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a  b  s  t  r  a  c  t

Autism  spectrum  disorder  (ASD)  is a heterogeneous  grouping  of  neurodevelopmental  disorders  charac-
terized  by  impairment  in social  interaction,  verbal  communication  and  repetitive/stereotypic  behaviors.
Much  evidence  suggests  that  ASD  is multifactorial  with  a strong  genetic  basis,  but  the  underlying  mecha-
eywords:
utism spectrum disorder
andidate genes
enetic susceptibility

nisms  are  far  from  clear.  Recent  advances  in  genetic  technologies  are  beginning  to  shed  light  on  possible
etiologies  of  ASD.  This  review  discusses  current  evidence  for several  widely  studied  candidate  ASD  genes,
as well  as various  rare  genes  that  supports  their  relationship  to the  etiology  of  ASD. The  majority  of  the
data  are  based  on  molecular,  cytogenetic,  linkage  and  association  studies  of  autistic  subjects,  but  newer
methods,  including  whole-exome  sequencing,  are  also  beginning  to  make  significant  contributions  to
our understanding  of autism.
tiology
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. Introduction

Autism (also known as classic autism or autistic disorder) has
ome to be recognized as a common neurodevelopmental disorder.

∗ Corresponding author at: Department of Neurochemistry, NY State Institute for
asic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island,
ew York, NY 10314, United States. Tel.: +1 718 494 5265; fax: +1 718 698 7916.

E-mail addresses: xiaohong.li@omr.state.ny.us, xiaohong.li@mssm.edu (X. Li).

361-9230/$ – see front matter. Published by Elsevier Inc.
ttp://dx.doi.org/10.1016/j.brainresbull.2012.05.017
Typically diagnosed before 3 years of age, autistic subjects usually
present with significant language delays, social and communication
impairments, and abnormal repetitive and stereotypic behaviors.
Autism spectrum disorder (ASD), however, refers to a boarder def-
inition of autism. Based on the severity of the clinical condition,
it includes three subgroups; namely autism (the most severe type
of ASD), pervasive developmental disorder – not otherwise speci-
fied (PDD-NOS; also called atypical autism), and high functioning

autism or Asperger syndrome where significant language delays
need not be present (Lord et al., 1989, 1994; Van Naarden et al.,
2007).

dx.doi.org/10.1016/j.brainresbull.2012.05.017
http://www.sciencedirect.com/science/journal/03619230
http://www.elsevier.com/locate/brainresbull
mailto:xiaohong.li@omr.state.ny.us
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dx.doi.org/10.1016/j.brainresbull.2012.05.017
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ASD is reported to occur in all ethnic and socioeconomic groups,
nd is about 4 times more likely to occur in boys than in girls
Lintas and Persico, 2009; Baron-Cohen et al., 2005). Studies in Asia,
urope and North America have identified ASD individuals with
n approximate prevalence of 6/1000 to over 10/1000 (Williams
t al., 2006). In Western Australia, the ASD identified prevalence
ncreased from 0.8/1000 in 1983 to 4.6/1000 in 1999, while this
atio increased from 6.6/1000 in 2000 to 9/1000 in 2006 in United
tates (Anon., 2007a,b, 2009). This increase is probably because of
hanges and broadening of the diagnostic criteria and due to height-
ned awareness, but may  also reflect, in part, a true increase due to
nvironmental factors acting upon a genetically vulnerable back-
round (Lintas and Persico, 2009; Nonkin et al., 2010; King and
earman, 2009).

Similar to several other complex diseases, autism was  not
idely considered to have a strong genetic component until the

980s. But increasing numbers of epidemiological and genetic stud-
es are deepening our understanding of the genetic contribution
utism. First, it is estimated that about 10% of children with ASD
ave an identifiable co-occuring genetic, neurologic or metabolic
isorder, such as the fragile X syndrome or tuberous sclerosis
Caglayan, 2010). Second, the relative risk of a newborn child to
ave autism, if he or she has an affected sibling, increases at least
5-fold compared with the general population risk (Abrahams and
eschwind, 2008). Third, independent twin studies have suggested

dentical twins have a 60–90% chance to be concordantly diag-
osed with autism, and this risk decreases sharply to the sibling
isk of 0–24% in non-identical twins (Bailey et al., 1995; Steffenburg
t al., 1989). However, based on a large scale study of 503 ASD
wins in California, Liu et al. (2010a) suggest the heritability has
een largely overestimated. They found the concordance rate for
onozygotic male twins was 57% and for females 67%, while for

ame sex dizygotic twins the rate was 33%. Fourth, cumulative
eports have confirmed mutations or structural variations of a
umber of specific genes significantly increase the risk of ASD
Abrahams and Geschwind, 2008). Taken together, ASD appears to
ave a strong genetic basis, however, with both gene–gene and
ene–environmental interactions are likely to contribute signifi-
antly.

