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Abstract

de Kloet ER, Sibug RM, Helmerhost FM, Schmidt M. Stress, genes and the mechanism of programming the brain for later life. Neurosci

Biobehav Rev XXX–XXX, 2005 adverse conditions during early life are a risk factor for stress-related diseases such as depression and post-

traumatic stress disorder (PTSD). How this long-term effect of early adversity occurs is not known, although evidence accumulates that the

action of stress hormones is an important determinant. In rodents after a variety of experiences, even minor ones, during postnatal life

permanent changes in emotional and neuroendocrine reactivity have been observed. Also stressful events occurring prenatally and even the

pre-implantation hormonal conditions can have permanent consequences. Here we will focus on evidence obtained from (i) the blastocyst

implantation during conditions of ovarian hyperstimulation, which is commonly used in the generation of transgenic mice; (ii) the stress

system activity in the newborn under various conditions of maternal care; (iii) the long-term consequences of maternal separation procedures.

The results clearly demonstrate that early experiences trigger immediate changes in the stress system that may permanently alter brain and

behaviour.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For more than 50 years, the stress response is monitored

by measuring the activity of the sympathetic nervous system

and the hypothalamic–pituitary–adrenal (HPA) axis. The

exposure to a brief stressor such as a novel environment

causes through HPA axis activation a rise in circulating

corticosteroid concentration that reaches maximal levels

after 15–30 min, while returning to baseline 60 min later.

The elevated corticosteroid concentrations attenuate these

initial stress reactions in the very same pathways that have

led to HPA activation and mobilize for this purpose the

necessary energy substrates. Brain and body functions are

coordinated by these effects of the hormone on information

processing with the goal to facilitate adaptation and to be

prepared if the stressor is encountered another time [1–3].

Much has been learned over the past 50 years about the

way the corticosteroids operate in the stress system. It was

found that corticosterone interacts with numerous factors in

afferent pathways to the paraventricular nucleus (PVN) that

either activate or attenuate the HPA response [4]. These

afferents include pathways that signal inflammatory and

immune reactions or that monitor imbalances in volume

regulation and energy metabolism. Signalling pathways in

higher ‘limbic’ brain regions that mediate the cognitive

and/or emotional manifestations of the stress response are

also targets of corticosterone. In the ‘limbic’ brain, e.g.

hippocampus, amygdala, frontal cortex, the corticosterone

action appears to be bi-modal [5–7]. One (fast) mode,

possibly involving glutamatergic signalling [8,9], deter-

mines the threshold or sensitivity of the stress system. Once

a stressor has activated the stress system through cortico-

trophin-releasing hormone (CRH) and its CRH-1 receptors,

the circulating corticosterone concentrations rise and

progressively operate the other slower mode as part of

a late sustained coping system that synergizes with the

activity of the urocortin-CRH-2 receptor system. The

actions exerted by corticosterone in the fast and slow

mode are mediated by mineralocorticoid (MR) and

glucocorticoid receptors (GR), respectively [2]. The MR

helps to control the threshold or sensitivity of the stress

response system, while via the GR the stress response is

terminated and recovery from stress is promoted. Very

recent evidence points to the implication of membrane-

mediated corticosteroid effects perhaps involving these

receptors also [10].

Numerous studies have identified changes in HPA axis

activity and corticosteroid action that are associated with

disease states [11,12]. The cause of these changes can be

inability to cope with a chronic stressor [12], an exposure to

a single acute life event or a genetic risk factor such as a

single nucleotide polymorphism (SNP) disabling efficient

MR and/or GR functioning [13,14]. The altered HPA

activity is reflected in a change in frequency and/or

amplitude of the pulsatile secretion of the steroid [15]

suggesting it is rather the pattern than the actual level of
circulating corticosteroid that matters. In susceptible

individuals an aberrant corticosteroid patterns may precipi-

tate disease as is the case in, e.g. psychotic depression [16].

In the latter disease the brain is overexposed to cortisol

resulting in relatively more activation of GR than MR. As

predicted, psychotic depression responds positively to

treatment with anti-glucocorticoids that attenuate the over-

active GR function favouring health through MR. The

sluggish response pattern of the corticosteroids to daily

variation and stress becomes upon recovery ‘reactive’ again

[17,18].

