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Activation of the Maternal Immune System During
Pregnancy Alters Behavioral Development of Rhesus
Monkey Offspring

Melissa D. Bauman, Ana-Maria Iosif, Stephen E.P. Smith, Catherine Bregere, David G. Amaral,
and Paul H. Patterson
Background: Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring.
Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with
abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical
populations and rodent models of maternal immune activation (MIA).

Methods: A modified form of the viral mimic, synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-L-lysine)
was delivered to two separate groups of pregnant rhesus monkeys to induce MIA: 1) late first trimester MIA (n ¼ 6), and 2) late second
trimester MIA (n ¼ 7). Control animals (n ¼ 11) received saline injections at the same first or second trimester time points or were untreated.
Sickness behavior, temperature, and cytokine profiles of the pregnant monkeys confirmed a strong inflammatory response to MIA.

Results: Behavioral development of the offspring was studied for 24 months. Following weaning at 6 months of age, MIA offspring
exhibited abnormal responses to separation from their mothers. As the animals matured, MIA offspring displayed increased repetitive
behaviors and decreased affiliative vocalizations. When evaluated with unfamiliar conspecifics, first trimester MIA offspring deviated from
species-typical macaque social behavior by inappropriately approaching and remaining in immediate proximity of an unfamiliar animal.

Conclusions: In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social
interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism
and schizophrenia.
Key Words: Animal model, autism spectrum disorder, immune
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Autism spectrum disorder (ASD) and schizophrenia (SZ) are
chronic and disabling brain disorders that each affect
approximately 1% of the population (1,2) and are thought

to be caused by complex interactions between genetic and
environmental factors (3–5). Recent evidence suggests that the
prenatal environment, and particularly the maternal immune
environment, plays a critical role in some cases of ASD and SZ
(6–8). Epidemiologic studies reveal that women exposed to viral,
bacterial, or parasitic infections during pregnancy have an
increased risk of having a child that later develops SZ (9–14).
Likewise, maternal viral and bacterial infections are associated with
an increased risk of ASD in the offspring (15–19). The diversity of
maternal infections associated with ASD and SZ outcomes suggests
that the maternal immune response is the critical link between
sickness in the mother and altered neurodevelopment in her child.
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Understanding the mechanism by which maternal immune
activation (MIA) during pregnancy increases the risk for SZ and
ASD is essential to developing novel preventative or therapeutic
strategies. Rodent models have identified molecular, cellular, and
behavioral abnormalities associated with prenatal immune chal-
lenge (20). Maternal influenza infection (21–24) or injection of the
bacterial endotoxin lipopolysaccaride (25–27) yields offspring
with behavioral abnormalities, neuropathology, and altered gene
expression that are relevant to both SZ and ASD. Similar out-
comes are obtained by treating pregnant rodents with the viral
mimic, synthetic double stranded RNA (polyinosinic:polycytidylic
acid [poly IC]), which stimulates an inflammatory response in the
absence of a specific pathogen (28). Offspring born to pregnant
dams treated with poly IC at mid-gestation demonstrate repet-
itive behaviors and deficits in social and communication behav-
iors that resemble features of ASD, as well as elevated anxiety,
deficits in prepulse inhibition, latent inhibition, and working
memory that resemble clinical features of both ASD and SZ
(21,29–32). Neuropathology observed with ASD (localized loss
of Purkinje cells) and SZ (enlarged ventricles) have been reported
in poly IC rodent models (33–35), and there are numerous other
alterations in brain structure, neurochemistry, gene expres-
sion, and immune function (36–39). The deleterious effects on
brain and behavior in the mouse MIA model appear to be
mediated by the maternal cytokine response, in particular
interleukin-6 (40).

While rodent models have laid the foundation for understanding
the effects of MIA on fetal brain development, these models have
limitations. Extrapolating the timing of fetal brain development
between rodents and humans is complicated by the fact that the
neural events of the human third trimester occur during the early
postnatal period in rodents (41). Moreover, there are challenges in
relating the rodent brain to the human brain and rodent behavior
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to human behavior. This is particularly problematic for disorders
such as ASD and SZ that are characterized by deficits in a range of
complex cognitive, social, and affective functions. Indeed, portions
of the human brain, such as prefrontal cortex, which mediate these
functions and are heavily impacted in ASD and SZ, are poorly
developed in the rodent brain (42). Understanding human disorders
involving higher cognitive functions will benefit from studies in
animal species more closely related to humans. Nonhuman
primates, such as rhesus macaques (Macaca mulatta), demonstrate
many features of human physiology, anatomy, and behavior,
making them an appropriate species to study a variety of human
brain disorders (43). The rhesus monkey lives in a complex,
hierarchical social system and uses many forms of human-like
communication such as facial expressions and social gestures (44).
The rich social and cognitive repertoire of rhesus monkeys provides
a framework to relate behavioral changes observed in the animal
model more directly to human mental illness.

