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Abstract The study of patients to infer normal brain

function has a long tradition in neurology and psychology.

More recently, the motor system has been subject to

quantitative and computational characterization. The pur-

pose of this review is to argue that the lesion approach and

theoretical motor control can mutually inform each other.

Specifically, one may identify distinct motor control pro-

cesses from computational models and map them onto

specific deficits in patients. Here we review some of the

impairments in motor control, motor learning and higher-

order motor control in patients with lesions of the corti-

cospinal tract, the cerebellum, parietal cortex, the basal

ganglia, and the medial temporal lobe. We attempt to

explain some of these impairments in terms of computa-

tional ideas such as state estimation, optimization,

prediction, cost, and reward. We suggest that a function of

the cerebellum is system identification: to build internal

models that predict sensory outcome of motor commands

and correct motor commands through internal feedback. A

function of the parietal cortex is state estimation: to inte-

grate the predicted proprioceptive and visual outcomes

with sensory feedback to form a belief about how the

commands affected the states of the body and the envi-

ronment. A function of basal ganglia is related to optimal

control: learning costs and rewards associated with sensory

states and estimating the ‘‘cost-to-go’’ during execution of

a motor task. Finally, functions of the primary and the

premotor cortices are related to implementing the optimal

control policy by transforming beliefs about proprioceptive

and visual states, respectively, into motor commands.

Keywords Optimal control � Computational models �
Reaching � Cerebellum � Basal ganglia � Motor cortex �
Parietal cortex

Introduction

Over the last 25 years, a large body of experimental and

theoretical work has been directed towards understanding

the computational basis of motor control, particularly

visually guided reaching. Roboticists and engineers largely

initiated this work, galvanized by the obvious discrepancy

between the clumsy movements of robots and the ease with

which healthy people move their limbs. Their aim was to

derive from first principles some of the strikingly stereo-

typical features of movements observed in people and other

primates. That is, they aimed to understand why we move

the way that we do. For example, the theories began to

explain why in reaching to pick up a cup, or in moving the

eyes to look at an object, there was such consistency in the

detailed trajectory of the hand and the eyes. In many ways,

the approach was reminiscent of physics and its earliest

attempts to explain regularity in motion of celestial objects.

Except here, the regularity was in our movements and the

search was for normative laws that governed our behavior

(for review see Kording 2007).

The computational models relied on empirical data

generated by observation and experiment. Experiments
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differed from observation of natural behavior in that they

perturbed the behavior under study. Perturbations led to

errors. The nature of these errors and the way that they

were corrected (adaptation) provided insight into the

computational organization of the motor system. However,

the language that was chosen to represent these results

consisted of equations that were independent of the pro-

perties of the hardware needed to implement them (i.e.,

neurons). More often than not there was not even a mention

of the brain region where these computations might be

occurring. In David Marr’s (1982) terminology, the sci-

entists were working on a computational problem:

inquiring about the driving purpose and logic of actions.

This approach stood in contrast to models that one

occasionally encounters in neuroscience, where the

experiments and mathematics concern specific neuronal

machinery. An example of this approach would be the

extensive work on the cerebellar circuitry underlying eye-

blink conditioning (Ohyama et al. 2003), the vestibulo-

ocular reflex (Raymond et al. 1996), or reaching (Kawato

and Gomi 1992). Marr called these levels of analysis the

algorithmic problem, inquiring about how a computation is

represented in an input–output form and implemented via

an algorithm, and the implementation problem, the physical

realization of the algorithm.

There is a perspective in neurology that shares charac-

teristics of the computational approach in motor control. In

neurology, one begins with the assumption that complete

behaviors have a functional architecture, and its organiza-

tion is revealed when the architecture is damaged by

disease or accident. That is to say, the brain’s more basic

modules or subsystems can be inferred through the effects

of focal lesions. In essence, lesions can make humans as

clumsy as robots. However, careful observation reveals that

the clumsiness has structure and can come in different

forms, each carrying a signature that one can use to infer

the locus of damage. Unfortunately, inferring normal

function from the effects of lesions is difficult for many

reasons but one is that neurologists tend to equate lesions

of the motor system with deficits in execution rather than

seeing the behavior as a possible form of compensation for

the change in the state of the nervous system.

One way to evaluate the success of the computational

models is to ask whether they help infer normal function of

a damaged brain region from the behavioral effects of

lesions. We will attempt to link computational theories of

the motor system with findings in patients with neurolo-

gical disease. This review will be organized into the

following sections: (1) a computational framework for

motor control, (2) the problem of inferring function from

lesions, (3) computational steps involved in making a

movement, and (4) effects of focal and distributed lesions

on these specific computational steps.

The current state of computational motor control

(and how we got here)

In 1954, Fitts published a short paper in which he reported

that there were regularities in how people planned their

movements (Fitts 1954). He asked volunteers to move a

pen from one ‘‘goal region’’ to another as fast and accu-

rately as they could. He found that the movement durations

grew logarithmically as a function of the distance between

the goals (Fig. 1a). This relationship was modulated by two

factors. One factor was the size of the goal region. As the

goal region became smaller, movements slowed down.

Therefore, the speed at which people planned their move-

ments depended on the accuracy requirements of the task.

A second factor was the mass of the pen. People slowed

their movements when they had to move a heavier pen.

This suggested that it was harder to maintain accuracy

when one moved a heavier object (it is remarkable that the

heaviest object in that paper was less than a pound, yet

produced robust changes in behavior). Together, the data

suggested that movement planning was affected by accu-

racy constraints of the task as well as the forces that were

required to perform the task.

Fig. 1 Accuracy constraints affect control of reaching. Volunteers

were instructed to tap the two goal regions with a pen as many times

as possible during a 15 s period. Movement time increased as the

accuracy requirements increased (width of target region decreased),

and as weight of the hand-held pen increased (figure constructed from

data in Fitts 1954)
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In 1981, Morasso closely examined the trajectory of

reaching movements and noted further regularities: the

hand moved in roughly a straight line with a bell-shaped

speed profile, while the various joints moved in more

complicated patterns (Morasso 1981). This was surprising

because muscles controlled the joints, and it was unclear

why control should be complex at the joint level in order to

produce regularity in the hand path. Particularly strong

regularities were observed in saccadic eye movements.

Bahill et al. (1975) and Collewijn et al. (1988) reported that

people moved their eyes to targets of various eccentricities

with trajectories that had highly reproducible timing and

speed profiles. Was there a unified explanation for these

regularities?

To answer this question, let us consider the simple

reaching task that Fitts performed in some detail. Suppose

you are a subject and are handed a pen. Because the target

box is surrounded by two penalty regions, it seems rational to

aim for the center of the target box. What if the penalty region

was only on one side? Now you should aim for a point farther

away from the penalty region and not at the center of the

target box. This is because movements have variability, and

you will maximize your performance (in terms of sum of hits

and misses) if you take into account this variability. Trom-

mershauser et al. (2005) demonstrated this in an experiment

illustrated in Fig. 2a. Costs for the penalty region, as well as

the variance of the tool affected where subjects aimed their

movements. Importantly, if the tool increased its variability

(through artificial means), people aimed farther away from

the penalty region. Perhaps this variability also explains the

speed of movements in Fitt’s experiment and its sensitivity to

pen weight: rapid movements are more variable than slow

movements, so one should slow down if there is a need to be

accurate. Moving heavier objects tends to increase move-

ment variability, again requiring a reduced speed to maintain

accuracy. Therefore, movement planning takes into account

movement variability because variability affects accuracy,

which in turn affects our ability to acquire reward.

Harris and Wolpert (1998) began formalizing these

ideas by linking variability and movement planning. They

noted that larger motor commands required larger neural

activity, which in turn produced larger variability due to a

noise process that grew with the mean of the signal.

Therefore, motor commands carried an accuracy cost

because the larger the command, the larger the standard

deviation of the noise that rides on top of the force pro-

duced by the muscles (Jones et al. 2002). Noise makes

movements inaccurate. The link between size of motor

commands and accuracy of movements was crucial

because in principle it could account for the data that Fitts

and Morasso had observed in reaching and some of the

stereotypical behaviors that one observes in saccades

(Harris and Wolpert 2006).

In a sense, the theory re-stated the purpose of these tasks

using language of mathematics: be as fast as possible,

while trying to be as accurate as the requirements imposed

by the task. However, by doing so, it forced the theorists to

think how one would actually achieve this optimality.

Certainly, the solution to the problem could not be ‘‘hard

wired’’: First, costs and rewards of tasks are not constant.

Take the simple saccade task where an animal is given

more reward for certain visual targets and less for others.

Hikosaka and colleagues (Takikawa et al. 2002) examined

Fig. 2 Reward affects control of movements. a The task is to make a

rapid pointing movement so to maximize reward. Endpoints in the

blue region are rewarded while those in the red region are penalized.

Because movements are variable, subjects should plan their move-

ments so that with increased error costs mean of the endpoint

distributions shifts away from the penalty region (pink region). If the

tool that they are holding increases their endpoint noise, the shift

should increase. The left two columns are predicted performances

with small and large noise. The right column is data from a typical

subject (from Trommershauser et al. 2005). b The task for the

monkey is to saccade to a visual target that can appear in one of four

locations (LU left upper, RD right down, etc.). However, only one

target location in a given set is rewarded. Each set is identified by a

column. The top row shows indicates the rewarded target location in

each set (filled circle). The bottom four rows show saccade speed to

each target location under each reward condition. When the target is

rewarded, saccades to that location have a higher speed, smaller

duration, and less variability (from Takikawa et al. 2002)
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eye trajectories when a monkey was asked to make sac-

cades to various target locations (Fig. 2b). They noted that

peak speeds tended to be higher and less variable when

saccades were to rewarded target locations. Therefore, as

expected rewards of the task change, movement planning

responds to these changes. Second, the brain alters move-

ment planning as the dynamics of the body or a tool change

(Figs. 1, 2a). Even if one considers only the motor plant

itself, the dynamics of the plant change over multiple

timescales: in the long timescales of development and

aging, limbs grow and muscles strengthen, and then mus-

cles age and some motor neurons die. In the short

timescale, muscles and neurons fatigue with repeated use

and recover with the passage of time. Therefore, the

nervous system cannot rely on a motor plant that is time-

invariant. Rather, it seems more reasonable that the

nervous system should monitor these changes and form an

internal model of the plant and/or the tool (Shadmehr and

Mussa-Ivaldi 1994). Indeed, maintaining performance in

something as simple as a saccade or a reach probably

requires constant adjustment of this internal model (Smith

et al. 2006; Kording et al. 2007).

