weight loss from caloric
restriction results in substantial changes that prime adipose
tissues to take up and store ingested energy. In combination
with the other adaptations in this homeostatic system, these
changes in adipose tissues present a significant challenge for
successful weight loss maintenance. Weight loss awakens
the body’s defence system in a manner that is persistent,
saturated with redundancies and well-focused on the objec-
tive of restoring the body’s depleted energy reserves. Suc-
cessful, long-term weight loss requires recognition of the
strength and persistence of these biological pressures and a
better understanding of how they may be countered with
environmental, behavioural and pharmaceutical interven-
tions. Adipose tissues and, more specifically, the adipocytes
may provide an important target for developing interven-
tions, given their critical role in the adaptive response. To
be effective, interventions aimed at preventing weight
regain will likely need to be as comprehensive, persistent
and redundant as the biological adaptations they are
attempting to counter.
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