We have developed a novel, nonhuman primate model using a
modified form of the viral mimic poly IC, which is adapted for use in
primates (polyinosinic:polycytidylic acid stabilized with poly-L-lysine
[poly ICLC]). This synthetic RNA is recognized as foreign by the
primate immune system and induces a transient innate inflammatory
response (45,46). Pregnant rhesus monkeys were injected with poly
ICLC over a 72-hour period at the end of the first or second trimester.
These gestational ages were selected based on human epidemio-
logic data identifying the first and second trimesters as vulnerable
time points where exposure to MIA increases the risk of autism and
schizophrenia (14,17). We evaluated sickness behavior, body temper-
ature, and cytokine responses in the dams to confirm a strong
immune activation and then analyzed the behavioral development
of the offspring for 4 years. Here, we present our initial behavioral
Table 1. Behavioral Phenotyping Assays

Behavioral Assay Brief Description

6–12 Months of Age
Mother preferencea Following weaning, each infant was tested for 4 days

evaluate one aspect of mother-infant attachment, th
preference for its own mother versus another famili
female (12 2-minute trials/subject).

Postweaning solo
observationsb

At approximately 10 months of age, the animals were o
alone in a large, unfamiliar cage for two 5-minute fo
samples on 2 separate days to screen for abnormal b
such as motor stereotypies or self-directed behavior

12–18 Months of Age
Juvenile Y‐maze At approximately 18 months of age, animals were give

access to a novel conspecific in one arm of a Y-maz
apparatus. Each animal was tested for six 2-minute tr
separate days, meeting an opposite-sex conspecific
first day and a same-sex conspecific on the second

Juvenile solo
observationsb

At approximately 22 months of age, the animals were o
alone in a large, unfamiliar cage for two 5-minute fo
samples on 2 separate days to screen for abnormal b
such as motor stereotypies or self-directed behavior

Juvenile social
approachc

At approximately 24 months of age, social interactions
novel conspecific were evaluated using a modified v
the mouse three-chambered social approach assay (
minutes/subject).

ASD, autism spectrum disorders; SZ, schizophrenia.
aAssays used to control for changes in physical development, reflexes, fear

not directly related to the core features of ASD and SZ.
bBehavioral assays targeting repetitive behaviors and restricted interests.
cBehavioral assays targeting social and communication domains.
findings through 24 months of age, documenting the emergence of
abnormal behavior in rhesus offspring exposed to MIA.

Methods and Materials

All experimental procedures were developed in consultation
with the veterinary staff at the California National Primate
Research Center. Protocols were approved by the University of
California, Davis Institutional Animal Care and Use Committee.
Detailed methods are provided in Supplement 1.

Maternal Administration of Poly ICLC
Twenty-four multiparous rhesus monkeys were assigned to one

of three experimental groups: 1) first trimester MIA (MIA1), 2)
second trimester MIA (MIA2), or 3) saline control animals (CONSaline)
(Table S1 in Supplement 1). Pregnant animals in the MIA groups
were injected with .25 mg/kg synthetic double-stranded RNA (poly
ICLC) (Oncovir, Inc., Washington, DC) via intravenous injection while
restrained by trained technicians on gestational days 43, 44, and 46
(MIA1) or 100, 101, and 103 (MIA2).

Rearing Conditions
Infants were raised in individual cages with their mothers,

where they had visual access to other animals at all times. For 3
hours each day, one adult male and four familiar mother-infant
pairs were allowed to freely interact in a large cage to provide
enrichment and facilitate species-typical social development.
Each group consisted of a mixture of male and female offspring
of both MIA and control experimental groups. The infants were
weaned from their mothers at 6 months of age but continued the
same socialization routine.
Relevance to Autism Spectrum Disorders and Schizophrenia

to
e infant’s
ar adult

Measures of attachment serve as control parameters for species-
typical development and response to separation (48).

bserved
cal
ehaviors
s.

Solo observations are conducted to screen for a wide array of
stereotyped behaviors produced by rhesus monkeys
(49,53,58).

n visual
e test
ials on 2
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day.