. Genetic studies of ASD

Unlike monogenic Mendelian disorders, the genetic and clinical
eterogeneity of ASD poses a difficult challenge to precisely define
he underlying genetics. This complexity has been blamed for the
ack of replicability of the many reported chromosomal suscepti-
ility regions. Therefore, multiple parallel approaches are needed
or the exploration of the potential loci underlying the etiology of
SD.

In general, there are a number of methods available for genetic
tudies of ASD, with each having different advantages as well as
imitations. The most widely used methods include cytogenetic
nalysis, linkage and association studies, copy number variation
nd DNA micro-array analysis.

A cytogenetic study is the most “classic” of genetic methods.
ased on the assumption that ASD is a result of unique rare muta-
ions that present sporadically or “de novo” in the population
nd are not usually inherited, cytogenetics helps to determine the
ontribution of chromosomal abnormalities in childhood diseases.
ytogenetics has transitioned from light microscopy to molecu-

ar cytogenetics to DNA-based microarray detections of structural

ariations (Hoffman and State, 2010). Copy number variation (CNV)
nalysis is a newer molecular cytogenetic approach, aiming to
etect the insertion or deletion of DNA fragments typically larger
han 50 kb (Piggot et al., 2009). However, extreme caution must be
etin 88 (2012) 543– 552

paid when interpreting CNV analysis since it is very dependant on
the specific methods employed, which may  partly account for the
low replicability among studies (Levitt and Campbell, 2009).

Differing from cytogenetics, linkage studies trace genetic loci
that are transmitted with autism in the families of affected indi-
viduals. Parametric and non-parametric linkage studies are two
typical designs. While parametric analysis requires a model for the
disease (i.e. frequency of disease alleles and penetrance for each
genotype), and therefore is typically employed for single gene dis-
orders and Mendelian forms of complex disorders, “model-free”
non-parametric linkage analysis evaluates whether segregation at
specific locations is “not-random”. Given the uncertainty of the
mode of inheritance in ASD, non-parametric linkage is more widely
used, providing suggestive evidence of linkage on almost all of
the chromosomes (Kumar and Christian, 2009). However, linkage
studies are unable to identify mutations in critical genes in highly
heterogeneous disorders involving many different genes and chro-
mosomal loci (Betancur et al., 2009).

Genetic association studies, including case–control and family-
based studies, examine differences in allele or genotype frequen-
cies between two groups (Kumar and Christian, 2009). Typically,
several microsatellite markers or SNPs are chosen based on linkage
studies or biological evidence. The seemingly countless poten-
tial candidates make it hard to determine the causative relations
between genes and ASD (Piggot et al., 2009). In addition, although
association studies are suitable to identify common susceptibility
alleles present in large numbers of patients compared to controls,
they usually fail to identify rare, causal mutations (Kumar and
Christian, 2009; Betancur et al., 2009).

Rapid advances in micro-array technologies have substan-
tially improved our ability to detect submicroscopic chromosomal
abnormalities. These tools have allowed for high-output and
high-resolution detection of rare and de novo changes in a
genome-wide manner. Moreover, newly developed, commercially
available whole-exome arrays are increasingly being employed
to detect de novo mutations in complex disorders. Based on the
fact that the protein coding regions of genes (i.e. exons) har-
bor approximately 85% of the mutations of disease-related traits,
whole-exome sequencing offers the possibility to identify disease-
causing sequence variations in small kindreds for phenotypically
complicated, genetically heterogeneous diseases when traditional
linkage studies are impossible (Vissers et al., 2010; Choi et al., 2009;
Robinson, 2010; Bilguvar et al., 2010; Sanders, 2011). As such, stud-
ies in this realm have been increasing in the past several years
and there will surely benefit the etiological diagnosis and genetic
counseling of ASD in the near future (Betancur, 2011).

3. Recent genetic findings of candidate genes and potential
loci in autism

3.1. Genome wide linkage analysis

Although there is accumulating evidence supporting a genetic
component to ASD, the specific genes involved have yet to be
totally characterized. Genome-wide screening of autistic subjects
and their first-degree relatives offers an attractive means to search
for susceptibility genes. However, there has been a disappointing
lack of replication of many of the reported susceptibility regions.
The reason for this could be due to the epistasis of many interacting
genes. But it may  also due to the genetic and clinical heterogeneity
present in ASD (Buxbaum et al., 2001). The noted effects of het-

erogeneity of the samples on the corresponding results, has led
to attempts to decrease sample heterogeneity by various ways
including by narrowing inclusion criteria and studies of specific,
autism-related endophenotypes.
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Table 1
Loci identified by genome wide linkage analysis.

Chromosome Loci Candidate genes Ref.

1 1p34.2 Regulating synaptic membrane exocytosis 3 (RIMS3) Kumar et al. (2010)
2 2q Buxbaum et al. (2001); Shao et al.