What is the nature of this adjustment? Todorov and

Jordan (2002) recognized that a key component of the

optimization problem was presence of feedback. One type

of feedback is from sensory receptors that monitor the state

of the body and the world. Another type of feedback is

from internal models that monitor the motor output and

predict their sensory consequences, effectively providing a

form of internal feedback. Internal predictions can be made

long before sensory feedback, making some very rapid

movements like saccades depend entirely on internal

feedback. However, for longer movements the two kinds of

information would need to be combined to form a belief

about the state of the body. Todorov and Jordan (2002)

suggested that a more appropriate mathematical approach

was to first describe the constraints of the task in terms of a

function that included explicit terms for gains and losses,

and then maximize that function in the framework of

feedback control. This new formulation was a break-

through because it formally linked motor costs, expected

rewards, noise, sensory feedback, and internal models into

a single, coherent mathematical framework.

We have summarized this framework in Fig. 3a. The

theory explains that in order to make a movement, our

brain needs to solve three kinds of problems: we need to be

able to accurately predict the sensory consequences of our

motor commands (this is called system identification), we

need to combine these predictions with actual sensory

feedback to form a belief about the state of our body and

the world (called state estimation), and then given this

belief about the state of our body and the world, we have to

adjust the gains of the sensorimotor feedback loops so that

our movements maximize some measure of performance

(called optimal control).

At the heart of the approach is the idea that we make

movements to achieve a rewarding state. This crucial

description of why we are making a movement, i.e., the

rewards we expect to get and the costs we expect to pay,

determines how quickly we move, what trajectory we

choose to execute, and how we will respond to sensory

feedback.

Here, we will use this framework to examine a

number of disorders in movement control. We will

suggest a specific computational neuroanatomy of the

motor system (Fig. 3b). In this framework, the basal

ganglia help form the expected costs of the motor

commands and the expected rewards of the predicted

sensory states. The cerebellum plays the role of pre-

dicting the sensory consequences of motor commands,

i.e., the expected changes in proprioceptive and visual

feedback. The parietal cortex combines the expected

sensory feedback with the actual sensory feedback,

computing a belief about the current proprioceptive and

visual states. Given the motor costs and expected rewards

of the sensory states, the premotor and the primary motor

cortex assign ‘‘feedback gains’’ to the visual and pro-

prioceptive states, respectively, resulting in sensorimotor

maps that transform the internal belief about states into

motor commands.

The computational problem in reaching

Let us use the well-studied reach adaptation paradigm to

formulate the motor control problem in the framework

outlined in Fig. 3. In this framework, our problem can be

posed as a series of questions: what are the costs and

rewards of the task, i.e., why should a person volunteer to

do this task? What is the ‘‘best’’ way, i.e., the best set of

motor commands, to maximize the rewards and minimize

the costs? Finally, what kinds of computations are required

to achieve this goal?

Let us begin with the costs and rewards of a reaching

task. For simplicity, allow us to focus on the version that

we typically perform in a laboratory. Suppose we are

instructed to hold the handle of a tool and move the tool

so that a cursor displayed on a monitor arrives at a

target. If we accomplish this in a specific time period,

we are provided a monetary reward, juice, an ‘‘explo-

sion’’ on the video monitor, or simply an encouraging

comment from the experimenter. We can sense the

position of the cursor yv and the target r via vision, and

position of our arm yp via proprioception. Through

experience in the task we learn that the objective is to

minimize the quantity

362 Exp Brain Res (2008) 185:359–381
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yðtÞv � r
� �T

yðtÞv � r
� �

at time t = N after the reach starts (e.g., this is the time that

the movement is rewarded if the cursor is in the target).

Superscript T is the transpose operator. To denote the fact

that this cost is zero except for time N, we write it as

XN

t¼1

yðtÞv � r
� �T

QðtÞ yðtÞv � r
� �

where the matrix Q is a measure of our cost at each time

step (which may be zero except at time N). That is,

matrix Q specifies how important it may be for us to put

the cursor in the target. If we value the reward, then we

set this variable to be large. There is also a cost

associated with motor commands u, which here we

assume to grow as a quadratic function. This cost may

reflect a desire to be as frugal as possible with our

energy expenditure, or it may reflect the fact that the

larger the motor commands, the larger the noise in the

forces that are produced by the muscles, resulting in

variability. This variability increases the difficulty in

controlling the movement. As a result, we want to

produce the smallest amount of motor commands

possible. Now the total cost becomes:

J ¼
XN

t¼1

yðtÞv � r
� �T

QðtÞ yðtÞv � r
� �

þ uðtÞTLuðtÞ ð1Þ

where matrix L is a measure of the costs associated with the

motor commands. The relative weight of Q and L is an

internal measure of expected value of achieving the goal

vs. expected motor costs.

To be successful in this task (consistently arrive at the

target in time), we need to find the motor commands that

on the one hand, are as small as possible, and on the other

hand, are large enough to get the cursor to the target in

time. To do so, we need some way to relate motor com-

mands to their outcomes. This is called an internal model.

For example, through observation, we learn that moving

the tool moves the cursor on the screen. In particular, motor

commands u(t) are expected to produce proprioceptive and

visual feedback ŷðtÞ ¼ ŷðtÞv ; ŷ
ðtÞ
p

h i
: These are the expected

sensory consequences of our action. Simplifying the

Fig. 3 A schematic model for

generating goal directed

movements. Please see the text

for explanation of variables and

box labels
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problem, here we write this ‘‘internal model’’ of the

dynamics as a linear function of motor commands:

x̂ tþ1jtð Þ ¼ Âx̂ðtjtÞ þ B̂uðtÞ

ŷðtÞ ¼ Ĥx̂ðtÞ
ð2Þ

where x̂ðtjtÞ represents the predicted state (of our body and

the world) at time t given the sensory feedback up until that

time, H is a transformation of those states to expected

sensory feedback ŷðtÞ (i.e., proprioception and vision), and

x̂ tþ1jtð Þ is predicted state at time t + 1 given the state and

motor command at time t.

Equation (2) describes an internal model of the

dynamical system that we are trying to control. The actual

dynamics of that system may be more complicated. For

example, the motor commands may carry signal-dependent

noise. To solve the optimization problem, it is convenient

to represent the stochastic variable representing signal

dependent noise in the motor commands eu
(t) as a linear

combination of Gaussian noise stochastic variables

/i�N 0; 1ð Þ with zero mean and variance one (Todorov

2005):

eðtÞu �

c1u
ðtÞ
1 /ðtÞ1 0 0

0 c2u
ðtÞ
2 /ðtÞ2 0

0 0 . .
.

2
6664

3
7775

C1 �
c1 0 0

0 0 0

0 0 . .
.

2
64

3
75 C2 �

0 0 0

0 c2 0

0 0 . .
.

2
664

3
775

eðkÞu =
X

i

Ciu/ðkÞi

And so we see that the standard deviation of the noise in

the motor commands grows linearly with the motor

commands with a slope of c, and therefore the variance

grows with the ‘‘square’’ of the motor commands:

var eðtÞu

h i
¼
X

i

Ciu
ðtÞvar /ðtÞi

h i
uðtÞTCT

i ¼
X

i

Ciu
ðtÞuðtÞTCT

i

In general, there may be similar signal-dependent noises

on our sensory system, as well as Gaussian type noises on

the motor and sensory systems. In sum, a reasonable

representation of the stochastic system that we are trying to

control might be written as

xðtþ1Þ ¼ AxðtÞ þ B uðtÞ þ
X

i
Ciu

ðtÞ/ðtÞi

� �
þ eðtÞx

yðtÞ ¼ H xðtÞ þ
X

i
Dix

ðtÞlðtÞi

� �
þ eðtÞy

li;/i�N 0; 1ð Þ ex�N 0;Qxð Þ ey�N 0;Qy

� �
ð3Þ

As motor commands are generated, we receive a

continuous stream of sensory feedback y. We combine

the predicted sensory feedback with the observed quantities

to form a belief about states:

x̂ tþ1jtþ1ð Þ ¼ x̂ tþ1jtð Þ þ Kðtþ1Þ yðtþ1Þ � ŷðtþ1Þ
� �

ð4Þ

In this equation, the term x̂ tþ1jtþ1ð Þ is the belief state

at time t + 1, given that one has acquired sensory

information at that time. K is a mixing gain (or a

Kalman gain) that determines how much we should

change our belief based on the difference between what

we predicted and what we observed. Therefore, Eq. (2)

describes how we make predictions about sensory

feedback, and Eq. (4) describes how we combine the

actual sensory observations with predictions to update

beliefs about states.