Initial social assays with novel conspecifics were carried out
using the Y-maze testing apparatus and later followed with
the three-chambered social approach assay described below.

bserved
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ehaviors
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Solo observations are conducted to screen for a wide array of
stereotyped behaviors produced by rhesus monkeys
(49,53,58).

with a
ersion of
20

The high-throughput social approach assay used in mouse
models (54) paired with the fine-grained focal observations
utilized in our nonhuman primate studies (47,48) provide a
screen for sociability as indexed by the amount of time spent
in a chamber with a constrained, novel conspecific.

response development, maternal attachment, and activity levels that are
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Table 2. Mother Preference

Estimate (SE) p Value

Estimated Trajectory for the Control Group
Baseline (day 1) �.1 (.1) .60
Linear change with time (per day) .2 (.0) �.001

Estimated Difference between MIA1 and Control Animals
Baseline (day 1) .2 (.2) .31
Linear change with time (per day) �.2 (.1) �.001

Estimated Difference between MIA2 and Control Animals
Baseline (day 1) .3 (.2) .09
Linear change with time (per day) .1 (.1) .003

Summary (parameter estimates and standard errors) of the mixed-
effects models assessing the relationship of group and time with
frequency of reactive behaviors.a Differences from control animals are
estimated from mixed-effects regression models fitted to the frequency of
behaviors and adjusted for gender, day, and the interaction between
group and day.

MIA1, first trimester maternal immune activation; MIA2, second
trimester maternal immune activation.

aThe outcome was first transformed using the fourth root to improve
its normality.
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Behavioral Observations
Behavioral data were collected throughout the first 2 years of

life using our standardized rhesus developmental battery (Table
S2 in Supplement 1) (47–50). For the sake of brevity, only
behavioral assays associated with significant results are presented
(Table 1). Unless noted in the material description in Supplement 1,
behavioral data were collected using focal animal samples (51) in
a predetermined, pseudo-random order, employing a catalog of
behaviors commonly used for this species (Table S3 in
Supplement 1). Behaviors initiated or received by the focal
animal, as well as the behavior of other animals (i.e., mother,
other adults, peers) toward the focal animal were recorded,
resulting in the quantification of mother-infant and peer social
interactions throughout development.

Statistical Analysis
Preliminary analyses revealed that the behavioral profiles of

the saline-treated monkeys and the untreated control monkeys
were very similar. They were therefore pooled to form a single
control group. Mixed-effects linear models (52) were used to
analyze the frequency and duration of the behaviors, since all the
experiments involved repeated observations. Suitable transforma-
tions were performed for the variables that violated the assump-
tion of normality. All core models included fixed effects for group
(MIA1, MIA2, and control) and gender (to adjust for gender
imbalance across groups and account for its potential effect on
frequency and duration of the behaviors) and a random effect for
animal (to account for the correlated nature of the data). For
experiments involving stimulus monkeys or where time effects
were detected, additional fixed terms (for stimulus monkey
gender, time, interaction of time with group, etc.) were also
added to the core model and tested. These terms were retained
in the models only if they were significant. All tests were two-
sided, with α ¼ .05.
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Figure 1. Maternal immune activation (MIA) offspring exhibit abnormal
responses to weaning. Although all animals demonstrate a species-typical
attachment to their own mother, MIA offspring exhibit an unusual
response in the attachment test. Second trimester MIA (MIA2) offspring
produce significantly more distress or self-soothing behaviors (i.e.,
tantrums, convulsive jerk, self-clasp, infant crook tail) than control (CON)
offspring. This group difference emerges over the 4 days of testing, with
both MIA groups showing a different pattern over time than control
animals (p � .001 and p � .003 for the differences in slopes, respectively).
Thus, on the final day, MIA2 offspring are highly reactive, control animals
are moderately reactive, and first trimester MIA (MIA1) offspring display
little evidence of reactivity (p � .01 for difference from control animals for
both MIA1 and MIA2 groups on day 4).
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Results

Sickness behavior, temperature and cytokine profiles of the
pregnant monkeys confirmed a strong inflammatory response to
poly ICLC (Figures S1 and S2 and Tables S4–S7 in Supplement 1).
For the sake of brevity, only significant behavioral results from the
offspring are presented in detail. There were no consistent
differences across offspring in physical growth, motor or reflex
development, adrenal activity, interactions with mothers, or
development of threat detection in the first 6 months of postnatal
life (Table S8 in Supplement 1).