In the newborn rodent, mild common stressors are unable

to trigger an ACTH or cortisol response, but the brain is in

many ways still very responsive to stressors [19]. It is well

known that more severe stressors such as infection are

capable to break through the apparent quiescence of the

early postnatal HPA axis. What came as a surprise,

however, is that the most powerful effect is achieved

when the pup is deprived from the dam’s feeding, licking

and grooming. Separation of mother and pup not only

activates and sensitises the HPA axis to subsequent

stressors, but also can produce permanent changes in HPA

reactivity.

In this contribution evidence is presented suggesting that

conditions as early as ovarian hyperstimulation applied to

stimulate egg production and induce ovulation, may affect

postnatal life. Next, the progress in understanding the

mechanism underlying the stable quiescent HPA activity

during the stress hypo-responsive period (SHRP) is

examined. Finally, the experiments showing a lasting

outcome of early manipulations for stress regulation and

cognitive performance are evaluated. The ‘leitmotiv’ is that

stress-related events mediated by corticosteroids occurring

from the blastocyst stage to the postnatal stage can impact

on the offspring.
2. Peri-implantation effects

Epidemiological data have shown an association

between children with a low birth weight and an increased

risk to develop several metabolic, cardiovascular and

behavioural pathologies in later life [20]. This programming

phenomenon known as the ‘fetal origins of adult diseases’

(FOAD) proposes that these disorders are derived from fetal

adaptations due to intra-uterine perturbations. The FOAD

hypothesis has been tested in animal models using maternal

undernutrition, stress and glucocorticoids during early-,

mid-, late-trimester or throughout pregnancy. These in utero

‘stressors’ altered birth weight, neuroendocrine responses

(i.e. hypothalamo–hypophyseal–adrenal axis, serotonergic

system and release of neurotrophic factors), immune

functions, cognitive and nociceptive behaviour. Further-

more, cardiovascular and metabolic disorders such as

hypertension, hyperglycemia, hyperinsulinemia occur and

persist throughout life.



Fig. 1. Effects of urinary and recombinant gonadotropins on vascular

permeability and expression of VEGF120 in the embryonic implantation

site on embryonic day 5. (A) Chicago blue dye penetration along the length

of the uterus in the different groups. Arrows indicate implantation sites

without dye staining. Lower panels: autoradiograms showing the

expression of VEGF120 in saline (control, B) and urinary (C)—treated

implantation sites. Arrows indicate the site where the blastocyst implants.

Bars: (A)Z2.5 mm, (B–C)Z0.6 mm; exposure period: (B–C)Z17 days.

pdz, primary decidual zone; sdz, secondary decidual zone.
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The exact period of the initiation of programming is not

known. However, data show that programming may initiate

already at the pre-implantation period. The pre-implantation

embryo is sensitive to epigenetic modifications that may

have programming consequences [21,22]. In a maternal low

protein diet paradigm using rats from embryonic day 0

(ED0) to ED4.5, the blastocysts have a reduced number of

inner cell mass. Postnatally, female offspring showed low

birth weight, increased systolic blood pressure and abnor-

mal organ/body weight ratios in comparison with males

[23]. Very recent data show that in mice in vitro culture of

pre-implantation embryos until the blastocyst stage showed

significant alterations in anxiety, locomotor activity and

spatial memory in adult life [24,25]. Moreover, large organs

and an increase in body weight and pathologies have been

observed [25]. Similar observations after in vitro culture of

embryos of large domestic animals have been characterized

as the so-called ‘large offspring syndrome’ [26].

There are data in the literature indicating that the onset of

programming may take place even earlier than the pre-

implantation period. Fetal growth and weight in humans

[27] and sheep [28] can be influenced by poor nutrition

around the time of conception. In mouse, maternal protein

undernutrition for 15 or 30 days before mating reduced the

number of cleaving embryos and caused delayed and

asynchronous cleavage leading to retarded differentiation

of morulae to blastocysts [29]. In humans, low preconcep-

tional (24 months before conception) intake of minerals and

vitamins is associated with spina bifida offspring [30] and a

high preconceptional intake of fruits and vegetables reduces

the risk for orofacial clefts [31].