Our task is to perform the movement in a way that

maximizes our chances for reward. If Eq. (2) is an accurate

model of how motor commands produce changes in the

states, then we can use it as a set of constraints with which

to minimize Eq. (1). (Equation 2 is called a ‘‘constraint’’

because our solution must lie on the manifold specified by

this equation, i.e., our belief about the relationship between

the two variables in our cost, y and u.) Because there is

noise in our system, the cost J in Eq. 1 is a stochastic

variable. At each time point during a movement, the best

that we can do is minimize the expected value of this cost,

given the state that we believe to be in, and the motor

commands that we have produced: E JðtÞ
��x̂ðt�1Þ; uðt�1Þ

n o
:

The term E JðtÞ
� �

reflects the expected value of the ‘‘cost to

go’’, i.e., the total cost remaining in the current trial.

Technically, the cost is minimized by starting at the time

when the movement is supposed to end N and then walking

back in time toward the current time t. The result is a

feedback control law that specifies the motor commands

that we should produce at this moment in time as a function

of our belief about proprioceptive and visual states:

uðtÞ ¼ � GðtÞx̂ tjt�1ð Þ

¼ � GðtÞp x̂ tjt�1ð Þ
p � GðtÞv x̂ tjt�1ð Þ

v

ð5Þ

The new variable G is a matrix that changes with time

during a movement. It tells us how at time t we can

transform beliefs in sensory states (in terms of

proprioception and vision) into motor commands so that

we maximize performance in the remaining task time. The

G matrices are basically feedback gains that we compute

from our knowledge about the costs/rewards of the task

(cost to go) and our knowledge about the dynamics of the

task (the internal model). The time-sequence of the

feedback gains G is called a control policy. For

completeness, we provide the recursive equations that

compute these gains:
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W ðNÞx ¼ QðNÞ

W ðNÞe ¼ 0

W ðtÞx ¼ QðtÞ þ ATW ðtþ1Þ
x A� ATW ðtþ1Þ

x BGðtÞ

þ
X

i
DT

i HTKðtÞTATW ðtþ1Þ
e AKðtÞHDi

W ðtÞe ¼ ATW ðtþ1Þ
x BGðtÞ þ A� AKðtÞH

� �T

W ðtþ1Þ
e

� A� AKðtÞH
� �

GðtÞ ¼
�

LðtÞ þ
X

i
CT

i BTW ðtþ1Þ
x BCi þ

X
i
CT

i BTW ðtþ1Þ
e BCi

þBTW ðtþ1Þ
x B

��1

BTW ðtþ1Þ
x A

The W matrices are intermediate variables that are used for

defining the feedback gain G. The proof that this algorithm

minimizes the cost is provided by Todorov (2005). A

tutorial and step-by-step derivation is available as lecture

notes on one of the author’s web page (RS). The point to

note is that all of the noises, as well as the parameters of the

forward model and the Kalman gain, affect the feedback

gain. Therefore, the solution is strongly dependent on the

specific plant that one is trying to control.

Some examples

Let us consider some examples to illustrate this framework.

A first example is a simple task described by Uno et al.

(1989) and shown in Fig. 4a. The objective is to reach from

point T1 to T2. In one condition, the subject is holding a

lightweight tool that moves freely in air. In a second

condition, the tool is attached to a spring that pulls the hand

to the right. Without the spring, people reach in a straight

line. This is the path that minimizes the cost. However,

once the spring is attached, the straight path incurs sub-

stantially more motor costs than a curved path. The curved

path is the one that subjects choose (Uno et al. 1989).

In our second example, the task is to move one’s hand

from one point to another in a given amount of time

(450 ms), but now instead of a spring, there is a velocity

dependent field that pushes the hand perpendicular to its

direction of motion (Shadmehr and Mussa-Ivaldi 1994).

Before the field is imposed, the motion that minimizes the

cost (and maximizes probability of reward) is simply a

straight line with a bell-shaped velocity profile. However,

when the field is imposed, the solution is no longer a

straight line (Izawa et al. 2008). For example, if the field

pushes the hand to the left, the policy that produces the

least cost in terms of Eq. (1) is one that moves the hand

slightly to the right of a straight line, resulting in a curved

movement that appears to over-compensate for the forces

(Fig. 4b). As subjects train, their hand paths converge to

Fig. 4 Task dynamics affect reach trajectories. a The task is to reach

from point T1 to T2. In one condition, the reach takes place in free

space (straight line). In another condition, a spring is attached to the

hand. In this case, the subject chooses to move the hand along an arc

(redrawn from Uno et al. 1989). b A velocity dependent force field

pushes the hand perpendicular to its direction of motion. For example,

for an upward movement the forces push the hand to the left. The

motion that minimizes cost of Eq. (1) is not a straight line, but one

that has a curvature to the right. The data shows hand paths for a

typical subject at start of training on day 1, and then end of training

each day. Except for the first and third trials, all other trajectories are

average of 50 trials. c A rationale for why a curved movement is of

lower cost. The curves show simulation results on forces that the

controller produces, and speed of movement, in the optimal control

scenario of Eq. (1) and in a scenario where the objective is to

minimize jerk (data in b and c from Izawa et al. 2008)
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this curved trajectory. To see the rationale for this beha-

vior, Fig. 4c plots the forces produced by the optimal

controller and compares it to forces that must be produced

if a mass is moving along a ‘‘minimum-jerk’’ trajectory. By

moving the hand along a curved path, the optimal con-

troller produces less total force: It over-compensates early

into the movement when the field is weak, but under-

compensates at peak speed when the field is strongest.

Therefore, the curved path actually produces less total

force than a straight trajectory. People produce similarly

curved trajectories when they move in such fields (Thor-

oughman and Shadmehr 2000).

These examples demonstrate that kinematic costs like

maximizing smoothness (Flash and Hogan 1985) are lim-

ited in their ability to explain the diversity of motor control

because these costs are invariant to the task’s dynamics: in

the above examples the prediction would be to keep

moving along a straight line. However, we do not need

optimal feedback control (OFC) to explain the above two

examples. Any cost structure that penalizes motor com-

mands would probably be sufficient and can be used in an

open-loop scheme in which a sequence of motor com-

mands are pre-programmed and produce a curved ‘‘desired

trajectory’’ (Thoroughman et al. 2007), as in minimum

torque-change (Uno et al. 1989) and minimum end-point

variance schemes (Harris and Wolpert 1998). So what do

we gain with the OFC framework?

All movements that we make include some sensory

states that are crucial to the success of the task, some

sensory states that are less important, and some sensory

states that are practically irrelevant. OFC suggests that

movements are planned as a sequence of feedback gains,

and these gains take into account how the states or com-

bination of states contribute to the cost. In effect, the gains

define how at any point in time, each state or combination

of states matters. Consider a condition in which both arms

are involved in performing a task. In this experiment

(Diedrichsen 2007), the objective is to move a cursor to a

target position (Fig. 5, right column). However, the posi-

tion of the cursor is a weighted sum of the left and the right

hand: 1=2 xL þ xRð Þ: If target position is denoted by r, then

the cost to go can be written as

JðtÞ ¼
XN

i¼t

r�x
ðiÞ
L þx

ðiÞ
R

2

 !T

QðtÞ r�x
ðiÞ
L þx

ðiÞ
R

2

 !
þuðiÞTLuðiÞ

ð6Þ

where the vector u now includes the motor commands to

the left and the right arms. The idea is that motion of the

cursor can be influenced by motor commands of either arm,

and so the arms should cooperate to control the cursor in

order to minimize the cost. Intuitively, the cooperation

means that the motor commands that move the right arm

should depend not only on the state of the right arm, but

also on the state of the left arm. Mathematically, this means

that when we minimize Eq. (6) with respect to u, we find

that the resulting Gv in Eq. (5) has off-diagonal terms that

produce motor commands in the left arm that depend on the

visual state of both the left and the right arms. As a result,

when the left arm is perturbed during the reach, the

Fig. 5 Task constraints affect feedback response to perturbations. In

this bi-manual task, there are either two cursors visible on a screen or

a single cursor. In the two-cursor condition, each hand controls one

cursor. In the one-cursor condition, the average position of each hand

is reflected in cursor position. In the top row of this figure, the blue
and red arrows show that a perturbation is applied to the left hand.

The middle row shows the hand paths in each condition (black trace is

the condition without a perturbation). The bottom row shows the hand

velocities. In the two-cursor condition, perturbation to the left hand is

compensated by the left hand only. In the one-cursor condition, the

same perturbation is compensated by motion of both hands (from

Diedrichsen 2007)
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feedback gain will produce a response both in the left and

the right arms.

The experimental results in Fig. 5 (right column) show

that in the one-cursor condition, perturbation of the left hand

produces a compensatory response in both the left and the

right arms. Indeed, simple variability due to noise in one arm

affects the motor commands in the other arm. In contrast,

when the task involves moving two cursors to two distinct

targets, the states of the cursors are now independently

controlled by the motor commands that move each arm. The

motor command to the right arm can no longer influence the

left cursor, and therefore the feedback gains become

decoupled. The data (Fig. 5, left column) shows that a per-

turbation to the left hand now produces a much smaller

response from the contralateral arm. Therefore, OFC pre-

dicts that in the one cursor condition, the state of one arm is

relevant to the motor commands that move the other arm. In

the two-cursor conditions, that same state is irrelevant.

This idea that the nervous system controls states that are

relevant to the task is called an ‘‘uncontrolled manifold

hypothesis’’ (Scholz and Schoner 1999). The idea has been

used to account for complex movements that offer clear

redundancies, like bimanual pointing (Domkin et al. 2005)

and Frisbee throwing (Yang and Scholz 2005). OFC basi-

cally states in mathematics what some of these ideas have

been implying.

To summarize, the theory states that:

1. At any given time there are many actions possible. For

any possible action, we need to know the costs that are

associated with it as well as the rewarding nature of the

sensory states that it might achieve (Eq. 1).

2. Once we choose to acquire a rewarding state, we need

to know how our motor commands produce changes in

things that we can observe (Eq. 2). The problem of

predicting the consequences of our actions is called

system identification.