Mother Preference
Following weaning at 6 months of age, MIA offspring differed

from control animals during a test designed to evaluate infant
attachment to the mother. While all animals, irrespective of
treatment condition, demonstrated a species-typical attachment
to their own mother, we detected differences in the patterns of
the animals’ responses to the test. Offspring in the MIA2 treat-
ment group produced significantly more distress/self-soothing
behaviors that are commonly observed during the attachment
assay (i.e., tantrums, convulsive jerk, self-clasp, infant crook tail)
than MIA1 or control offspring. Group differences were not
apparent on the first day but emerged over the 4 consecutive
days of testing (Figure 1; Table 2; Figure S9 in Supplement 1). On
the final day, MIA2 treatment offspring were highly reactive and
control offspring were moderately reactive, while MIA1 treatment
offspring displayed almost no evidence of reactivity.

Solo Observations
At 10 months of age, we conducted postweaning solo

observations of the animals alone in a large cage to screen for
abnormal motor stereotypic and/or self-directed behaviors that are
common to captive rhesus monkeys (see Table S1 in Supplement 1
for definitions) (53). Compared with control animals, the MIA2

animals produced motor stereotypic and/or self-directed behaviors
more frequently than control animals (p ¼ .002) (Figure 2A;
Table 3). First trimester MIA animals displayed a trend level
increase in these behaviors compared with control animals (p ¼
.06). We also detected trend level differences in the frequency of
affiliative contact “coo” calls produced by the MIA1 offspring when
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Figure 2. (A) Maternal immune activation (MIA) off-
spring exhibit increased frequency of motor stereotypies
and self-directed behaviors. Left panel: When observed
alone in a large cage at 10 months of age, second
trimester MIA (MIA2) animals produce significantly more
repetitive behaviors than control animals (CON) (**p #
.01). The first trimester MIA (MIA1) offspring also produce
more repetitive behaviors than control animals, but this
difference does not reach statistical significance at 10
months (p ¼ .06). Middle panel: When observed alone at
22 months of age, MIA1 offspring produce significantly
more repetitive behaviors (*p # .05). Second trimester
MIA animals also produce significantly more repetitive
behaviors than control animals at 22 months (**p # .01).
Right panel: When tested at 17 months of age in the Y-
maze social preference assay, MIA2 treatment animals
produce significantly more repetitive behaviors than
control animals (**p # .01). (B) Maternal immune
activation offspring display decreased affiliative vocaliza-
tions. Left panel: At 22 months, MIA2 offspring produce
significantly fewer coo calls than control animals (**p �
.01). Right panel: When observed with a novel conspe-
cific at 24 months of age, MIA1 offspring produce
significantly fewer coo calls than control animals (*p #
.05). (C) Maternal immune activation offspring exhibit
inappropriate interactions with unfamiliar conspecifics.
Left panel: First trimester MIA offspring demonstrate
inappropriate social interactions with an unfamiliar
animal, as indexed by high frequency of approaching
(*p �0.05) and more frequently moving within arm’s
reach of the unfamiliar animal (**p � .01). Right panel:
First trimester MIA offspring remained near the unfami-
liar animal, as indexed by the duration of time spent in
physical contact or within arm’s reach of the unfamiliar
animal (*p � .05).
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observed alone in the large cage (p ¼ .08). Juvenile solo
observations were repeated at 22 months of age. Both MIA groups
produced significantly more motor stereotypic and/or self-directed
behaviors than control animals (p ¼ .03, .01, respectively)
(Figure 2A; Table 3). As observed in the postweaning period,
MIA1 offspring produced fewer affiliative contact coo calls than
control animals, although the difference remained at trend level. At
this later time point, however, MIA2 offspring produced signifi-
cantly fewer coo calls than control animals (Figure 2B, Table 3).

Interaction with Novel Conspecifics (Y-Maze)
At 17 months of age, we conducted an exploratory assay

designed to evaluate social interactions with an unfamiliar con-
specific, using a Y-shaped testing chamber in which the exper-
imental animal had access to two chutes. A novel stimulus animal
was housed in a holding cage at the end of one chute; the other
arm led to an empty cage. While there were no differences in the
amount of time spent in the social versus nonsocial arms of the cage
(Table 4) and there were few interactions with the novel animal, we
did detect differences in coo vocalization and repetitive behaviors
(Table 4). While there were no differences in the total number of coo
vocalizations, the MIA1 offspring exhibited a trend level difference in
the frequency of affiliative contact coo calls produced when alone in
the nonsocial arm of the Y-maze (p ¼ .06). Paralleling the results
from postweaning and juvenile experiments, the MIA2 offspring
produced significantly more motor stereotypic and/or self-directed
behaviors than control animals (p ¼ .002; Figure 2B).