(2002)
2q31–2q33 GAD1, STK17B, ABI2, CTLA4,  CD28, NEUROD1,  PDE1A,  HOXD1, DLX2 Rabionet et al. (2004)
2q31  SLC25A12 Segurado et al. (2005)
2q24–2q33 SLC25A12, CMYA3 Blasi et al. (2006a)
2q24–2q33 SLC25A12, STK39,  ITGA4 Ramoz et al. (2008)
2q34 Neuropilin-2 (NRP2) Wu et al. (2007)

3 3q25–3q27 HTR3C Noor et al. (2010)
5 5q31  Paired-like homeodomain transcription factor 1 (PITX1) Philippi et al. (2007)

5p14.1 Ma et al. (2009)
5p15 SEMA5A Weiss et al. (2009)

6  6q Abelson’s helper integration 1 (AHI1) Alvarez et al. (2008)
6q27 Weiss et al. (2009)

7  7q22.1–7q31 Cukier et al. (2009)
7q31 Laminin beta-1 (LAMB1), Neuronal cell adhesion molecule (NRCAM) Sakurai et al. (2006); Hutcheson et al.

(2004); Marui et al. (2009)
7q32 NADH-ubiquinone oxidoreductase 1 alpha subcomplex 5 (NDUFA5) Noor et al. (2010)
7q31–7q33 Wingless-type MMTV  integration site family member 2 (WNT2) Marui et al. (2010)

11  11p12–p13 Szatmari et al. (2007)
12  12q14 Ma et al. (2007)
15  15q11–q13 Angelman syndrome gene (UBE3A) Nurmi et al. (2001)

15q11–q13 Kim et al. (2008)
15q13 Amyloid precursor protein-binding protein A2 (APBA2) Sutcliffe et al. (2003)

16 16p11–13 4-Aminobutyrate aminotransferase (ABAT), CREB-binding protein (CREBBP), glutamate
receptor, ionotropic, NMDA 2A (GRIN2A)

Barnby et al. (2005)

16p11.2 Shinawi et al. (2010); Kumar et al.
(2008, 2010)

17  17q11.2 McCauley et al. (2005)
19 19p13 McCauley et al. (2005)

s
r
2
f
(
f
l
f
b
g
2

s
a
t
p
l
5
r
2

s
g
e
i
r
p
e
t
f

c
A

20  20q13 

22 22q13 SHANK3 

X  Xp22.11 PTCHD1 

A substantial body of evidence has resulted from genome-wide
creening for the susceptibility genes of ASD (Table 1). Significant
eplicability has been found for several chromosomal loci including
q, 5, 7q, 15q and 16p. Two studies provided suggestive evidence
or linkage to chromosome 2q using a two-stage genome screen
Buxbaum et al., 2001; Shao et al., 2002), while association tests
or specific candidate genes in the chromosome 2q31–q33 region
ed to negative results (Rabionet et al., 2004). Additional support
or the presence of susceptibility loci on chromosome 2q is given
y overlapping positive linkage findings in four other independent
enomic scans (Wu et al., 2007; Blasi et al., 2006a; Szatmari et al.,
007; Ramoz et al., 2008).

There are three reports about gene variants on chromo-
ome 5. Philippi et al. (2007) found strong association with
utism for allelic variants of “paired-like homeodomain transcrip-
ion factor 1” (PITX1), a key regulator of hormones within the
ituitary–hypothalamic axis. Two other groups used genome-wide

inkage and association mapping studies to analyze chromosome
 gene variations finding that SNPs located at 5p14.1 and 5q15,
espectively, were significantly associated with autism (Ma et al.,
009; Weiss et al., 2009).

Chromosome 16 linkage results have been fairly consistent in
howing a peak at 16p11–13, which strongly suggests a gene or
enes in this region may  contribute to the risk of ASD (Shinawi
t al., 2010; Kumar et al., 2008). 15q11–q13 is another frequently
dentified locus by linkage studies. Several genes located in this
egion have been intensively studied and some have provided very
romising results (Kim et al., 2008; Sutcliffe et al., 2003; Nurmi
t al., 2001; Shen et al., 2010). But in all of these linkage reports
here is a certain lack of reproducibility, and therefore they require

urther validation based on using a combination of several methods.

Besides these “hot spots”, there are other reports regarding asso-
iations of other loci with ASD (Weiss et al., 2009; Ma  et al., 2007;
lvarez et al., 2008; Qin et al., 2009; Kumar et al., 2010), including
Weiss et al. (2009)
Qin et al. (2009)
Noor et al. (2010)

some evidence of linkage to the X chromosome (Noor et al., 2010).
However, there is little overlap of these potential loci involving
potential candidate genes, suggesting that the genetic background
of ASD is full of complexity.

3.2. Copy number variation (CNV)

Rapid advances in genomic DNA microarray technologies have
substantially improved our ability to detect submicroscopic chro-
mosomal abnormalities. Novel rare variants have been detected in
association with ASD and these can be either de novo or inherited.
De novo or noninherited CNVs are found in 7–10% of ASD samples
from simplex families (having only one child affected, the majority),
in 2–3% from multiplex families, and in ∼1% in non-ASD controls.
Further, about 10% of ASD subjects with de novo CNVs carry two
or more CNVs (Christian et al., 2008; Marshall et al., 2008; Sebat
et al., 2007). Inherited CNVs reportedly are found in up to 50% of
ASD subjects for whom one of the presumably normal parents also
has the duplication/deletion. These familial CNVs may  include can-
didate genes relevant to ASD where they are rare in the normal
population.