3. In order to be optimal, we need to produce those motor

commands that minimize the costs and maximize the

reward (Todorov and Jordan 2002; Todorov 2005).

This is the constrained minimization problem in

optimal control (minimize Eq. 1 under the constraints

of Eq. 2). The result of the minimization is a feedback

control policy that specifies the feedback gain that we

should apply to sensory states (Eq. 5).

4. As we generate motor commands, we make predictions

about the sensory consequences (Eq. 2). When actual

sensory feedback arrives, we integrate our observa-

tions with our predictions and form a belief about how

our motor commands have affected the state of our

body and the world around us (Eq. 4) (Wolpert et al.

1995; Vaziri et al. 2006). This is called state

estimation.

Lesions and separable brain processes

There is an extensive literature on the complexities of

inferring normal function from patient impairments (see

Shallice 1988, for review). This topic can only be touched

on briefly here, but it is important to note the principal

problems in order to avoid the most blatant kinds of error

when applying results from patient studies to test theories

of normal motor control.

One pitfall is localization: inferring the normal function

of a region from the effect that damage has had on

behavior. Such inference is problematic because abnormal

behavior after a focal lesion, especially when studied at a

delay after the insult, is the sum of the direct effect of the

lesion plus its effect on regions connected to the damaged

region. In addition, the implicit assumption that the patient

is using the same brain subsystem as before, just less

efficiently or effectively, may be wrong. From an optimi-

zation standpoint it could be that after injury a qualitatively

distinct subsystem is used to achieve the task goal (com-

pensation). If one part of the brain performs system

identification and another performs feedback optimization,

then damage to the part that performed system identifica-

tion might still allow the optimization process to proceed,

resulting in optimization in response to the damage. For

example, in cerebellar patients, reaching slowly may be an

optimized response for an inability to predict sensory

consequences of movements, which is critical for control

during fast movements.

A second concern is disagreement over whether single

case reports or averaged group effects yield the most

informative results in patient studies. Some psychologists

have argued that the only valid form of neuropsychological

data comes from single-case studies (Caramazza 1986).

The argument is that averaging artifacts may lead to a

group result not shown by any individual subject. Although

this is a potential concern, certain kinds of group results

may be more resistant to this problem and, more impor-

tantly, group data are indispensable when parametric

relationships need to be explored and learning effects

preclude testing more than one value of a variable of

interest in any given individual.

A third issue is the question of what form of evidence is

the best proof of separate brain subsystems. The simplest

kind of evidence for damage to a particular subsystem is to

show impairment in a specific task, for example a reaching

task. However, as alluded to earlier, the abnormal behavior

may not reflect suboptimal functioning of the system used

by healthy subjects, but might indicate instead re-optimi-

zation in response to a functional loss. A second kind of

evidence is showing dissociation—the patient performs

normally or close to normal on Task A but below normal

on Task B. The problem here is that the same brain
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subsystem might be involved in both tasks, but task B is

more difficult and so damage makes patients more likely to

perform poorly on task B than task A. Conclusions are on

firmest ground when a strong double dissociation can be

demonstrated. In a double dissociation, one patient per-

forms normally on task A and abnormally on task B,

whereas for the second patient the opposite is true.

To better understand the idea of a double dissociation

we can consider an example from outside of motor control;

the words-and-rules theory from linguistics (Pinker and

Ullman 2002). This theory posits that in English, irregular

past-tense forms are stored in the lexicon, a division of

declarative memory system, whereas the regular past-tense

forms are computed with a grammatical processing rule

(addition of ‘‘-ed’’). Finding a double dissociation in

patients would lend support to this theory and indeed that is

what has been found. A patient with anomic fluent aphasia

was able to form the regular past tense but not the irregular,

whereas a patient with a grammatic non-fluent aphasia

showed the reverse pattern, although the formation of the

regular past tense was not quite at control levels. This

example serves two purposes. First, it shows the value of

single case studies for validating a theory. Second, the

demonstration of double dissociation in-and-of-itself sup-

ports the theory; the exact location of the lesions in the two

patients is not required for this purpose. It should be added

that double dissociations are also subject to certain caveats

but for the purposes of this review they are considered the

strongest evidence for isolable motor subsystems.

Thus, it is a conceptual mistake to consider lesion

studies synonymous with studies of localization. Patient

studies do not have to be about localization; instead they

can serve to identify separable qualitative processes

through the demonstration of associations and dissocia-

tions. Demonstration of double dissociations in patients,

and to a lesser extent associations and single dissociations,

will not only allow one to infer the existence of functional

specialization, but also determine its architecture, i.e., the

anatomical basis for the specialization. This provides a

springboard for study of the anatomical subsystems at the

algorithmic and biological substrate levels.

The cerebellum: predicting sensory consequences

of motor commands

Control policies generate motor commands based on

beliefs about the state of the body and the environment

(Eq. 5). This state estimate depends on two quantities: a

prediction, and an observation. The prediction comes from

an internal model that uses a copy of the motor commands

to estimate the state change that is expected to occur. The

observation comes from the sensory system that provides a

measure of those state changes (Fig. 3). That is, our beliefs

are not based on our observations alone. Rather, our beliefs

are a combination of what we predicted and what we

observed (Kording and Wolpert 2004; Vaziri et al. 2006).

Some movements are so fast that there is no time for the

sensory system to play a role. A prominent example is

control of saccades (rapid eye movements that move the

eyes to a new location typically with in 50–80 ms). Such

movements are too brief for visual feedback to influence

saccade trajectory. In fact, the brain actively suppresses

visual processing during saccades to reduce the perception

of motion (Thiele et al. 2002). Furthermore, proprioceptive

signals from the eyes do not play any significant role in

controlling saccade trajectories (Keller and Robinson 1971;

Guthrie et al. 1983). Thus, the brain must guide saccade

trajectories in the absence of sensory feedback. How is this

accomplished? A plausible solution is for the brain to use

an internal estimate of the state of the eye, derived from a

copy of ongoing motor commands (Robinson 1975). This

internal feedback probably accounts for the fact that vari-

ability at saccade initiation is partially corrected as the

saccade progresses (Quaia et al. 2000).

What are the neural substrates of this internal feedback?

The cerebellum is known to be critical for many aspects of

saccade control and adaptation (Hopp and Fuchs 2004;

Girard and Berthoz 2005). The projections from the supe-

rior colliculus to the cerebellum may provide the efference

copy. Indeed, Takeichi et al. (2005) showed that adaptive

changes in saccade amplitude are reflected in the nucleus

reticularis tegmenti pontis, a major source of input to the

cerebellum. Together, the superior colliculus-cerebellar-

brainstem side loop seems important for steering saccade

trajectories mid-flight (Optican and Quaia 2002; Optican

2005). This side loop is a likely candidate for acting as a

forward model of the plant to produce mid-flight corrective

feedback.

A simple experiment can test whether the cerebellum

plays a role in predicting consequences of self-generated

motor commands. Nowak et al. (2007) asked subjects to

hold a force transducer that measures grip force (subject’s

right hand in Fig. 6). Attached to the transducer is a basket.

The experimenter drops a ball into the basket. When the

ball drops, it exerts a downward force on the hand. The

subject responds by squeezing the transducer so that it will

not slip out of his/her hand. Because there are delays in

sensing the impact of the ball, the grip response comes

about 100 ms after the ball’s impact. Nowak et al. (2007)

described patient HK who did not have a cerebellum due to

a very rare developmental condition. When the experi-

menter dropped the ball in the basket, both the healthy

individuals and HK showed the delayed response (data not

shown). Therefore, the sensory feedback pathways

appeared intact. In a subsequent trial, the subject (rather
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than the experimenter) dropped the ball. In a healthy

individual, the brain can predict that the release of the ball

will soon result in an impact that will increase the down-

ward load. In anticipation of this event, the healthy

individual squeezes the basket’s handle harder around the

time that the ball is released (grip force and grip force rates,

Fig. 6). HK, however, could not make this anticipatory

adjustment. Rather, she responded to the perturbation the

same way that she responded when the ball was dropped by

the experimenter. Therefore, the cerebellum appears to be

required for the ability to predict the sensory consequences

of motor commands (Wolpert et al. 1998b).

The cerebellum and construction of internal models

It is not easy to make accurate predictions about the sen-

sory consequences of motor commands: our muscles

respond differently depending on their fatigue state, and

our limbs move differently depending on whether we are

holding a light or heavy object. To maintain accuracy of

the predictions, our brain needs to learn from the sensory

feedback and adapt its internal model. This adaptation can

be simple like changing parameter values of a known

structure (changing A, B, or H in Eq. 2), or complex like

identifying the structure de novo (replacing the linear form

of Eq. 2 with some nonlinear function). The cerebellum

appears to be one of the crucial sites of this process.

Cerebellar damage often prevents individuals from

learning how to use novel tools. For example, when subjects

are asked to move the handle of a robotic tool to manipulate

cursor positions, they may not be able to learn to compensate

for forces generated by the robot (Fig. 7b) (Maschke et al.

2004; Smith and Shadmehr 2005), or to compensate for the

novel visual feedback through a mirror (Fig. 7f) (Sanes et al.

1990). If the cerebellum is the crucial site for learning

internal models, then it probably makes its contribution to

control of reaching via its outputs to the thalamus, which in

turn projects to the cerebral cortex. In humans, it is possible

to reversibly disrupt this pathway. Essential tremor patients

are occasionally treated with deep brain stimulators that

artificially disrupt the ventrolateral thalamus, improving

their tremor. However, these patients learn the reach task

better when the stimulator is turned off (Chen et al. 2006).

Therefore, it seems quite likely that the cerebellum is a key

structure that allows us to learn tool use.

Another well-studied paradigm is adaptation to laterally

displacing prisms that distort the path of light to the eyes.