Interaction with Novel Conspecifics (Two-Chamber Social
Approach)

This test was modeled after the sensitive assay of sociability
used for mouse models of ASD (54–57). All subjects, irrespective
of experimental condition, spent significantly more time in the
social chamber than in the nonsocial chamber (Table 5). The MIA1

offspring, however, differed from control animals in several
behavioral measures. They produced fewer total affiliative contact
coo calls (Figure 2B, Table 5), and they approached the stimulus
cage more frequently than control animals and initiated proximity
with the unfamiliar animal more than twice as frequently as the
control animals (Figure 2C, Table 5). Differences were also
detected in the amount of time spent in contact or proximity
(i.e., within arm’s reach) of the stimulus cages within the
www.sobp.org/journal



Table 3. Behaviors During Postweaning and Juvenile Solo Observations

Average Group Frequency Difference from Control Group

MIA1 MIA2 Control Group MIA1 vs. Control Group MIA2 vs. Control Group

Behavior Mean (SD) Mean (SD) Mean (SD) Estimate (SE) p Value Estimate (SE) p Value

Postweaning
Coo 27.5 (8.0) 34.6 (9.5) 38.5 (10.9) �10.2 (5.5) .08 �3.5 (5.0) .48
Stereotypya 5.8 (8.3) 9.1 (7.6) .5 (.7) 1.4 (.7) .06 2.2 (.6) .002

Juvenile
Coo 24.7 (12.1) 21.5 (6.9) 36.1 (9.6) �8.5 (4.8) .09 �14.8 (4.4) .003
Stereotypya 10.5 (11.4) 9.5 (8.9) 1.8 (2.3) 1.7 (.7) .03 1.8 (.7) .01

Descriptive statistics and summary (parameter estimates and standard errors) of the mixed-effects models assessing the relationship between group
and frequency of behavior variables. Average group behaviors are based on observed frequency of behaviors. Differences from control groups are
estimated from mixed-effects regression models fitted to the frequency of behaviors and adjusted for gender.

MIA1, first trimester maternal immune activation; MIA2, second trimester maternal immune activation.
aVariable square-root transformed to improve its normality.
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chambers. Compared with control subjects, both MIA groups
spent more time near the small empty cage in the nonsocial
chamber. However, only MIA1 offspring spent more time near the
small cage containing an unfamiliar conspecific in the social
chamber (Figure 2C). There were no differences in the frequency
of entering or exiting the social and nonsocial chambers or in the
frequency of approaching the empty stimulus cage, suggesting
that the differences in approach frequency were specific to the
social stimulus and not reflective of global changes in activity.

Discussion

Rhesus monkey offspring exposed to MIA in utero differ from
control offspring in measures of repetitive behaviors, vocal
communication, and social interactions. These alterations in
behavior overlap with the core diagnostic domains of ASD, and
the latter behaviors may also be relevant for SZ. The development
of some abnormal behaviors (increased reactivity in MIA2 off-
spring and abnormal social behavior in MIA1 offspring) depends
on the specific period of MIA exposure during pregnancy, while
other abnormal behaviors (decreased affiliative vocalizations and
increased repetitive behaviors) are present in both MIA groups
(Figure S3 in Supplement 1).
Table 4. Duration and Frequency of Behaviors in Juvenile Y‐Maze Paradigm

Average Group Duration

MIA1 MIA2 Control Grou
Behavior Mean (SD) Mean (SD) Mean (SD)

Startboxa 19.7 (11.7) 21.7 (12.2) 17.1 (9.7)
Social Arma 51.1 (15.4) 50.7 (10.4) 48.5 (21.0)
Nonsocial Arm 49.2 (19.7) 47.6 (8.7) 54.4 (24.5)

Average Group Frequency
Coo Aloneb,c 2.3 (3.0) 3.7 (2.9) 4.9 (2.0)
Coo to Novelc Animal2 2.1 (1.7) 2.3 (1.4) 3.0 (2.2)
Total Coob 4.4 (4.5) 6.0 (4.2) 7.9 (3.3)
Stereotypiesc 2.5 (4.2) 4.2 (2.9) .7 (.6)

Average group behaviors are based on observed duration or frequency
estimated from mixed-effects regression models fitted to the duration or fre
summary (parameter estimates and standard errors) of the mixed-effects mode
behavioral variables.