Glucocorticoids appear to exert also programming

effects around the period of preconception. Mice treated

with dexamethasone consecutively for 3 days before mating

produced offspring with significantly greater body weight in

adult life in comparison with those treated with saline

(Sibug et al., unpublished data).

2.1. Effects of ovarian hyperstimulation on embryonic

development

Ovarian hyperstimulation (OHS) with gonadotropins is

routinely used for ovulation induction in human in vitro

fertilization programs and in the generation of transgenic

animals. In humans [32–34] and rodents [35,36], assisted

conception preceded by OHS has been associated with a low

fetal/birth weight. In a matched twin study the in vitro

fertilization effects were found to override genetic factors

[33]. The mechanism whereby OHS leads to a low birth

weight remains to be elucidated.

Blastocyst implantation is intimately associated with

vascular permeability and angiogenesis. These two pro-

cesses are potently stimulated by the vascular endothelial

growth factor (VEGF), which binds to the two tyrosine-

kinase receptors, flt-1 and KDR/flk-1. Messenger RNA

expression of VEGF and its receptors correlates spatially
and temporarily with changes in angiogenesis and vascular

permeability at implantation sites [37,38].

The role of gonadotropins in processes underlying

blastocyst implantation is still poorly understood. Since

glucocorticoids are known to exert detrimental effects

during pregnancy we hypothesized that treatment with

gonadotropins to induce OHS evokes a (stress) response of

which the effects persist after conception and cause

impairment of angiogenesis during the peri-implantation

period. We investigated the effects of gonadotropin

treatment on mRNA expression of VEGF120 and its

receptors during the implantation process using in situ

hybridisation. Adult female CD1 mice were either injected

with urinary human follicle-stimulating hormone and

urinary human chorionic gonadotropin to stimulate follicu-

logenesis and ovulation, respectively. Spontaneously ovu-

lating mice served as controls and received saline injections.

Treatment with urinary gonadotropins led to a delayed

blastocyst implantation, smaller size of the implantation site

and prolonged gestational period. These were accompanied

by reduced expression of VEGF, flt-1 and flk-1 and

increased levels of resorption and progesterone (Fig. 1).

Although the murine model has become indispensable

in elucidating the mechanisms involved during the



Fig. 2. Schematic overview of the activity of the neonatal stress system. Peripheral HPA axis activity is low due to a high inhibitory tone of corticosterone on

the POMC gene via the GR and the low adrenal sensitivity to ACTH. In contrast, the activity of central HPA components as CRH is high due to the lack of

efficient negative feedback.
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implantation process, there are species-specific differences

and caution should be applied in extrapolating the present

results in the human situation. Nonetheless, the implications

of these data in human assisted reproduction programs

deserve careful attention since a study showed that children

procreated via assisted reproduction are often preterm, have

low APGAR scores and showed poorer health than control

siblings [39]. (The APGAR score is a practical method for

assessing a newborn infant and is done routinely 60 s after

the birth of the infant and then it is commonly repeated 5 min

after birth. The APGAR score is a number arrived at by

scoring the heart rate, respiratory effort, muscle tone, skin

colour, in response to a catheter in the nostril.) In addition,

in vitro produced sheep blastocysts showed an alarming

tenfold increase in perinatal mortality [40] Hence, there is a

clear need to study the possible long-term consequences of

the programming effects of ovarian hyperstimulation with

urinary gonadotropins before conception.
3. Immediate effects of early life manipulations

When talking about environmental alterations, which

permanently affect the adult phenotype and the lifetime

vulnerability to disease, the timing of these early disruptions

of the stress system development is an essential factor. In

rats and mice there seem to exist certain time windows,

where a quiescence of the stress system is crucial for the

normal development of the brain circuitry, and where

a prolonged activation of the HPA axis is only resorted

to under severe physiological or psychological stress. In

rodents, this period of low stress system activity is known as

stress hypo-responsive period (SHRP), and lasts depending

on the species (rat or mouse) for about the first two weeks

following birth [41–44]. While the historical definition of

the SHRP is mainly based on the low peripheral
concentration of the stress hormone corticosterone and the

inability of mild stressors to induce a marked increase of

this hormone, we and others could demonstrate that the

SHRP is also characterized by a number of specific features,

which underlie the function of the neonatal HPA axis

(Fig. 2). One of the first hypotheses regarding the cause of

the stress hypo-responsiveness of the HPA axis during

postnatal development was the postulation of immature

neural projections to the PVN [45]. A number of recent

studies could indeed show, that some of the neural

connections to the PVN only develop postnatally, and are

not fully functional during the SHRP [46–48]. Thus, it

seems feasible that the neonatal brain is unable to relay

some specific stressors to the PVN in an appropriate

manner, making the adequate activation of the HPA axis

impossible.