Array comparative genomic hybridization (aCGH) is the most
widely used method for detection of CNVs. A seminal early
report used aCGH, with a mean resolution of one probe every
35 kb, to study a sample of 264 ASD families. After validation by
higher-resolution microarray scans, G-banded karyotype, FISH, and
microsatellite genotyping, 17 de novo CNVs were confirmed (Sebat
et al., 2007). A Korean group recently reported deletion CNVs at
8p23.1 and 17p11.2 using whole-genome aCGH (Cho et al., 2009).
Using aCGH with a mean 19 kb resolution, 51 autism-specific CNV

were identified in 397 unrelated ASD subjects (Christian et al.,
2008). Similarly, Qiao et al. (2009) performed aCGH on 100 autis-
tic subjects and identified 9 CNVs, three of which were unique to
their cohort. A Spanish group recently reported the identification
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Table  2
Selected candidate genes.

Genes Loci Positive results Negative/unconfirmed results

RELN 7q22 Li et al. (2008); Ashley-Koch et al. (2007); Dutta et al.
(2007a); Serajee et al. (2006); Skaar et al. (2005); Devlin
et al. (2004); Li et al. (2004); Zhang et al. (2002); Krebs
et al. (2002); Persico et al. (2001)

SLC6A4 17q11.1–17q12 Sutcliffe et al. (2005); Coutinho et al. (2004, 2007); Cook
et  al. (1997); Anderson et al. (2009); Cho et al. (2007);
McCauley et al. (2004a); Coutinho et al. (2004)

Zhong et al. (1999); Guhathakurta et al. (2009); Ma  et al.
(2010); Huang and Santangelo (2008); Persico et al.
(2000); Wu et al. (2005a); Ramoz et al. (2006a);
Guhathakurta et al. (2008); Tordjman et al. (2001);
Maestrini et al. (1999); Klauck et al. (1997); Betancur et al.
(2002); Koishi et al. (2006)

GABR 15q11–15q13 Takumi (2010); McCauley et al. (2004b); Nakatani et al.
(2009); Menold et al. (2001); Buxbaum et al. (2002); Kim
et al. (2006); Kwasnicka-Crawford et al. (2007); Bolton
et al. (2004); Shao et al. (2003); Ma et al. (2005); Yoo et al.
(2009); Cai et al. (2008); Aldinger and Qiu (2010);
Depienne et al. (2009)

Curran et al. (2005); Martin et al. (2000); Maestrini et al.
(1999)

NLGN  3q26(NLGN1),  17p13
(NLGN2), Xq13 (NLGN3),
Xp22.3 (NLGN4), Yq11.2
(NLGN4Y)

Zhang et al. (2009); Pampanos et al. (2009); Yan et al.
(2008); Talebizadeh et al. (2006); Yan et al. (2005); Jamain
et  al. (2003)

Wermter et al. (2008); Blasi et al. (2006b); Ylisaukko-oja
et  al. (2005); Gauthier et al. (2005); Vincent et al. (2004);
Talebizadeh et al. (2004)

OXTR  3p24–3p25 Liu et al. (2010b); Gregory et al. (2009); Lerer et al. (2008);
Jacob et al. (2007); Wu et al. (2005b)

MET  7q31.2 Campbell et al. (2006, 2008, 2010); Jackson et al. (2009);
Sousa et al. (2009)

SLC25A12 2q31 Turunen et al. (2008); Silverman et al. (2008); Segurado
et  al. (2005); Ramoz et al. (2004)

Chien et al. (2010); Rabionet et al. (2006); Blasi et al.
(2006a)

GluR6 6q21 Kim et al. (2007); Shuang et al. (2004); Jamain et al. (2002) Dutta et al. (2007b)
CNTNAP2 7q35 Poot et al. (2010); Arking et al. (2008); Alarcon et al.

(2008); Bakkaloglu et al. (2008); Rossi et al. (2008); Strauss
et al. (2006)

GLO1 6p21.3–6p21.2 Sacco et al. (2007); Junaid et al. (2004) Wu et al. (2008); Rehnstrom et al. (2008)
TPH2 12q21.1 Coon et al. (2005) Sacco et al. (2007); Ramoz et al. (2006b)
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ELN: reelin; SLC6A4: the serotonin transporter gene; GABR: the Bacillus subtilis yc
LC25A12: calcium-binding mitochondrial carrier protein Aralar1; GluR6:  glutamat
PH2:  tryptophan hydroxylase 2.

f 13 CNVs containing 24 different genes in their sample of 96 ASD
ubjects (Cusco et al., 2009).