MIA1, first trimester maternal immune activation; MIA2, second trimester m
aAnalyses for these duration variables further adjusted for the day of the
bAnalyses for these frequency variables further adjusted for the gender of
cFrequency variables square-root transformed to improve their normality.
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While the majority of rodent MIA models have reported
behavioral abnormalities in adult offspring, here we describe the
emergence of behavior over the first 2 years of life in a nonhuman
primate model. This period for rhesus monkeys is roughly
equivalent to early childhood in humans. Although group differ-
ences were not consistently detected at the early time points, by 2
years of age the MIA monkey offspring began to demonstrate
consistent patterns of behavioral changes. The first indication of
differences between the experimental groups occurred immedi-
ately after weaning, at 6 months of age, during an assessment of
emotional attachment to the mother. While all animals, irrespec-
tive of treatment condition, demonstrated a species-typical attach-
ment to their own mother, the MIA animals’ responses to the test
were different from control animals. The MIA2 offspring displayed
a dramatic increase in distress/self-soothing behaviors over the 4-
day testing period that was not observed in the control animals. In
contrast, the MIA1 offspring produced almost none of these
behaviors. Differences in the animals’ responses to the test were
most pronounced on the fourth consecutive day of testing,
suggesting that this particular repeated assay can reveal changes
in distress/self-soothing behaviors that are not detected in other
paradigms. While we do not know why the MIA2 offspring
responded with increased distress/self-soothing behaviors, mouse
Difference from Control Group

p MIA1 vs. Control Group MIA2 vs. Control Group

Estimate (SE) p Value Estimate (SE) p Value

5.4 (5.9) .37 5.8 (5.3) .29
2.7 (9.7) .78 2.3 (8.7) .80

�8.1 (11.1) .48 �8.1 (10.0) .43
Difference from Control Group

�.8 (.4) .06 .6 (.4) .14
�.2 (.4) .53 �.3 (.3) .45

�2.3 (1.9) .24 �2.0 (1.8) .28
.6 (.4) .14 1.3 (.4) .002

of behaviors over 2-minute trials. Differences from control groups are
quency of behaviors and adjusted for gender. Descriptive statistics and
ls assessing the relationship between group and duration and frequency of

aternal immune activation.
trial and gender of the stimulus monkey.
the stimulus monkey.



Table 5. Duration and Frequency of Behaviors in Juvenile Social Approach Paradigm

Average Group Duration Difference from Control Group

MIA1 MIA2 Control Group MIA1 vs. Control Group MIA2 vs. Control Group

Behavior Mean (SD) Mean (SD) Mean (SD) Estimate (SE) p Value Estimate (SE) p Value

Proximity/Contact to Empty Cagea 67.7 (29.1) 71.1 (42.8) 39.1 (24.3) 2.9 (1.2) .02 2.6 (1.0) .02
Proximity/Contact to Subject Cage 207.7 (23.9) 101.0 (47.1) 109.9 (85.9) 96.3 (36.8) .02 �9.6 (33.0) .77
Social Chamber 427.2 (48.9) 379.8 (75.3) 425.2 (75.0) .9 (39.2) .98 �45.9 (35.2) .21
Nonsocial Chamber 172.8 (48.9) 220.2 (75.3) 174.8 (75.0) �.9 (39.2) .98 45.9 (35.2) .21

Average Group Frequency Difference from Control Group
Coo 9.3 (11.4) 22.4 (12.9) 27.4 (12.0) �15.9 (6.7) .03 �4.0 (6.0) .51
Approach 15.5 (3.4) 10.1 (5.3) 9.3 (3.6) 4.9 (2.2) .04 .2 (2.0) .91
Contact 14.7 (3.4) 9.5 (6.1) 8.8 (4.5) 4.6 (2.6) .09 .1 (2.3) .95
Proximity 7.4 (2.1) 2.3 (2.0) 2.0 (1.3) 5.1 (.9) �.001 .2 (.8) .84

Average group behaviors are based on observed duration or frequency of behaviors over 10-minute trials. Differences from control groups are
estimated from mixed-effects regression models fitted to the duration of behaviors and adjusted for gender. Descriptive statistics and summary
(parameter estimates and standard errors) of the mixed-effects models assessing the relationship between group and duration or frequency of behavior
variables.

MIA1, first trimester maternal immune activation; MIA2, second trimester maternal immune activation.
aVariable square-root transformed to improve its normality.
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MIA models also exhibit behaviors indicative of heightened
anxiety (i.e., less time in the center of the open field paradigm
and reluctance to explore novel objects) that may provide insight
into this atypical response in the monkey (21).