When cerebellar patients don prism glasses, they are

severely impaired in adapting their reaching and throwing

movements (Martin et al. 1996). Specifically, patients with

infarcts in the distribution of the posterior inferior cere-

bellar artery, in the ipsilateral inferior peduncle, in the

contralateral basal pons or in the ipsilateral middle cere-

bellar peduncle had impaired or absent prism adaptation.

Interestingly, patients with infarcts in the distribution of the

posterior inferior cerebellar artery usually had impaired or

absent adaptation but little or no ataxia. In contrast,

patients with damage in the distribution of the superior

cerebellar artery or in cerebellar thalamus usually had

ataxia but preserved adaptation. Thus, these studies show a

dissociation within the cerebellum for anatomical loci that

cause abnormal prism adaptation and a double dissociation

between prism adaptation and ataxia for one anatomical

Fig. 6 Predicting and compensating for consequences of motor

commands depends on the cerebellum. Subject holds a ball with their

left hand and releases it into a basket held by the right hand. Healthy

individuals increase their grip force in anticipation of the ball’s

impact. Patient HK, who suffered from cerebellar agenesis, has a grip

force that rises in response to the impact but not before it. The bottom
trace refers to the acceleration of the right hand (holding the basket).

The impact of the ball is marked by the first vertical line (from Nowak

et al. 2007)
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location, which suggests that these may be distinct abnor-

malities—one relates to trajectory errors in the extrinsic

space whereas the other is caused by errors in anticipation

of proprioceptive events (Vilis and Hore 1980). From the

perspective of Marr, the identification of the cerebellum as

a locus for prism adaptation is already a good demonstra-

tion of coarse-grained modularity. However, in the case of

prism adaptation it seems that more can be said about the

‘‘what, where and how’’ within the cerebellum.

In contrast, patients with damage to the basal ganglia

showed little or no deficits in adaptation. Figure 7c shows

performance of Huntington’s disease patients on the robot

task (Smith and Shadmehr 2005), and Fig. 7g, h show

performances of Parkinson’s and Huntington’s disease on

the mirror task (Agostino et al. 1996; Gabrieli et al. 1997).

The question that remains is the precise role of the

cerebellum in adaptation. Experiments show that the cere-

bellar damage causes abnormalities in adaptation to both

kinematic (Tseng et al. 2007) and force (Smith and Shad-

mehr 2005) perturbations. One unifying concept is that the

cerebellum may be the site of forward models, which

predict the sensory consequences of motor commands. The

output of the forward model could be used to generate a

prediction error that drives adaptation and also be used to

update a previous estimate of limb state. Support for this

idea comes from a recent experiment in which TMS was

used to disrupt the lateral cerebellum in human subjects

while they slowly moved their arm in preparation for a

making a rapid reaching movements (Miall et al. 2007).

Reaching errors in initial direction and final finger position

suggested that the reaching movements had been made

from an estimated hand position approximately 140 ms out

of date, consistent with a role for the cerebellum in itera-

tively updating limb state.

The relationship between learning better sensory

predictions and learning better motor commands

It is important to note that optimal control can only be

‘‘optimal’’ if the internal models are accurate. That is, we

cannot hope to maximize reward unless our predictions

about the behavior of our body generally agree with the

sensory feedback (otherwise, the predictions would bias

observations). Therefore, a strong implication of the OFC

theory is that building internal models (a process called

system identification) must go hand-in-hand with the pro-

cess of optimization. This is an interesting prediction that

to our knowledge has not been tested. However, it already

points out a major problem with the framework presented

here: because our body is constantly changing, and internal

models are constantly adapting, do the timescales of

adaptation match the timescales of optimization? Or is the

timescales of optimization much slower? We do not know

the answers to these questions. We will return to this

question when we examine more thoroughly the limitations

of OFC near the end of this review.

Amnesia and learning tool use

In 1997, one of us was involved in a two-day experiment on

the severely amnesic patient HM to see how well he could

learn a new motor skill and retain the new memory (Shad-

mehr et al. 1998). The task was the standard reach adaptation

task (Fig. 7a) where subjects hold the handle of a robotic tool

and learn to use it to guide a cursor to a sequence of targets

(Shadmehr and Mussa-Ivaldi 1994). When we seated HM in

front of the robot, he, like all naı̈ve volunteers, sat quietly and

avoided touching the machine. We asked him to put his hand

on the robot’s handle and move it around a bit. Naturally, he

kept his gaze on his hand as he moved the robot’s handle. He

was instructed to not look at his hand, but rather at the video

monitor, where a cursor was present. After a minute or so of

moving the cursor around, a center target was presented and

he was asked to move the cursor to that location. Subse-

quently, another target was shown and he was encouraged to

move the cursor there. He was instructed to get the cursor to

the target in a given amount of time. If he did so, the target

‘‘exploded’’. For HM, the target explosion triggered a

childhood memory of going bird hunting. As he was per-

forming the task and was able to get a target explosion, he

would spend the next few minutes describing the memory in

Fig. 7 Examples of motor skill learning in health and disease.

a Learning to control a tool that has novel force characteristics.

Subjects reached to visual targets while the robot perturbed the hand

with either no forces (null field), or fields A or B. In 1/6th of the trials,

the field was removed, resulting in catch trials. Learning was measured

by the size of errors in catch trials. Data shown is for amnesic subject

HM, other amnesic subjects (AMN), and normal control subjects

(NCS). HM learned the task more slowly, but had excellent retention.

Data from Shadmehr et al. (1998). b, c Performance of cerebellar and

Huntington’s disease patients on the same task. While cerebellar

patients are profoundly impaired in learning, HD patients are normal.

Data from Smith and Shadmehr (2005). d Effect of stimulation of the

cerebellar thalamus of patients with essential tremor on the same task.

Stimulation of the cerebellar thalamus reduces tremor (data not

shown), but impairs learning. Data from Chen et al. (2006). e Learning

to control a tool with novel kinematic characteristics: the mirror

drawing paradigm. Data is form amnesic subject HM, redrawn from

Milner et al. (1998). Each trial requires the subject to trace the star

while keeping within the two lines. An error occurs when the pencil

goes outside the two lines. f Performance of two groups of cerebellar

patients on the same task. Data from Sanes et al. (1990). g Performance

of patients with Parkinson’s disease on the same task. Filled symbols
represent the patient group. Data from Agostino et al. (1996).

h Performance of patients with Huntington’s disease on the same

task. NC normal controls. Data from Gabrieli et al. (1997)

b
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detail: the type of gun that he used, the porch in the rear of his

childhood home, the terrain of the woods in his backyard, and

the kinds of birds that he hunted. (He repeated these details

many times during the two-day experiment.)

After a few minutes of reaching to targets, the robot

began to impose forces on HM’s hand, perturbing the path

of the cursor. With more practice, he altered his motor

commands to predicatively compensate for the forces: we

inferred this from the fact that when the forces were sud-

denly removed (in catch trials), his movements had large

errors, in a pattern that was mirror symmetric to errors that

he had early in the training trials. We then thanked him for

his time and he left to have lunch.

When he came back to the experiment room four hours

later, he claimed that he had never seen the robotic device

or knew what it was for. We pushed the robotic arm aside

and asked him to sit down. He sat down, but then some-

thing interesting happened: rather than avoiding touching

the machine, he voluntarily reached and grabbed the

robot’s handle, brought it toward him, and looked at the

video monitor, apparently in anticipation of a target. It was

clear that despite having no conscious recollection of

having done the task before, some part of HM’s brain

recognized that the contraption was a tool that had a par-

ticular purpose: to manipulate cursors on a screen. When a

target was presented, he showed strong after-effects of the

previous training (Fig. 7b). That is, his brain expected the

robot to perturb his movements, and so he generated motor

commands in an attempt to compensate for these forces.

Therefore, the motor memory was much more than just

how to manipulate a tool. Rather, the memory also inclu-

ded information about the rewarding nature of the tool’s

purpose: the sight and touch of the robot was sufficient to

encourage a motor act that was expected to be rewarding. If

use of the robot in the first session had been paired with a

shock or another noxious stimulus, it seems likely that he

would have been reluctant to use the device again.

Brenda Milner had of course made a similar observation

in HM some 30 years earlier in a task (Fig. 7e) where he

drew on a piece of paper while looking in a mirror (Milner

1962). In the novel visual feedback setting, HM adapted his

motor output and learned to draw accurately. When he

returned the next day, the visual and/or tactile cues associ-

ated with the experimental setup were sufficient to allow him

to recall the motor skill that he had learned before. Sue

Corkin (1968) noted that after HM was trained on a pursuit

rotor task (a task where one is asked to move a joystick so its

position matches a moving target), upon return on the next

day he not only retained the motor memory, but he had also

retained certain ‘‘habits’’ regarding the purpose of the task:

how to acquire reward, and what kinds of behaviors to avoid.

Over the years, a number of other investigators made similar

observations in other amnesic patients (Gabrieli et al. 1993;

Tranel et al. 1994; Yamashita 1993; Cavaco et al. 2004),

culminating in the theory that our ability to learn motor skills

is independent of the medial temporal lobe (Mishkin et al.

1984).

HM’s performance in these tasks demonstrated that the

brain could solve three general problems without conscious

awareness and without the damaged medial temporal lobes.

First, during the initial training session, the brain could learn

to use a novel tool in order to achieve an instructed goal.

Second, when tested hours later, the sight of the tool was

sufficient to produce voluntary use, suggesting that potential

rewards associated with the use of the tool had been learned

and stored. Third, the sight of the tool and holding it was

sufficient to allow recall of both the purpose of the tool (move

a cursor) and the motor commands needed to achieve that

purpose (the control policy). This is despite the fact that the

same visual information was not sufficient to recall con-

scious memory of having trained on the task.