On the other hand numerous studies could show that

young rat pups are quite capable of a robust HPA axis

activation, dependent on the type of the stressor [49–51].

Furthermore, studies by the group of Levine could

demonstrate that the HPA axis of a neonatal rat can be

activated by the lack of maternal care (maternal depri-

vation), responding to mild stressors (e.g. novelty exposure)

in a more or less adult-like fashion [52]. Hence, even though

an immaturity of the neural connections may in part

contribute to the hypo-responsiveness of the HPA axis

during postnatal development, it is unlikely that this is the

main, underlying mechanism.

In addition to the structural differences of the neonatal

brain the expression patterns of a number of central HPA

factors are very characteristic during the SHRP. Cortico-

tropin releasing hormone (CRH) is already expressed as

early as fetal day 18 [53], but there is some discrepancy in

the literature about the postnatal ontogeny of this neuro-

peptide. While some early papers reported a low [54] or

steadily rising [55] CRH expression in the hypothalamus,
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more recent studies demonstrated CRH expression in the

PVN at adult-like levels during the SHRP [56,57]. In an

extensive study in the mouse we could recently demon-

strate, that indeed the CRH expression of the neonates

during the SHRP is quite high, and decreases abruptly at

the end of the SHRP [58]. This high CRH expression

correlates with the low corticosterone release from the

adrenal and a different MR/GR ratio in the developing brain.

Apparently CRH is not under a strict negative feedback

control during the SHRP, or this control is disabled due to

the low corticosterone concentrations. However, even

though the central aspects of the neonatal HPA axis are

under a different regulation than in the adult, this does not

seem to be the primary cause for the lack of peripheral HPA

activity during the SHRP.

Paradoxically, the high CRH production in the PVN does

not enable the HPA axis of the neonate to induce an ACTH

response from the pituitary. The answer to the question of

why the pituitary of the neonate is not responding to mild

stressors with an adult-like ACTH response seems to lie in

the negative feedback control of ACTH production. Already

shortly after the first description of the SHRP it was

hypothesized that an enhanced GR-mediated negative

feedback at the level of the anterior pituitary might present

the most proximal cause of the HPA hyporesponsiveness

[43,59–61]. This hypothesis was supported by a number of

findings. First, Sakly and Koch [62] measured adult-like

levels of GRs in the pituitary throughout postnatal

ontogeny. Secondly, circulating levels of the plasma

corticosterone-binding globulin (CBG) were found to be

very low during the SHRP, implying that most of the

circulating corticosterone would be in its unbound,

biologically active form [63]. Further support came from

experiments using adrenalectomy (ADX) or treatment with

metyrapone during the SHRP. Under both conditions, where

corticosterone levels are minimal, basal and stress-induced

ACTH secretion was found to be largely elevated [64,65].

Also, elimination of circulating corticosterone levels by

adrenalectomy greatly enhanced the expression of the

ACTH precursor gene POMC in the pituitary, but had no

or only little effect on CRH expression in the PVN [66]. Yi

and colleagues [67] could further demonstrate, that chronic

blockade of GRs in the PVN in neonatal rats only slightly

enhanced CRH expression and corticosterone secretion.

In a recent series of experiment we could now support

this hypothesis. When treated intra peripherally (i.p.) with

the GR antagonist RU486, mouse pups during the SHRP

respond with a largely increased ACTH and corticosterone

secretion. In contrast to this enormous peripheral effect of

the antagonist, CRH expression in the PVN remained

unchanged. No or only a very small effect was seen when

instead of the GR antagonist the MR antagonist 28318 was

applied. Thus, it can be concluded that a high inhibitory tone

of the pituitary GR is likely to be the main cause for the low

responsiveness of the pituitary during the SHRP. With this

elegant biological regulation the neonatal brain manages to
create a situation, where the activity of the peripheral and

the central part of the HPA axis is separated. That way a

high activity of the central, i.e. CRH stress circuitry during

development is possible without the damaging effect of high

corticosterone concentrations.