Single-nucleotide polymorphism (SNP) array analysis, primarily
eveloped to determine linkage, now is also employed to deter-
ine genomic CNVs (Babatz et al., 2009). Marshall et al. (2008)

erformed a genome-wide assessment via SNP array analysis. They
enotyped proximately 500,000 SNPs for each sample and detected
3 loci with recurrent or overlapping CNVs in a sample of 427
SD cases. Using SNP markers, another group identified 6 CNVs
ithin a 2.2-megabase (Mb) intergenic Chr 2 region between cad-
erin 10 (CDH10) and cadherin 9 (CDH9) in a combined sample set
f 1984 ASD probands of European ancestry (Wang et al., 2009).
n addition, SNP array analysis offers some special advantages in
he exploration of potentially relevant gene networks. Two recent
eports have provided strong evidence for the involvement of
ertain genes in important gene networks including neuronal cell-
dhesion, ubiquitin degradation and GTPase/Ras signaling (Pinto
t al., 2010; Glessner et al., 2009).

Currently available aCGH methods for identifying CNV typically
ssay the genome in the 40-kb to several mb  range. Methodolog-
cal improvements that employ oligonucleotides are providing a
igh potential resolution down to approximately the 5-kb resolu-
ion level for aCGH with genome-wide detection of CNVs (Babatz
t al., 2009). Thus, SNP or oligonucleotide aCGH analysis can detect a
NV as small as a few kilobases. Therefore, it is clear that the higher-
ensity oligonucleotide or SNP arrays offer significantly higher
esolution for analysis of CNVs in the future.
.3. Selected candidate genes

As is becoming apparent, a genetic predisposition to ASD may
nvolve one or more interconnected genetic networks involving
GN: neuroligin; OXTR: oxytocin receptor; MET: hepatocyte growth factor receptor;
ptor CNTNAP2: contactin-associated protein-like 2; GLO1: lactoylglutathione lyase;

neurogenesis, neuronal migration, synaptogenesis, axon pathfind-
ing and neuronal or glial structure regionalization (Geschwind and
Levitt, 2007). Function-targeted studies, mainly by association that
focus exclusively on the candidate genes, including the some of
the most widely studied will be reviewed in the following section
(Table 2).

3.3.1. Reelin (RELN) gene
Reelin is an extracellular matrix glycoprotein responsible for

guiding the migration of several neural cell types and the estab-
lishment of neural connection. In the 1980s, it was  discovered that
reelin plays important roles in the positioning of neuronal cells
in the inferior olivery complex, cerebral cortex and cerebellum
early in embryonic development (Goffinet, 1983a,b, 1984). Further
research has confirmed and further extended our knowledge about
the widespread functions reelin plays in laminated regions of the
brain, both embryonically and postnatally (D’Arcangelo et al., 1995;
Del et al., 1997; Curran and D’Arcangelo, 1998).

Given the critical functions of reelin in brain development, and
knowing there are neuroanatomical abnormities in autism (Bailey
et al., 1998), the reelin gene (RELN) was  a plausible candidate to
investigate in ASDs. Significantly reduced levels of reelin in the
human cortex, cerebellum and peripheral blood were confirmed
in ASD at both the protein and mRNA levels (Fatemi et al., 2001,
2002, 2005). Genome-wide scans also identified 7q22 as an autism
critical region, where RELN is located (Scherer et al., 2003).

Additionally, case–control and family-based studies provided
further evidence supporting the association of RELN and ASD.

Persico et al. (2001) identified a RELN-related polymorphic GGC
repeat located immediately 5′ of the ATG initiator codon in Italian
and American subjects. Using the similar methods and 126 multi-
plex ASD families, Zhang et al. (2002) examined the polymorphic
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GC-repeat of RELN. Family-based association tests showed that
arger RELN alleles (≥11 repeats) were transmitted more often than
xpected to autistic children. Independent studies regarding the
GC-repeat of RELN have also supported its contribution to the
enetic risk of autism (Ashley-Koch et al., 2007; Dutta et al., 2007a;
kaar et al., 2005). Others have also reported significant differences
n the transmission of the reelin alleles of exon 22 and intron 59
NPs to autistic subjects (Serajee et al., 2006). However, results
ave not been uniformly positive. Krebs et al. (2002) performed a
ransmission disequilibrium test (TDT) analysis of the GGC-repeat
olymorphism in 167 Caucasian families and found no evidence of

inkage or association. Similarly, another two groups failed to find
 significant association of RELN GGC repeat polymorphisms with
iability to autism (Devlin et al., 2004; Li et al., 2004).

The association between RELN and ASD were also found in other
thnic groups besides Caucasian populations. Recently, a signifi-
ant genetic association between the RELN SNP2 (located in intron
9) and ASD was reported in a Chinese Han population, and the
ombination of RELN SNP1/SNP2/SNP3/SNP4, all in strong linkage
isequilibrium, were reported to have a significant association with
SD (Li et al., 2008).