Learning the rewarding nature of sensory states

We expected that a severely amnesic individual who was

performing a novel task would have to be regularly

reminded of the task’s instructions: ‘‘try to move the cursor

to the target fast enough so it explodes.’’ However, after

HM had exploded a few targets, he no longer needed verbal

reminders. The visual appearance of the target was enough

for him to initiate a reaching movement. Strikingly, when

he returned a few hours later and the next day he volun-

tarily reached for the robot handle and began preparing for

onset of targets by moving the cursor to the center location.

This behavior suggests that during the first session, he

implicitly learned the reward basis of the task (Eq. 1).

What brain regions were involved in learning the reward-

ing nature of bringing the cursor to the target?

Experiments on action selection in rodents provide

important insights into this question. For example, suppose

that a rat is released into a pool of water from some random

starting point. A platform is positioned in a specific location

just below the water line and cannot be seen. The platform is

always at the same location in the pool. Rats dislike being

wet, and will try to find a way to elevate themselves. The

normal rat can learn to locate the platform position by paying

attention to the visual cues that surround the pool. This

requires learning a spatial map of where the platform is

located with respect to the surrounding visual cues. With

repeated swims, the animal learns a spatial map. This spatial

map is analogous to a reward function that associates places

in the pool with the likelihood of the platform (and therefore,

the likelihood of not having to be wet).

Once the map is learned, the animal can find the platform

regardless of where it is released into the water because the
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map is with respect to the cues on the walls. If the platform is

removed, the normal animal will spend most of his time

searching in the region where the platform should be.

Learning of this sort of a spatial map depends on the

hippocampus. If a genetically altered rat with a malfunc-

tioning hippocampus is given the same training, he will not

learn the spatial map and will spend equal time in each

quadrant (Tsien et al. 1996). Therefore, selecting an action

based on a spatial map likely relies on the hippocampus.

Sometimes, certain cues are rewarding no matter where

they are located. Consider a pool where there are two

hidden platforms: one that is large enough for the mouse to

mount, and one that is too small. Both have a distinct visual

cue associated with them: a little flag attached to each

platform, each of a different color, sticking out of the

water. Suppose that the flag attached to the large platform

is red, while the flag attached to the small platform is

green. The platforms may be positioned in any part of the

pool, and will change from trial to trial. Therefore, in this

experiment the animal needs to learn that the red flag

indicates the location of the suitable platform and is a

rewarding object. In another version of the experiment, the

large platform will always be located in a particular spatial

location, but the flag atop of it will be a random color. In

this version of the experiment, the animal needs to learn

that it is not the color of the flag that is important, but the

spatial location.

We see that there is a natural competition between the

learning systems that might be involved in these two con-

ditions: is the platform in the same ‘‘place’’ as before (where

place refers to a location in the spatial map), or is the platform

always where the red flag is located? After a few trials where

the flags move around, in the first experiment the animal

should learn that the spatial map is a not a good indicator of

the platform, and therefore the values associated with places

in the spatial map should be near zero and the value associ-

ated with the red flag should rise. In the second experiment,

the animal should learn that it is the spatial location that is of

value, and the flag colors are irrelevant.

Packard and McGaugh (1992) performed both experi-

ments by having their animals swim eight times per day for a

number of days. They recorded the number of times the

animals mounted the small platform and labeled this as

errors. In the first experiment, where reward was associated

with the red flag, healthy animals gradually learned to swim

to the red flag. Interestingly, animals with damage to the

medial temporal lobe learned the task just as well as

the healthy controls. However, animals with damage to the

caudate nucleus were much slower in learning the associa-

tion. After days of training, they continued to attempt to

mount the platform under the green flag. Therefore, it

appears that the ability to associate reward to stimuli

regardless of its spatial location depends on the basal ganglia.

In the second experiment, where reward was associated

with a spatial location, healthy animals gradually learned to

swim to that location and ignore the color of the flag.

Animals with damage to the caudate nucleus performed

similarly to the healthy controls. However, animals with

damage to the medial temporal lobe were much slower in

learning the association. Therefore, the ability to associate

reward to a spatial location depends on the medial temporal

lobe.

Returning to our observations in HM, we would specu-

late that it was his basal ganglia that learned that if he were

to place the cursor in the box on the screen, and do so

rapidly, a rewarding state would be experienced (explo-

sions, which triggered a pleasant childhood memory).

During the later sessions, the visual appearance of the

machine, and the act of holding its handle, likely triggered

a recall of this reward structure.

Effects of striatal damage on the assessment

of movement cost

Writing instruments are one of the most common tools that

we use in our daily lives. One of the striking features of

damage to the human striatum is micrographia, an

impairment of writing where letters become very small and

writing speed becomes slow. This condition is most com-

mon in degenerative diseases of the basal ganglia like

Parkinson’s disease (Van Gemmert et al. 2001), a condition

causing progressive dysfunction of the neostriatum. How-

ever, it can also occur with focal lesions. Figure 8 provides

an example of micrographia in patient FF, an individual

who suffered an ischemic stroke in the left basal ganglia, in

the head of the caudate nucleus and the anterior part of the

putamen (Barbarulo et al. 2007). When asked to copy a

Fig. 8 Writing ability of patient FF, who suffered a lesion in the right

caudate nucleus. Four- and eight-letter string copying (models on the

upper lines) by the right (middle lines) and the left hand (lower lines).

Micrographia was evident only with the right hand (Barbaruloet al.

2007)
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four- or eight-letter string of characters, writing with the

right hand was much smaller than with the left hand.

Micrographia reflects an abnormal choice of speed and

amplitude and is one manifestation of generalized slowing

of movement (bradykinesia). The basic observation of

smallness of writing size and slowness of the writing speed

has been puzzling, as is the phenomenon of movement

speed selection in general.

In the optimal control framework, there are no desired

trajectories for our movements. Rather, the path is a result

of a control policy (Eq. 5), which itself is a result of

minimization of a cost (Eq. 1). The cost depends on two

quantities: spatial accuracy (error cost) and required effort

(energy cost). Accuracy requirements influence speed

selection, due to the signal-dependent noise property of

motor commands. The desired accuracy of a movement

sets an upper limit on the maximum speed of a movement.

The accuracy term of the cost function offers an explana-

tion for the wealth of experimental data demonstrating

speed-accuracy trade-off in reaching movements. Normal

movements, however, do not appear to be made at the

limits imposed by the speed-accuracy trade-off: we can

reach for an object faster than usual without appreciable

loss of accuracy. Although very little experimental data

exists on spontaneous speed selection, the effort term of the

cost function offers a potential explanation for this phe-

nomenon. That is, perhaps micrographia is an indication of

an abnormally high motor cost.

One of us recently tested this idea that in Parkinson’s

disease (PD), there may be an abnormally high cost asso-

ciated with motor commands (Mazzoni et al. 2007). We

required healthy control subjects to make accurate reaching

movements of specified speeds. As the required speed

increased, subjects took longer (required more trials) to

accumulate a set number of movements at the required

speed. This reluctance to move faster could be explained

by the increase in required energy as well as by the deg-

radation of spatial accuracy, and thus did not disambiguate

the contribution of these two costs. We then compared the

performance of patients with PD to that of control subjects

in this task. PD patients demonstrated normal spatial

accuracy in each condition, but required more trials than

controls to accumulate the required number of movements

in each speed range. The patients’ increased reluctance to

execute movements requiring greater effort, in spite of

preserved spatial accuracy, provided experimental dem-

onstration of the contribution of energy cost to speed

selection, independent of spatial accuracy.

In the experiment described, PD patients exhibited

increased sensitivity to a movement’s effort requirement.

Mazzoni et al. (2007) referred to the sensitivity to a

movement’s energy requirement (the effort term in the

optimal control framework’s cost function) as a type of

motivation, which they called ‘‘motor vigor’’. They sug-

gested that this interpretation would link the neostriatum’s

motor control functions to the motivation/reward frame-

work that has implicated the ventral striatum in relationship

to behaviors explicitly guided by reward (Schultz 2006).

The execution of an accurate movement at a comfortable

speed could be the reward that results by selecting a speed

that minimizes both error and effort terms in overall cost.

This minimization is driven by the speed-accuracy trade-

off for the error term, and by motor motivation for the

effort term. Bradykinesia results when striatal dysfunction

changes the value of effort minimization, (increased sen-

sitivity to effort cost; L in Eq. 1) relative to that of accuracy

optimization (error cost; Q in Eq. 1). Thus it appears that

the basal ganglia either provides the motor motivation

signal, which is then used to compute the ‘‘cost-to-go’’

elsewhere or is where the ‘‘cost-to-go’’ is computed. This

cannot be disambiguated at this time.

Parietal cortex damage and state estimation

In a classic series of lesion experiments performed in

monkeys, Mathew Rushworth and colleagues demonstrated

a double dissociation between areas of posterior parietal

cortex required for reaching under visual control and those

required for reaching using proprioception (Rushworth

et al. 1997). Monkeys were tested on two tasks: reaching in

the light to visual targets and reaching in the dark to targets

defined by arm position. Lesions to LIP and area 7 in the

inferior parietal lobe (IPL) did not affect reaches in which

the goal was defined in proprioceptive coordinates (in the

dark), but produced mis-reaching in the light. In contrast,

monkeys with lesions to area 5 in the superior parietal

lobule (SPL) could reach accurately in the light but not in

the dark. Therefore, SPL may be involved in propriocep-

tive estimates of limb position in space. An example of this

in humans comes from patient PJ who had an extra-axial

cyst encroaching on her left SPL (Wolpert et al. 1998a).

Without vision of her right arm, PJ’s sense of arm position

became increasingly uncertain until she reported that the

arm disappeared altogether. Thus, PJ was unable to store a

proprioceptively derived estimate of limb state but, pre-

sumably because of the intact IPL, could use vision to

maintain a sense of the limb’s position in space. Similar to

Rushworth’s monkeys with SPL lesion, PJ made accurate

reaches when vision was present.