Although less apparent, a similar period as the SHRP has

recently also been postulated in human children [68].

This analogous phenomenon in humans appears to develop

gradually during the first year of life; it is unclear, however,

how long it extends. While healthy newborn infants exhibit

a highly reactive adrenocortical response to stressors [69],

the HPA axis of the average 12–18-month-old child does not

respond to mild challenges [70,71]. Even though these

children exhibit a clear behavioural response to for example

approaching strangers, or novel events or environments, this

apparent distress does not result in elevated circulating

cortisol levels. Thus, humans and rodents seem to share

certain similarities in their patterns of stress system

development, which probably underlie a similar biological

phenomenon and rationale.

Another similarity between humans and mice (or rats) is

that both species profoundly rely on a strong mother–infant

interaction during development. Maternal (or in the human

situation in general parental) care seems to be a crucial

factor for the normal development of the infants. In humans,

the quality of childcare has been described to influence the

cortisol response to mild stressors, especially during the

period where an increase of cortisol is difficult (human

stress hypo-responsive period). For instance, Nachmias and

colleagues [72] showed that 18-month-olds, withdrawing

from strange events and seeking comfort with their mothers,

only showed a cortisol response, if the attachment to the

mother was insecure. In addition, prolonged or severe

childhood trauma appears associated with a permanent

alteration in the function of the HPA system, thereby being a

risk factor for the development of psychiatric diseases

during adulthood [73,74]. In spite of these similarities there

are obvious differences as well between mice and rats on

the one hand, and humans on the other with respect to, e.g.

litter size and rate of development.

In rodents, alterations in maternal care have a strong

influence on the HPA activity of the pups. Historically, two

different models of altered maternal care have been used,

handling and maternal separation. In handling, the pups are

separated from the dam for 15 min per day [75]. A number

of studies could demonstrate, that this short disruption

results in an average increase of maternal care, like licking,

grooming and arched back nursing as compared to non-

handled animals [76,77]. In contrast, prolonged maternal

separation results in an overall lack of maternal care and can

be regarded as a laboratory model for neglect. It can be

argued, that because a separation of the dam from the litter

for a prolonged period of time creates a dangerous and

potentially life threatening situation for the infants, the

stress system of these animals adapts to this situation

regardless of the adverse consequences for later
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development. For the correct interpretation of the long-term

consequences of decreased (and also increased) maternal

care it is therefore crucial to understand the immediate

effects of this treatment. For that reason, we and others have

studied the model of 24 h of maternal deprivation,

especially with the focus on the immediate effects of a

mother–pup separation.

Even when applied during the SHRP, where mild

stressors do not elicit a corticosterone response, 24 h of

maternal deprivation result in a marked activation of the

HPA axis. In the rat as well as in the mouse, corticosterone

levels are largely increased following maternal deprivation

[58,78]. In that respect it was astonishing, that ACTH levels

are not (in the rat) or only slightly (in the mouse) elevated in

deprived pups compared to controls. We therefore recently

conducted a study, where we examined the activity of the

HPA axis during the 24 h deprivation period [79]. The

results show, that both ACTH and corticosterone largely

increase during the first 8 h of maternal absence. However,

during the second part of the 24 h deprivation period

circulating ACTH levels are restrained and ultimately

suppressed by negative feedback, while corticosterone

levels continue to be elevated. This seemingly paradoxical

effect is likely to be related to a higher adrenal sensitivity to

ACTH at the end of the deprivation period [80,81]. Also in

the brain the activation of negative feedback mechanisms

could be shown. The relatively high expression levels of

CRH in the PVN decreased dramatically following the

increase in circulating corticosterone. Expression of MR

and GR in the hippocampus as well as GR in the PVN is also

decreased following maternal deprivation. Thus, the

prolonged absence of the dam triggers the activation of

the HPA axis in the pups, which consequently initiates

negative feedback mechanisms in the brain. Therefore, the

developing brain is suddenly exposed to a variety of

neurotransmitters, neuromodulators and transcription fac-

tors, which are normally not present, or at least not in that

quantity. There is no doubt that activated corticosteroid

receptors play an important part in this process, which may

ultimately alter the developmental trajectory of specific

brain circuits, for example the ones involved in stress

system regulation.