Additional behavioral changes in monkey MIA offspring began
to emerge during the postweaning (6–12 months) and juvenile
(12–24 months) periods. It is important to note that these early
changes in behavior were subtle, as there were no group differ-
ences detected in daily home cage observations or in weekly
observations of the animals interacting with familiar peers. How-
ever, when the MIA animals were removed from these familiar
environments and observed alone, they consistently produced
more motor stereotypic and/or self-directed behaviors than control
animals. These behavioral pathologies were most pronounced in
the MIA2 group, as indexed by a high frequency in three different
testing paradigms. Animals in the MIA1 group also appeared to
produce more repetitive behaviors than control animals, although
these differences did not attain statistical significance until the
animals reached 2 years of age. It is well established that restricted
rearing environments, small cage size, and stress-inducing events
can trigger stereotypies in laboratory animals (53,58,59) and we
designed our protocols to minimize these factors. The fact that the
control animals exhibited a low frequency of motor stereotypic
and/or self-directed behaviors indicates that we can reasonably
attribute these behaviors to MIA, rather than general socioenvir-
onmental restrictions. The results from this nonhuman primate
model parallel findings of increased repetitive and compulsive
behaviors of mouse MIA offspring that exhibit high levels of
repetitive behaviors in marble burying and self-grooming tests (29).

When the animals were removed from their home cages
where they had constant visual access to familiar animals, we also
collected data on any social signals, including vocalizations, that
were produced. During these temporary separations, young
monkeys often produced affiliative coo calls that are thought to
serve the function of reestablishing contact with conspecifics (60–
63). Compared with control offspring, both groups of MIA
offspring produced fewer coo calls, although only the MIA2 group
differed significantly from control animals under these conditions.
Interestingly, the MIA1 offspring continued to exhibit reduced coo
calling when removed from their home cage and introduced to
an unfamiliar peer, suggesting that the presence of an unfamiliar
animal may differentially impact social buffering for the MIA
groups (64,65). The reduced affiliative vocalizations observed in
macaque MIA offspring are consistent with data from male MIA
mice, which display a reduced number of vocalizations as pups
when they are isolated from their littermates and mother and as
adults in the presence of a female (29).

Given that impaired social functioning is a hallmark feature of
both ASD and SZ, we would expect a valid animal model to also
produce impairments in social processing. While MIA offspring
did not differ from control animals during daily interactions with
familiar peers, group differences were detected during interac-
tions with an unfamiliar social partner, which is considered to be
a more challenging social encounter. It is important to point out
that the nature of behavioral perturbations in an animal model
may be complex and species-specific, especially in challenging
social interactions. In mice, for example, the default response to
an unfamiliar conspecific is to approach and investigate. Thus,
decreased time spent investigating a novel animal is taken as
evidence of diminished sociability (66) and is a common behav-
ioral outcome of MIA mouse models (21,29,40). For rhesus
monkeys, the decision to approach and interact with another
animal depends on a number of internal (i.e., individual tempera-
ment differences) and external (i.e., characteristics of the unfami-
liar animal, presence or absence of kin) factors (67–71). For many
species of nonhuman primates, immediately approaching an
unfamiliar conspecific or behaving impulsively with familiar
animals is met with negative outcomes and physical aggression
(72–79). The default for rhesus monkeys is to approach an
unfamiliar conspecific with caution and after considerable evalua-
tion at a distance. However, when evaluated with an unfamiliar
conspecific at 2 years of age, MIA1 offspring exhibited a clear
deviation from the species-typical social protocol for rhesus
monkeys by frequently approaching, contacting, and staying within
arm’s reach of the unfamiliar animal. Thus, both mouse and monkey
MIA models result in deviation from species-typical social norms.

Behavioral changes in mouse MIA models have been inter-
preted as bearing resemblance to features of both ASD and SZ
(20,80–82), although the timing of the prenatal challenge likely
determines the ultimate consequences of MIA exposure (83–90).
The 165-day macaque monkey pregnancy provides an opportu-
nity to further delineate vulnerable periods of gestation during
www.sobp.org/journal
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which MIA alters specific neural networks and ultimately leads to
distinct behavioral trajectories over a relatively protracted period
of postnatal development. Our results indicate that experimen-
tally inducing MIA at either late first trimester or late second
trimester produces offspring with overlapping alterations in
repetitive behaviors and affiliative vocalizations, as well as distinct
changes in reactivity and social interactions. While it is premature
to determine if MIA in the primate model is related specifically to
ASD or SZ or to more general neurodevelopmental issues (91), we
can begin to evaluate the nature and timing of the behavioral
outcomes of the monkey MIA model.