.3.2. Human serotonin transporter (SLC6A4) gene
The human serotonin transporter, encoded by SLC6A4, local-

zes to chromosome 17q11.1–q12 and consists of 15 exons
Ramamoorthy et al., 1993). SLC6A4 was considered as a candidate
ene for autism primarily based on the elevated blood serotonin
evels found in a number of autistic probands, as well as the effi-
acy of potent serotonin transporter inhibitors in reducing rituals
nd routines (Kim et al., 2002; McDougle et al., 1996). Using the TDT,
ositive associations of a 5-HTTLPR polymorphism found in the
romotor region of the SLC6A4 gene with autism have been identi-
ed by 4 family-based studies and 2 case–control studies (Sutcliffe
t al., 2005; Cook et al., 1997; Cho et al., 2007; McCauley et al.,
004a; Coutinho et al., 2004). Other groups have performed both
amily-based and case–control analysis and found significant asso-
iations of the SLC6A4 polymorphism with autism (Coutinho et al.,
007; Anderson et al., 2009). In contrast to these positive reports,

 family-based studies failed to find evidence for associations of
he SLC6A4 polymorphism with autism (Ma et al., 2010; Persico
t al., 2000; Wu et al., 2005a; Ramoz et al., 2006a; Tordjman et al.,
001; Maestrini et al., 1999; Klauck et al., 1997; Betancur et al.,
002; Koishi et al., 2006), as well as a case–control study (Zhong
t al., 1999). An Indian group performed a series of studies but
ound no persuasive evidence of the association of the SLC6A4 poly-

orphisms with autism (Guhathakurta et al., 2006, 2008, 2009).
n addition, a systematic review and meta-analysis failed to find

 significant overall association of the serotonin polymorphisms
xamined and autism (Huang and Santangelo, 2008).

.3.3. Gamma-aminobutyric acid receptor (GABR) gene
Gamma-aminobutyric acid (GABA) is the chief inhibitory neu-

otransmitter in the brain, acting by binding to a GABA receptor.
he receptor is a multimeric transmembrane receptor that consists
f five subunits arranged around a central pore. The GABA receptor
ubunits are homologous, but are both structurally and functionally
iverse (Menold et al., 2001). Three of the GABA receptor subunit
enes (GABRB3, GABRA5 and GABRG3) are localized to chromo-
ome 15q11–q13, one of the most complex regions in the genome
nvolved with genome instability, gene expression, imprinting and
ecombination (Martin et al., 2000).

The region 15q11–q13 was originally associated with ASD based

n several studies which reported a common duplication of this
egion in ASD subjects (Kwasnicka-Crawford et al., 2007; Bolton
t al., 2004; Cai et al., 2008; Depienne et al., 2009). A chromosome-
ngineered mouse model for human 15q11–q13 duplication was
etin 88 (2012) 543– 552 547

developed with autistic features (Takumi, 2010; Nakatani et al.,
2009; Aldinger and Qiu, 2010). Cook et al. examined markers across
this region for linkage disequilibrium in 140 families with ASD,
detecting significant linkage disequilibrium between GABRB3 and
ASD (Cook et al., 1998). This finding was confirmed by others as well
(Buxbaum et al., 2002; Kim et al., 2006; Yoo et al., 2009). Also, two
SNPs located within the GABRG3 gene were associated with ASD
using the pedigree disequilibrium test (PDT) (Menold et al., 2001).
An independent study demonstrated nominally significant associ-
ations between six markers across the GABRB3 and GABRA5 genes
(McCauley et al., 2004b). Moreover, using ordered-subset analy-
sis (OSA) another group provided evidence of increased linkage at
the GABRB3 locus (Shao et al., 2003). Other research has also iden-
tified significant association and gene–gene interactions of GABA
receptor subunit genes in autism (Ma et al., 2005).

Nonetheless, conflicting evidence has also been reported. Other
groups have reported limited or no association between GABA
receptor polymorphisms and autism (Curran et al., 2005; Martin
et al., 2000). Similarly, another group conducted a full genome
search for autism susceptibility loci including seven microsatel-
lite markers from 15q11–q13, and found no significant evidence
of association or linkage (Maestrini et al., 1999). Thus the linkage
results are at best inconclusive.

3.3.4. Neuroligin (NLGN) genes
The marked difference in sex ratio for ASD justifies the explo-

ration of genes on the sex chromosome, among which the
neuroligin (NLGN) genes are perhaps the most widely studied.
Five NLGN have been identified in the human genome, which are
localized at 3q26(NLGN1),  17p13 (NLGN2), Xq13 (NLGN3), Xp22.3
(NLGN4), and Yq11.2 (NLGN4Y), respectively. They encode a family
of cell-adhesion molecules, the neuroligins, essential for the forma-
tion of functional neural synapses (Jamain et al., 2003; Talebizadeh
et al., 2004).