A variety of studies indicate that these changes are

actually due to the lack of maternal care. In the rat, Suchecki

and colleagues demonstrated, that if the maternal licking

behaviour is replaced during the deprivation period by mild

stroking with a wet brush, some of the deprivation effects

can be prevented [82,83]. Stroking combined with artificial

feeding was even able to reverse all the measured effects of

maternal deprivation. Indeed it seems that the initial

activation of the HPA axis during the first 8 h of maternal

absence occurs via metabolic signals. After all, a lack of

nutrition is one of the most life threatening events that can

occur to a mouse or rat pup. Studies in adult animals have

shown very clearly that the metabolic system is in close

interaction with the activity of the HPA axis. Much attention
has been given to the recently discovered metabolic

hormones leptin and ghrelin, which both have been shown

to bind to specific receptors in the brain and to be able to

modulate HPA activity in the adult [84,85] and in the case of

leptin also in the neonate [86,87]. Especially ghrelin is an

interesting candidate for the regulation of HPA activity. A

recent study by Hayashida et al. [88] demonstrated, that

circulating ghrelin plasma levels are increased following 8 h

of milk deprivation. In addition, ghrelin has been shown to

increase neuropeptide Y (NPY) expression in the arcuate

nucleus, which in turn could increase CRH production and

release in the PVN [89]. Together with the recently

demonstrated trophic function of leptin during development

[48], it is feasible that a similar pathway is employed in the

neonate to initiate the activation of the HPA axis during

maternal deprivation. In contrast to feeding, maternal care

(e.g. licking) seems to modulate the central response to this

peripheral activation.

In light of the strong corticosterone response to maternal

deprivation it seems logical, that in the literature this

hormone is held responsible for most effects of mother–pup

separations. Nevertheless, caution should be taken in the

interpretation of these data, as firm proof for the causality of

corticosterone is lacking. For instance, pretreatment of pups

with dexamethasone completely abolished the corticoster-

one response to maternal deprivation, but did not affect the

central effects of mother–pup separation [83]. Our group

could recently demonstrate, that CRH1 receptor knockout

mice respond to maternal deprivation with a marked

decrease of GR expression in the hippocampus and the

PVN, even though they are completely unable to elicit a

corticosterone response to this treatment [90]. Yet unpub-

lished results from our group further indicate a strong

regulatory influence of limbic CRH1 receptors on HPA

function during development. Thus, even though high

corticosterone levels acting via GR and MR are undoubtedly

fundamental for the direct effects of maternal deprivation,

other signals may as well contribute to the described effects.
4. Long-term consequences

Of all the different models on early life effects the

handling paradigm is probably the historically most used

and best documented paradigm. It has convincingly been

demonstrated that handling of rat pups during their postnatal

development permanently alters the function of their HPA

axis. Adult rats handled during infancy show a reduced

ACTH and corticosterone response to stress in the

hippocampus as well as lower levels of CRH and AVP

mRNA expression and immunoreactivity when compared to

non-handled animals [91–93]. Furthermore, handling has

been shown to reduce anxiety-like behaviour [94]. How-

ever, as Pryce and colleagues [95] recently pointed out,

some care has to be taken in the interpretation of these data,
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as the non-handled animals, which are commonly used as

control group, also present an experimental extreme.

The control group problem has been elegantly avoided

by Meaney’s group, who introduced the model of low vs.

high grooming mothers. In this model, naturally occurring

differences in maternal care are scored in a population of

Long-Evans rat mothers, and used as criterion for sub

grouping the females according to the intensity of their

maternal care. They could show, that the offspring of high

grooming mothers had significantly lower ACTH and

corticosterone responses to stress, a lower CRH mRNA

expression in the PVN and a higher GR mRNA expression

in the hippocampus [76]. In addition, these rats from ‘high

grooming’ mothers also displayed a higher spatial learning

and memory ability compared to the offspring of low

grooming mothers [96]. Taken together, these data

underscore that maternal care matters, and that alterations

of maternal care during development affect the function of

the individual during adulthood. It should be pointed,

however, that such differences in outcome, if pups are

exposed to low- and high-grooming mothers, represent

correlates rather than causality. For causality cross-

fostering studies are essential [97].