Stereotypic behaviors, for example, are one of the diagnostic
features of ASD and were consistently observed throughout
postnatal development in the MIA2 offspring and to a lesser extent
in the MIA1 offspring. While these behaviors support the face
validity of the model, it is important to recognize that stereotypies
are observed in a variety of developmental, psychiatric, and
neurological disorders and are not specific to ASD. However, both
ASD and SZ are characterized by changes in social cognition and
emotion (92), which were also altered in the macaque MIA
offspring compared with control animals. While both MIA groups
exhibited decreased frequency of the affiliative contact coo calls
when observed alone, only the MIA1 offspring produced fewer
coos in a social context. Likewise, only the MIA1 offspring exhibited
inappropriate social interactions with a novel conspecific. We
suggest that the inappropriate social approach behaviors observed
in the animal model may be reminiscent of the active but odd
subtype of social interaction style described in ASD (93) and the
complex social functioning impairments in SZ (94). We have
initiated an eye-tracking study to evaluate social processing in
the monkey model and will utilize these data to further clarify the
nature of the social impairments and the relevance to ASD and SZ.

The timing of behavioral alterations is another important
consideration. Autism spectrum disorder, for example, is diag-
nosed in early childhood (95), while the onset of psychotic
symptoms of SZ typically occurs during the transition from
adolescence to adulthood (96). In the present study, we first
detected group differences in response to weaning at 6 months
of age, which is roughly equivalent to a 2-year-old child. While
this time frame is more consistent with the early symptom onset
of ASD, prospective studies of patients who develop SZ also have
social and neurocognitive impairments that emerge long before
psychiatric SZ symptoms (97–100). Observations of macaque
offspring will continue as they mature, which is needed to
interpret the emergence of symptoms over time, as well as the
long-term effects of MIA in primates and the relevance to human
neurodevelopmental disorders.

While the rhesus monkey provides an animal model that closely
parallels human brain organization and cognitive and social
functioning, there are ethical and pragmatic limitations in the
development of a nonhuman primate model. The primary limi-
tation of the current study is the sample size. A second limitation is
that we must wait until the conclusion of the behavioral studies
(approximately 4 years) before initiating brain pathology studies
that are often simultaneously carried out in rodent models. Thus,
the data presented here describe behavioral outcomes but do not
provide a mechanistic neural basis for the specific abnormalities.
Mouse MIA models, however, have identified several plausible
mechanisms by which poly IC-induced immune responses can
disrupt fetal brain development (101–104). The maternal cytokine
response to poly IC, in particular interleukin-6 (40), plays a critical
role in triggering immune activation and endocrine changes in the
placenta (105) and altered cytokine expression in the fetal brain, as
www.sobp.org/journal
well as long-lasting changes in cytokine expression in the brains of
MIA mouse offspring as they mature (36). In the present study, we
utilized a modified form of poly IC (poly ICLC), which stimulates
comparable inflammatory responses in humans and nonhuman
primates (45,46,106). While other nonhuman primate models of
MIA have explored maternal immune challenges in the third
trimester (107,108), we focused our efforts on the first and second
trimesters, as human studies have identified these as the gesta-
tional windows of vulnerability for ASD and SZ associated with
maternal immune challenge (109). This time frame of early fetal
brain development captures the peak period of macaque neuro-
genesis (110–117). Short et al. (107) report that rhesus offspring
born to mothers exposed to influenza in the early third trimester
demonstrate reduced gray matter volume throughout the cortex
and increased white matter in the parietal cortex at 1 year of age.
We predict that MIA exposure in the late first and second
trimesters also produce changes in brain development of the
offspring. We are currently exploring brain pathology in these
animals to determine if MIA offspring demonstrate structural or
functional brain pathologies characteristic of ASD or SZ and will
initiate a comprehensive histological evaluation of the brain at the
conclusion of the behavioral studies.

While experimentally inducing MIA in the primate model alters
behavioral development, it is important to emphasize that sick-
ness during human pregnancy is not uncommon (118,119), and
clearly not all women who experience infection during pregnancy
have children later diagnosed with a neurodevelopmental dis-
order (120). A number of factors, including genetic susceptibility,
the intensity of the infection, and the maternal and/or fetal
response, as well as the precise timing of the immune challenge,
likely influence the degree to which MIA alters fetal brain
development and may ultimately determine which disease
phenotype (ASD or SZ) is expressed. With mounting evidence
of the increased risk of psychiatric disorders in offspring exposed
to MIA, increased efforts to understand MIA-induced alterations in
brain development are clearly needed.
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