The earliest report regarding the potential association of NLGN
genes and ASD came from the study of multiple Swedish families
(Jamain et al., 2003). The authors screened for NLGN3 mutations
in 36 affected sib-pairs and 122 trios with ASD. They found one de
novo mutation in NLGN4 in one family. This mutation creates a stop
codon leading to premature termination of the protein. In another
family, a C to T transition in NLGN3 was  identified that changed
a highly conserved arginine residue into cysteine (R451C) within
the esterase domain. It was inherited from the mother. Following
this report, several other groups studied this gene but found lit-
tle support for common mutations of the gene. Limited support
came from a Portuguese group, who found missense changes in
NLGN4 as well as the protein-truncating mutations in ASD (Yan
et al., 2005). A Finnish group conducted a molecular genetic analysis
of NLGN1, NLGN3, NLGN4,  and NLNG4Y. Their results suggested neu-
roligin mutations most probably represent rare causes of autism
and that it was  unlikely the allelic variants in these genes would
be major risk factors for autism (Ylisaukko-oja et al., 2005). Others
have also failed to obtain positive results, casting doubt on the ear-
lier conclusion (Wermter et al., 2008; Blasi et al., 2006b; Gauthier
et al., 2005; Vincent et al., 2004; Talebizadeh et al., 2004).

Other reports about mutations of NLGN3 or NLGN4 have identi-
fied splice variants in both genes (Talebizadeh et al., 2006). Three
groups recently reported one missense variant and two single sub-
stitutions in independent autistic samples, indicating that a defect
of synaptogenesis may  predispose to autism (Zhang et al., 2009;
Pampanos et al., 2009; Yan et al., 2008).
3.3.5. Human oxytocin receptor (OXTR) gene
Oxytocin is a nine amino acid peptide synthesized in the

hypothalamus. Apart from regulating lactation and uterine con-
traction, oxytocin acts as a neuromodulator in the central nervous
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ystem (Lucht et al., 2009; Yamasue et al., 2009). Both animal exper-
ments and clinical research has confirmed the role oxytocin plays
n social and repetitive behaviors (Green and Hollander, 2010).
herefore the oxytocin system might be potentially involved in the
athogenesis of ASD, and the human oxytocin receptor (OXTR) gene
as been regarded as a most promising candidate gene to study.

Indeed, research pertaining to the potential association between
XTR and autism has come to positive conclusions. Using family-
ased and population-based association tests, SNPs and haplotypes

n the OXTR gene have been reported to confer risk for ASD in dif-
erent ethnic groups (Liu et al., 2010b; Lerer et al., 2008; Jacob et al.,
007; Wu  et al., 2005b).  They have also been associated with IQ and
daptive behavior scale scores (Lerer et al., 2008). Furthermore, a
ecent study identified significant increases in the DNA methyla-
ion status of OXTR in peripheral blood cells and temporal cortex,
s well as decreased expression of OXTR mRNA in the temporal cor-
ex of autism cases, suggesting that epigenetic dysregulation may
e involved in the pathogenesis of ASD (Gregory et al., 2009).

.3.6. MET
The human MET  gene encodes a transmembrane receptor tyro-

ine kinase of the hepatocyte growth factor/scatter factor (HGF/SF)
Powell et al., 2001). Though primarily identified as an oncogene,

ET  plays crucial roles in neuronal development (Powell et al.,
001; Streit and Stern, 1997; Park et al., 1986). Moreover, impaired
ET  signaling causes abnormal interneuron migration and neural

rowth in the cortex, as well as decreased proliferation of granule
ells, which could help explain matches many of the features found
n autistic brains (Streit and Stern, 1997; Levitt et al., 2004).

Campbell et al. (2006) have done a series of studies regarding the
ssociation between MET  signaling and autism. They first reported
he genetic association of a common C allele in the promoter region
f MET, which results in significant decrease in MET promoter
ctivity and altered binding of specific transcription factor com-
lexes. Then they found significantly decreased MET  protein levels
nd increased mRNA expression for proteins involved in regulat-
ng MET  signaling activity (Campbell et al., 2007). Furthermore,
hey screened the exons and 5′ promoter regions for variants in
he five genes encoding the proteins that regulate MET  expression,
nding that genetic susceptibility impacting multiple components
f the MET  signaling pathway contributes to ASD risk (Campbell
t al., 2008). Most recently, they found that the MET C allele influ-
nces two of the behavioral domains of the autism triad (Campbell
t al., 2010). Other groups have also provided supportive evidence
hat MET  gene variations may  play a role in autism susceptibility
Jackson et al., 2009; Sousa et al., 2009).

.3.7. SLC25A12
SLC25A12 locates to the chromosome 2q31 region, encoding the

itochondrial aspartate/glutamate carrier (AGC1), a key protein
nvolved in mitochondrial function and ATP synthesis. Since the
hysiological function of neurons greatly depends on energy sup-
ly, any alteration in mitochondrial function or ATP synthesis could

ead to corresponding changes in neurons (Del and Satrustegui,
998). Recently mitochondrial hyperproliferation and partial res-
iratory chain block were found in two autistic patients, suggesting
LC25A12 could be a promising candidate gene (Filipek et al., 2003).