Long-term effects on the receptors for corticosteroids also

have been measured. In the handled animals Meaney and

colleagues always report elevated expression levels of GR

solely for the hippocampus. In studies using maternal

deprivation for 24 h Sutanto et al. [98] reported in adult

male rats down-regulation of hippocampal GR, which was

further enhanced if the adrenals were at the time of maternal

deprivation stimulated with ACTH. Down-regulation of MR

was also observed in the deprived males. In contrast, in

females deprived as pups GR was increased at adulthood and

this increase was further enhanced upon neonatal ACTH

injection. MR was not affected in females by any of the

neonatal manipulations. It seems logical that if increased

maternal care is beneficial for the development of the infants,

then a prolonged maternal absence or neglect is unfavourable

or even harmful. Most of the procedures aiming for long term

effects on HPA function and behaviour have in common that

it is attempted to induce a HPA axis activation during

the SHRP. As previously mentioned this can be achieved by

disruption of maternal care, but also by other means, e.g.

exposure to cold or ether fumes [51]. Shanks and colleagues

treated 3-day old rat pups with lipopolysaccaride (LPS),

mimicking a mild bacterial infection of the infants. Similar to

maternal separation this treatment induced a temporarily

enhanced ACTH and corticosterone secretion in the

neonates, an effect mediated by hypothalamic CRH [99].

As adults, these animals exhibited a greater ACTH and

corticosterone response to stress, an effect possibly related to

a decreased glucocorticoid feedback ability of these animals

[100]. In subsequent studies it was shown that the elevated

circulating levels of corticosterone were reflected in an

increased amplitude and frequency of the pulsatile corticos-

terone secretory bursts [100].
It has to be pointed out that the timing of these treatments

is crucial for the long term effects. Some of the applied

paradigms aiming for a disruption of HPA function

circumvent this problem by simply extending the treatment

throughout postnatal development [92,95]. This strategy is

based on the assumption, that the induced effects are

cumulative and unidirectional. However, this may not be

the case at all. In other words, maternal separation at the

beginning of the SHRP may have very different long-term

consequences as the same treatment towards the end of the

SHRP. Studies with a single 24 h separation period

indicated, that especially at the beginning of the SHRP the

stress system of the pups is vulnerable to external

disturbances [101,102]. Thus, the stage of development is

crucial for the effect of maternal neglect.

One question that has not yet been addressed directly, but

is nevertheless of great importance, is the role of the genetic

background on the possible long-term consequences of a

disrupted stress system development. While virtually all

mice (and rats) subjected to maternal deprivation of more

than 4 h will react with an activation of the HPA axis, the

long term consequences of maternal deprivation are much

more subtle. They depend besides the duration of the

separation, also on the time point of the separation during

the SHRP, the gender as well as the genetic background.

Oitzl and co-workers [103] could demonstrate that some

Brown Norway rats subjected during their development to

maternal deprivation aged very successfully in regard to

their learning ability, while others did not. Controls

progressively aged to a large group (45% of the animals)

of partially impaired animals, but the maternally deprived

animals were mostly either good or bad learners, with only a

few (12% of the animals) partially impaired. This implied

that after deprivation the number of good performers

increased at senescence twofold and bad performers with

a factor 1.5. This dissociation in good and bad performers

correlated with the expression of Brain Derived Neuro-

trophic Factor (BDNF) in the hippocampus [104]. The better

the animals learned, the higher was the expression of BDNF.