Sometimes goal states change as the task is being per-

formed. For example, in reaching to pick up a pen, the pen

may start rolling away. Healthy individuals have no

problems adjusting their movements to compensate for this

change. However, parietal patients show particular diffi-

culties with this task. For example, if parietal damage
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impairs representation of visual states contralateral to the

fixation, then motion of the goal state to this region during

a movement impairs the ability to adjust the reach mid-

flight. Grea et al. (2002) observed this phenomenon in a

patient with bilateral posterior parietal cortex damage. The

patient had no problems reaching to targets in central fix-

ation. However, when at reach onset the target shifted to

the right, the subject continued to reach to the original

location of the target as if the target had not moved.

Disruption of the parietal cortex in healthy individuals

can produce a similar phenomenon. Desmurget et al.

(1999) provided a single pulse via a transcranial magnetic

stimulator as the reach to the target began. On trials in

which the target jumped, most of the participants had hand

movements that disregarded the shift in the target location.

Let us examine these results in the framework of Fig. 3.

The relevant state variables in this task include position of

the limb (in proprioceptive and visual coordinates) and the

position of the target (in visual coordinates). As motor

commands are generated, the forward model should update

its predicted state of the limb. Generally, we expect targets

to remain stationary, and therefore the output of the for-

ward model should continue to predict the target position.

Together, these predictions represent the prior belief about

the state of the body and the world. The sensory feedback

from proprioception and vision is integrated with this

prediction to make a posterior belief. When the target

jumps, the novel sensory information needs to be integrated

with the output of the forward model. If it is not, the reach

will continue to the prior expectation of its location. The

results noted above suggest that either this integration step

is affected by damage or stimulation of the parietal cortex,

or that the sensory information outside the central fixation

region cannot reach the integration step.

Sometimes, there is no sensory feedback associated with

our intended movements and the only thing that we can

rely on is predicted states. An example of this is when we

imagine performing a movement. Sirigu et al. (1996)

examined the ability of patients with parietal cortex dam-

age to monitor imagined movements of their fingers or

arms. In their first task, they compared the speed of

imagined movements with the participants’ actual move-

ments. The experimenters asked participants to imagine

touching the tip of the thumb with the tips of each of the

fingers of the same hand, in time to the sound of a met-

ronome. They increased the speed of the metronome slowly

until the individual reported that the imagined movement

could no longer keep up. The experimenters then measured

how fast the participants could actually make the move-

ment. They found that in healthy people, the maximum

speed of the imagined movements agreed remarkably well

with the maximum speed of the actual ones (within 2%).

Patients with unilateral posterior parietal cortex damage

could not accurately estimate their performance with the

hand contralateral to the lesioned hemisphere. They could,

however, estimate their maximum movement speed for the

hand ipsilateral to the lesion. In contrast, a patient with a

motor cortex lesion in the right hemisphere could accu-

rately estimate maximum speed with both hands, despite

the fact that the left hand moved much more slowly.

Next, Sirigu et al. (1996) had their participants imagine

movements that varied from easy to hard. For example,

they imagined reaching with a pen in order to place the tip

inside a small or a large square. Afterwards, they per-

formed the actual movements. In healthy participants, the

time to completion of the imagined and actual movements

agreed closely. As the task became more difficult, both the

imagined and the actual movements took longer to com-

plete. Patients with motor cortex lesions had trouble

making the actual movement with the contralateral arm,

but the duration of imagined movements matched that of

the actual ones. In contrast, in patients with right PPC

lesions, the duration of imagined movements with the left

arm was significantly less than the duration of actual

movements. Imagined and actual movements of the less

affected right arm, however, showed a close

correspondence.

To interpret these results, we need to conjecture as to

what is the computational equivalent of an imagined

movement. Perhaps imagining a movement is equivalent to

formulating the cost of the task, minimizing it using a

forward model, and arriving at motor commands, but not

actually committing the commands to the descending

spinal pathways. If producing a movement, imagined or

actual, is a feedback control process that depends on the

belief about current state, and this belief depends on both

prediction and measurement, to imagine a movement we

need to change the weight associated with measured sen-

sory feedback to zero, making our control process rely

entirely on our predictions. An inability to do so results in

mis-estimation of the state of the limb during imagined

movements.

Thus, evidence from physiological studies in non-human

primates and patient studies suggests that the parietal cor-

tex is involved in state estimation. In the optimal control

framework these state estimates are multiplied by a gain to

generate motor commands. This gain is in essence a sen-

sory-motor transformation, which is achieved by an

interaction between the parietal cortex and the frontal

motor areas.

Motor cortex and feedback control

Hemiparesis after a stroke, the result of a lesion of the

primary motor cortex and/or the corticospinal tract, is the
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most common motor disorder seen by neurologists. In the

majority of cases, ischemic lesions not only interrupt the

monosynaptic connections to the ventral horn of the spinal

cord, but also the projections to spinal cord interneurons,

and often, because of their proximity to the internal cap-

sule, projections to brainstem nuclei, which then project

down to the spinal cord (Porter and Lemon 1995). The

motor deficits most frequently emphasized after stroke

include weakness, increased movement variability, the

decomposition of smooth multi-joint movements into ste-

reotypical joint combinations (synergies), and spasticity.

These abnormalities are thought to result from interruption

of monosynaptic cortico-motoneuronal connections to

alpha-motor neurons, with a decrease in the amount and

rate of their recruitment, reversion to control by spared

descending brain stem pathways, and changes in segmental

reflex circuits. What do the ideas of OFC and state esti-

mation bring to the understanding of hemiparesis?

It is necessary to concede that the theoretical framework

outlined earlier does not speak to deficits in implementa-

tion. In other words, the process of ascertaining rewards

based on state estimation and the search for optimal control

laws all presuppose that the computed commands have

access to muscles via the corticospinal tract. Thus, the

consequences of interruption of the corticospinal tract can

be considered downstream from the computations we have

described. However, there are two reasons why the

framework has the potential to provide insights into hemi-

paresis. First, experimental results suggest that interruption

of descending pathways leads to impairments in sensori-

motor integration that are not reducible to downstream

implementation deficits like weakness or impaired inter-

joint coordination (see below). Second, it has long been

appreciated that patients partially compensate for their

deficits, i.e., they find alternative strategies to achieve the

task goal. Thus, compensation could be considered a new

optimal control law in the setting of an altered system with

increased noise or uncertainty.

Is hemiparesis merely a deficit in communicating com-

mands to the contralateral motor apparatus? Recently, one

of us was involved in a study of patients with right arm

paresis secondary to a subcortical stroke (Raghavan et al.

2006). These patients had impaired anticipatory scaling of

grip and load forces during precision lifting of objects. In

other words, they were not able to form an internal model

of the properties of the object. The critical finding, how-

ever, was that if they lifted the object just once with their

unaffected left hand they were then able to properly scale

the grip and load forces when they lifted with their right

hand. This means that their initial failure to scale was not

attributable to a downstream implementation deficit, but

rather to an inability to map the state of the object into an

appropriate control signal. This might occur because after

damage to output from M1, the motor command may

emanate from premotor cortex, which, relatively speaking,

has less access to proprioceptive state information (Riz-

zolatti and Luppino 2001). It could be conjectured that the

left hemisphere has access to output from the right hemi-

sphere’s controller through callosal connections.

Similarly, it has been shown that after subcortical stroke

patients make trajectory errors consistent with failure to

compensate for interaction torques, which suggests an

unreliable model of arm dynamics (Beer et al. 2000).

Failure to compensate for interaction torques has previ-

ously been described in deafferented patients who lack

proprioception (Sainburg et al. 1995) and patients with

cerebellar lesions (Bastian et al. 2000). All told these

results suggest that the abnormalities in precision grip and

reaching movements in patients with lesions of the corti-

cospinal tract are partly due to a suboptimal control signal

that results from suboptimal proprioceptive state estima-

tion. However, it is also possible that the main problem in

hemiparesis may be an inability to implement a correctly

determined control law. At the current time determining

which particular computational steps are affected in hem-

iparesis, if any, remains a significant challenge for us.

Distinct feedback gains for visual and proprioceptive

states of the task

Selecting a goal state may be the first step in performing a

task. However, the goal of a task can be represented at

different levels of abstraction: Is the goal of reaching for a

glass to sate one’s thirst, to get the hand to the glass, to

rotate the shoulder and elbow joints in order to get the hand

to the glass, or to activate the muscles to rotate the joints?

When the question is posed this way it becomes apparent

that a task can be described hierarchically, which in turn

implies the existence of high and low level feedback con-

trollers. Prior to the OFC framework, the hierarchy was

thought of in terms of planned trajectory representations in

the brain in either intrinsic or extrinsic space (Cartesian,

joint, and torque spaces). In the current framework, the

hierarchy may be a set of feedback controllers that act on

distinct state estimates provided by the various sensors in

our body.

Sensory signals largely project to separate areas of the

motor system by distinct routes. Visual signals reach the

motor system via posterior parietal cortex to premotor

areas. Proprioceptive states reach primary motor cortex

from projections from S1 and thalamus. Accordingly,

tuning functions of cells in the primary motor cortex are

strongly dependent on the proprioceptive state of the arm

(Sergio and Kalaska 2003), whereas in the premotor cortex,

tuning is more dependent on the visual state of the task
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(Kakei et al. 2001). Thus, it can be conjectured that there

are separate feedback controllers in premotor and motor

cortices, each relying on state estimates coming from

separate parts of parietal cortex in visual and propriocep-

tive modalities, respectively.