Following this report, several studies for genetic variants the
ene were performed. Three different ethnic groups reported link-
ge and association between ASD and two SNPs (i.e. rs2056202

nd rs2292813) in SLC25A12 (Turunen et al., 2008; Segurado et al.,
005; Ramoz et al., 2004), while another three independent groups
ailed to reveal significant association (Chien et al., 2010; Rabionet
t al., 2006; Blasi et al., 2006a). Another group associated one SNP
etin 88 (2012) 543– 552

(rs2056202) with ASD but not the other (Silverman et al., 2008).
Thus, the findings so far are inconclusive.

3.3.8. Other candidate genes
The glutamate receptor 6 gene (GRIK2 or GluR6)  is located at

chromosome 6q21. Given that glutamate is the principal excita-
tory neurotransmitter in the brain and it is involved in cognitive
functions such as memory and learning, GRIK2 was  proposed as
a gene candidate for ASD (Shimizu et al., 2000). Unfortunately, the
limited reports have very different results. Genetic studies in a Cau-
casian population, Chinese Han and Korean trios provided positive
evidence, but using different SNPs (Kim et al., 2007; Shuang et al.,
2004; Jamain et al., 2002). Another report failed to find any associ-
ation of GRIK2 with autism in an Indian population (Jamain et al.,
2002).

Contactin associated protein-2 (CNTNAP2) belongs to the
neurexin family, within which several members have been identi-
fied as being related to autism (Burbach and van der Zwaag, 2009). A
recent research report identified a homozygous mutation of CNT-
NAP2 in Amish children with pervasive developmental disorders,
seizures, and language regression (Strauss et al., 2006). Five other
studies have supported this finding that CNTNAP2 may be a genetic
susceptibility factor in autism (Poot et al., 2010; Arking et al., 2008;
Alarcon et al., 2008; Bakkaloglu et al., 2008; Rossi et al., 2008).
Another group found that CNTNAP2 provided a strong male affec-
tion bias in ASD (Alarcon et al., 2008).

Glyoxalase 1 is a cytosolic, ubiquitously expressed, zinc met-
alloenzyme enzyme involved in scavenging toxic �-oxoaldehydes
formed during cellular metabolic reactions. Proteomics analysis
found glyoxalase 1 increased in autism brains, and subsequent
sequencing of its gene (GLO1) identified that homozygosity for
a polymorphism of the gene, A419 GLO1, resulted in decreased
enzyme activity and association with autism (Junaid et al., 2004),
although this conclusion was  not confirmed by other studies (Wu
et al., 2008; Rehnstrom et al., 2008). In addition, one group found a
protective effect of the A419 allele of GLO1 (Sacco et al., 2007).

TPH1 and TPH2 encode rate-limiting enzymes that control sero-
tonin biosynthesis. TPH1 is primarily expressed peripherally, while
TPH2 is found exclusively in brain tissue. However, despite evi-
dence for the potential involvement of the serotonin system in
the etiology of autism, only one of three reports to date conser-
vatively has supported the notion that TPH2 plays a role in autism
susceptibility (Sacco et al., 2007; Coon et al., 2005; Ramoz et al.,
2006b).

4. Conclusions

It  is clear that ASD has a strong genetic component. But attempts
to clarify the underlying genetic mechanisms confront great chal-
lenges. First, the inclusion criteria vary between studies due to
the phenotypic heterogeneity of ASD. Indeed, among the original
research we reviewed, some studied exclusively subjects with clas-
sic autism while others included all ASD subjects. Additionally,
diagnostic criteria differ from one study to another, which may
partly account for the inconsistent results. Second, different sam-
ple sizes undermine the comparability among reports. It has been
suggested that about 40,000 samples will be needed to ensure that
important but subtle common genetic risks will be identified and
that the role of rare variants will be illuminated (O’Roak and State,
2008). Small-sized studies lacking adequate statistical power lead
not only to the underestimation of small-to-moderate effects, but

also to overestimation of the observed effects. Unfortunately, most
of the current studies fail to satisfy this requirement. Third, interna-
tional databases greatly facilitate autism research. But at the same
time, they further challenge the interpretation of the data because
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f the differing allelic frequencies of many polymorphisms in dif-
erent ethnic groups. As a result, validations of positive studies are
ifficult without cautious analysis.

However, even the most critical observers admit that substantial
rogress has been achieved in this realm during the past decade.
he most promising genes, such as NLGN and SLC6A4,  are involved
n the physiological and pathophysiological processes of neuroge-
esis, neuronal migration, and synaptogenesis. However, analysis
f newly discovered variants may  also play important roles in help-
ng to elucidate the underlying networks and pathways involved in
SD.

In conclusion, data remain inconclusive for the majority of can-
idate genes tested so far. Still, we have good reason to be optimistic
egarding gene discovery in ASD now and in the future. Cytoge-
etic, linkage, association studies and array analysis have provided
romising results. Emerging genetic technologies and analysis tools
ffer even more powerful approaches for developing insights into
he etiology of ASD. In addition, genetic studies facilitate other
utism research such as biochemical and neuroimaging studies,
hich will, in turn, provide evidence and valuable clues to direct

uture genetic studies.
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