What is the role of the stress system and of genetic

background in this dichotomization of cognitive perform-

ance at senescence as a result of maternal deprivation? In

the same study parameters of HPA activity were

measured. If exposed to novelty the response of

corticosterone slowly attenuated during the aging process

and was lowest at senescence. In deprived rats peak

levels of stress-induced corticosterone levels were at

midlife far higher than in the controls, but much lower at

young age. At senescence particularly after exposure to

more severe stressors the corticosterone response was

attenuated [105]. It would be of interest, therefore, to

examine whether the extent of ‘mid-life stress’ is a

determinant in selecting a trajectory towards either

successful aging or senility, and if so which gene

patterns are being activated under such conditions.
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5. Perspectives

This contribution was focused on the phenomenon that

events early in life, even the seemingly minor ones, can

program the brain for a pattern of neuroendocrine and

behavioural responses in later life. These events may

occur as early as during the conditions of ovarian

hyper-stimulation used for facilitation of embryo implan-

tation in the uterus. The exposure of the pregnant dam to

stress and drugs like dexamethasone has received a lot of

attention and that will be the topic of other contributions.

However, one intriguing paradox is that the poor

nutritional state during pre-natal life may present a risk

factor for metabolic and cardiovascular disease. This is a

paradox because a caloric restriction regime during

adulthood has on the contrary a life extending potential.

Furthermore, in postnatal life the permanent effects of

variations in mother–infant interaction are well docu-

mented. The outcome in the adult rodent deprived as

infant varies depending on the time and the duration of

the separation as well as the gender and genetic

background of the animals.

In the mechanism underlying these programming effects

of early life events we have taken the position that the stress

hormones are key mediators. It is now known that

glucocorticoid feedback in the anterior pituitary is a

prominent mechanism in maintenance of the SHRP with

adrenal hypo-responsiveness to ACTH as one of its

predictable consequences. During the SHRP the brain’s

stress system is, however, fully capable to respond. In the

rodent variations in mother–infant interaction only disrupt

the quiescent HPA axis if the infant is deprived once for

several hours from maternal care. It is reasonable to assume

that the activated CRH and corticosteroid systems then are

the primary signals engaged in programming the brain.

This would then be reminiscent to the sex steroids which act

during postnatal days 2–4 on the brain to program sexual

behaviour at adulthood. However, solid evidence confirm-

ing a similar ‘conductor’s’ role for the stress hormones, as

observed for sex hormones, is still lacking.

In a very recent study Meaney’s group demonstrated

that the level of maternal licking and grooming

correlated with DNA methylation, histone acetylation

and binding of transcription factor NGF1A binding to the

GR and that the processes were reversed with cross-

fostering. Along with these chromatin changes hippo-

campal GR expression was found increased and the

stress-induced HPA activation was suppressed. The GR

related changes induced by maternal care were all

abolished upon administration to the pups of a histone

deacetylase inhibitor [106]. This evidence supports the

reasoning by Meaney and colleagues that the program-

ming effects of maternal behaviour may proceed in part

through one single gene, e.g. GR, through epigenetic

processes. It is reasonable to assume that GR mediated

actions affect the wiring and synaptic organization of
the brain’s stress circuitry [48]. Understanding this

circuitry requires the identification of neuronal pathways

using tracing techniques and knowledge of ‘patterning’

genes under peri-natal conditions, for instance by

analysing large scale genomic responses [107].

The importance seems to be that early experiences are

capable to enhance or to suppress the expression of certain

genetic traits and by doing so may change the outcome for

behavioural performance in later life. An intriguing question

is whether all individuals suffer uniformly from such early

life experiences. The outcome of the ‘early handling’

studies seem to support the thesis that all individuals are

affected in the same mode and direction [76,91,108]. An

alternative view on the emergence of individual differences

is that depending on genetic background some individuals

after early trauma actually ‘gain’ while others ‘loose’ the

ability to cope with challenging conditions. At least, our

studies clearly demonstrate that the maternal deprivation

paradigm amplifies genetically determined individual

differences, particularly during the aging process rather

that all individuals are affected in the same way as the éarly

handling studies suggest [7]. In favour also of a role for

‘gene X environment’ interaction for individual variation in

coping with stress is the recent report demonstrating that

individuals carrying the long allele of the 5HT transporter

are resistant to depression [109].

In conclusion, current evidence demonstrates that in

particular stress-related events that occur between con-

ception and the postnatal period can impact on the offspring

and permanently change brain and behaviour. How the

stress factors exert these long-lasting changes will be an

important avenue of future research.
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