Healthy people adapt their reaching movements to

kinematic perturbations and force perturbations without

interference (Krakauer et al. 1999). Notably, subjects learn

novel inertial dynamics just as well in the absence of visual

feedback. It is possible that adaptation to a kinematic

perturbation is driven primarily by visual errors (Krakauer

et al. 2000) and adaptation to changes in inertial dynamics

is driven primarily by proprioceptive errors (Hwang and

Shadmehr 2005). Thus within the framework of OFC, it

could be envisaged that because in tasks like reaching there

are distinct sensory states (proprioception and vision), there

are also distinct feedback control gains associated with

those states. Where are these controllers? As outlined

above, the control signal almost certainly originates from

motor areas of the frontal lobe. Perhaps the feedback gains

associated with proprioception dominate the primary motor

cortex and feedback gains associated with vision dominate

the premotor cortex.

In a recent study, it was shown that a patient with

deafferentation due to large fiber sensory neuropathy,

which resulted in loss of proprioception, was able to adapt

his reaching to kinematic perturbation as well as age-

matched controls (Bernier et al. 2006). Conversely, patients

with optic ataxia, a disorder that is predominantly associ-

ated with lesions of the SPL and intraparietal sulcus and is

characterized by directional errors in visually guided

reaching, typically show no deficits in movements guided

by proprioception, in force production, or visual perception

(Perenin and Vighetto 1988). Their deficit is most apparent

for non-foveal targets, which suggests that reaching errors

relate to incorrect computation of target location in fixation

coordinates. This possibility was explored in a recent study

of patients with optic ataxia, who were required to make

reaches to various targets (Dijkerman et al. 2006). For

example, a patient with a right parietal damage fixated a

center target and reached a target to either left or right of

fixation. The patient had substantially more errors to the

left target than right. However, when the subject fixated to

the left, targets to the right of fixation were in precisely the

same allocentric spatial location as before, yet reaches

were markedly improved. One way to interpret this is that

damage to the right parietal cortex impaired representation

of visual space to the left of fixation. Goal states in this

visual space could be as precisely specified. Thus, the

results in the deafferented patient suggest that imprecision

in the representation of a proprioceptively coded state

estimate had no impact on adaptation to visually induced

directional errors, but for the patient with optic ataxia,

imprecision in visually coded state estimate caused direc-

tional errors in visual space. Although a deafferented

patient can adapt to visuomotor rotation, they show marked

reach errors, indicative of impaired control of joint inter-

action torques and inertial anisotropy. Vision can only

partially compensate for these errors, but importantly

directional biases can be corrected. In summary, the effects

of degraded visual and proprioceptive state estimates affect

different types of adaptation and different components of

reaching trajectories.

However, this simplistic framework is not consistent

with what is seen after stroke: patients with a lesion in

primary motor cortex or the internal capsule have hemi-

paresis with or without visual feedback! As an aside, there

is a surprising paucity of human studies in the literature on

the consequence of lesions isolated to lateral premotor

regions (although see Kunesch et al. 1995). One reason is

that hemiparesis after a premotor lesion, in the anecdotal

experience of one the authors (JWK), tends to resolve

rapidly. A possible explanation for this comes from by a

recent study in which it was demonstrated that electrical

stimulation of ventral premotor cortex did not lead to

detectable corticospinal output itself but robustly facilitated

corticospinal output from M1 (Shimazu et al. 2004). Thus

after a stroke it might be that abrupt loss of this facilitation

causes a short-lived hemiparesis. That is, control signals

generated from visual and proprioceptive estimates may

channel through M1 (Fig. 3a, b).

Limitations in applying the theory to biological motor

control

This review of motor control has been written within the

framework of OFC. At the heart of the theory is the con-

jecture that animals make voluntary movements in order to

acquire the most reward while expending the least effort.

However, the theory cannot make a behavioral prediction

unless we can specify three kinds of information: (1) what

are the costs and rewards, (2) what are the constraints, i.e.,

dynamics of the task, and (3) what are the mechanisms of

state estimation. In this review we have chosen a specific

set of equations to represent each kind of information.

However, it is not difficult to find examples of behavior

that are inconsistent with our formulation.

The cost that we wrote in Eq. (1) is perhaps the simplest

possible cost function for goal directed movements. How

seriously can we take this specific representation? As

demonstrated by attempts to reverse-engineer the cost

(Kording et al. 2004a), the quadratic cost function should

not be taken too seriously.

Let us re-consider the task where one uses both arms to

control a single cursor. In the right column of Fig. 5b, we
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see that a force field that perturbed the left arm was cor-

rected almost entirely by that arm, with a significant but

much smaller contribution from the unperturbed arm. The

troubling fact is that if our objective was to minimize a cost

like that of Eq. (1), then we should be much more willing

to utilize the services of the unperturbed arm, as its actions

are not impeded by a resisting force field and therefore

carry much smaller motor costs. The theory correctly

predicted that there should be a change in perturbation

response when the task changed from two-cursor to one-

cursor condition, but the amount of change observed

appeared to be grossly sub-optimum. Is this a problem with

our cost function, a problem with our constraint equations,

or a problem with our state estimation process? We do not

know the answer.

Consider a set of experiments that highlighted the

importance of costs associated with postural stability, a

quantity that we did not include in Eq. (1). Scheidt and

Ghez (2007) explored a task where continuous random

noise perturbed the hand at rest. This constraint encouraged

increasing the co-contraction levels of muscles. However,

the noise was present only during the postural phase of the

task and disappeared when subjects made a reaching

movement. They found that if a kinematic perturbation

required adaptation of the movement, the learning did not

generalize to the postural phase at the end of the move-

ment. They suggested that the control processes that moved

the limb appeared distinct from control processes that set

muscle activity levels during posture. If so, do these pro-

cesses have separate costs? A recent study suggests that the

answer is yes, the weighting of postural cost is flexible and

can be determined by task context (Liu and Todorov 2007).

Finally, consider an experiment by Jax and Rosenbaum

(2007) in which they asked subjects to make arm move-

ments to an array of 12 targets positioned in a 16 cm radius

circle on a vertical screen. Targets were presented ran-

domly and in some trials an obstacle was presented

halfway between the start and the target (Fig. 9). The same

target was never shown twice in a row. Interestingly,

whenever a no-obstacle trial followed an obstacle trial,

subjects made curved rather than straight trajectories.

However, the movements straightened out when a no-

obstacle trial followed another no-obstacle trial. Why make

a suboptimal curved trajectory when you see that there is

no obstacle?

These results highlight a number of important problems

with our framework. First, without knowing precisely the

costs and rewards of a movement, it will not be possible to

Fig. 9 Reaching around an obstacle affects the subsequent trial when

there is no obstacle. On any given trial, the target of the movement

and the obstacle, if any, are present before the reach starts. Left
column shows data from two control groups in which either all (A) or

none of the movements (N) had an obstacle. The data displayed in the

middle and right columns are for a group where the probability of an

obstacle on any given trial was 50%. The marking ++ indicates that

two consecutive movements had an obstacle, and the data shown is

for the second of these two trials. The marking +- indicates that the

last trial had an obstacle but the current trial does not. No two

consecutive trials were to the same direction. The movement

directions have been rotated for ease of comparison (from Jax and

Rosenbaum 2007)
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make quantitatively reliable predictions of behavior.

Without a priori predictions, how can the theory be falsi-

fied? That is to say, if we have experimental results and are

allowed to tweak the costs or their weightings until we get

a good fit then what have we learned? We would suggest

that the best way to proceed is to either specify the cost

function before experiments are conducted and make pre-

dictions, or fit the costs to data to find the best parameter

fit, i.e., derive Q and L from Eq. (1) rather than pre-specify

them.

Second, what are the timescales of optimization? Is

optimization computed in the reaction time of each trial de

novo? The timescale appears to be longer than a single trial

because in the experiment shown in Fig. 9, making a

curved movement in the previous trial trumped what

should be optimal for the subsequent no-obstacle trial.

Certainly, new costs can be conjured up—for example, in

this case we can assume that finding feedback control gains

that minimize a cost requires neural processing that itself

has a cost and so it might be more efficient to allow the

solution in one trial to linger on to influence the solution in

the next trial. Or perhaps there is a cost in switching control

policies?

Third, what is the timescale of system identification?

Our body changes over multiple timescales. Muscles fati-

gue and recover quickly, objects are lifted and replaced

rapidly, yet aging can produce gradual loss of motor neu-

rons and transformation of muscle fibers. In other words,

the parameters of the constraint equation, and perhaps its

structure, are changing over multiple timescales. Unfortu-

nately, we cannot make optimized movements unless we

have an accurate set of constraint equations, i.e., an accu-

rate internal model. When we see a sub-optimum

movement, can we dissociate the effects of an inaccurate

internal model from effects of an inaccurate cost function?

Finally, what is the alternate hypothesis to this theory?

At this time, the alternative is another cost or constraint,

not a fundamentally distinct theory. However, formaliza-

tion of a theory is the key step that accelerates its evolution

toward acceptance or rejection. Experimental data that do

not fit with the theory are cause for celebration because

only these data encourage progress.

Conclusions

The relationship between theories and the neural machin-

ery that implements them is still in the courtship stage, but

despite the separation, it has begun to bear modest fruit:

theories have informed the neural basis of motor control in

patients while lesion studies have informed the algorithms

and representations that implement the computational

theories. The result is the functional anatomy of voluntary

movements outlined in Fig. 3b. In this framework, a role

for the cerebellum is system identification, i.e., predicting

the changes in state that arise as a result of motor com-

mands. A role for the parietal cortex is state estimation,

where predictions about sensory feedback are integrated

with visual and proprioceptive observations to form beliefs

about states of our selves and objects/people around us.

The basal ganglia may play a role in computing a ‘‘cost-to-

go’’ function, estimating value of states and costs of motor

commands. Finally, once a goal state is selected, motor

cortical areas minimize this cost function and transform

state estimates into motor output by formulating a feedback

control policy.
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