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a b s t r a c t

Cerebellar function is increasingly discussed in terms of engineering schemes formotor control and signal
processing that involve internal models. To address the relation between the cerebellum and internal
models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous
cerebellar cortical microcircuit with individual microzones having unique external connections. This
metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of
both the general microcircuit algorithm and the chip’s individual connections.

Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to
decorrelate its inputs from a reference (‘teaching’, ‘error’) signal. This algorithm is computationally
powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue
is whether the external connectivity required by such applications can be implemented biologically.

We argue that some applications appear to be in principle biologically implausible: these include
the Smith predictor and Kalman filter (for state estimation), and the feedback–error–learning scheme
for adaptive inverse control. However, even for plausible schemes, such as forward models for noise
cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is
unlikely to be a simple mapping between microzone function and internal model structure.

This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely
to have a neat classification into categories such as ‘forward model’. It is more likely that cerebellar
microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing
roles.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction: the chip metaphor

Recent reviews indicate that the possible role of the cerebellum
in the formation of internal models is a topic of growing interest
(Bastian, 2011; Cerminara & Apps, 2011; Ebner, Hewitt, & Popa,
2011; Imamizu, 2010; Medina, 2011; Shmuelof & Krakauer, 2011).
Although the term ‘internal model’ can be used very generally in
this context to refer to any neural representation of a dynamic
system (Wolpert, Ghahramani, & Jordan, 1995), many of its
most important conceptual features can be captured by a simple
example (Fig. 1).

Motor commands (as expressed by motoneurons) act on mus-
cles which move a part of the body. The mechanical properties of
the muscles and body part (for convenience referred to as the mo-
tor plant) ensure that the dynamics of the movement differ from
those of the command (Fig. 1(A)). The circuit shown in Fig. 1(B)
allows a model of this plant to be learnt, by sending a copy of
the motor commands to an adaptive element (highlighted in red
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throughout). The output of this element is compared with sensory
feedback from the actual movement, and the discrepancy between
the two used as a signal to ‘train’ the adaptive element (a form
of supervised learning). As training proceeds the discrepancy de-
creases, meaning that the dynamics of the adaptive element re-
semble more closely the dynamics of the motor plant. In this way
a model of the motor plant is learnt.

The model shown in Fig. 1 (usually referred to as a ‘forward’
model, as explained below) has many uses, including the predic-
tion of the sensory effects of movement. Such a prediction can, for
example, help distinguish the sensory signals produced by one’s
ownmovements from those arising fromexternal events—the clas-
sical reafference problem (e.g. Cullen, 2004), and further uses are
discussed in Section 3. Hence proposals that the cerebellum takes
part in the formation of internal models seek to provide a crucial
link between cerebellar function and proven sensorimotor compe-
tences (Blakemore, Frith, &Wolpert, 1999, 2001; Imamizu, Kuroda,
Miyauchi, Yoshioka, & Kawato, 2003; Kawato, 1995, 1996, 1999,
2008; Miall, Christensen, Cain, & Stanley, 2007; Miall & Reckess,
2002; Miall, Weir, Wolpert, & Stein, 1993; Miall & Wolpert, 1996;
Wolpert, 1997;Wolpert & Ghahramani, 2000;Wolpert et al., 1995;
Wolpert & Kawato, 1998; Wolpert, Miall, & Kawato, 1998).
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Fig. 1. Dynamic response and forward model of a simple viscoelastic motor plant.
A: The motor command from the motoneurons acts on muscles, which move some
part of the body. The mechanics of the muscles plus body part (= ‘motor plant’)
mean that the temporal trajectory of the movement differs from that of the motor
command of the profile of the plant. The example shows the velocity response
of a simple viscoelastic plant to a Gaussian motor command. (For convenience,
the dynamics of sensory transduction are neglected, so the sensory measurement
of the movement introduces no distortions.) B: A circuit for learning a forward
model of the motor plant dynamics. The forward model is the adaptive element
(highlighted in red; this convention is also applied in later figures). It can be learnt
using sensory error (that is, the difference between the predicted and actual sensory
consequences of the motor command) as teaching signal. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

To evaluate how far this proposed link is supported by current
evidence, the present article first outlines the popular ‘chip’
metaphor for cerebellar organisation, which requires cerebellar
functions to be modelled at both microcircuit and external-
connectivity levels.

1.1. The ‘chip’ metaphor

The arrangement of neurons and their connections within
cerebellar cortex is broadly similar over the entire cortical mantle,
whereas each individual region of the cerebellar cortex has a
unique pattern of connectionswith external neural structures. This
combination has long been recognised:

‘‘The cerebellar tissues have quite a uniform histological struc-
ture. Their role in the actualmotor control, however, varies from
region to region, depending upon what subcortical structures
they are connected with, as pointed out by Herrick (1924)’’ (Ito,
1970, p. 162);

and has given rise to what might be termed the ‘chip’ metaphor of
cerebellar organisation

‘‘Cerebellar microcomplexes are connected to various systems
of the brain and so play diverse roles in central nervous
system functions. This situation would be similar to that of a
computer chip which can be used for a great many purposes.’’
(Ito, 1997, p. 475).

This metaphor is illustrated in Fig. 2, which shows in schematic
form a functional sub-region of cerebellar cortex represented
by an identical internal structure and idiosyncratic inputs and
outputs. The important implication of the chip metaphor is that
the function of any particular cerebellar sub-region depends on
both the signal-processing capacities of the generic chip, and the
particular architecture in which it is embedded.

The relevance of the chip metaphor for evaluating internal-
model hypotheses of cerebellar function can be illustrated by the

Fig. 2. The cerebellar ‘chip’ metaphor. Each cerebellar microzone has a similar
internal organisation, but its own idiosyncratic set of connections, two inputs and
one output. The climbing fibre and output connections are unique to a microzone:
some of a microzone’s mossy fibre inputs may be shared with other microzones.
The climbing fibre teaching signal specifies the learning goals for the chip, hence it
is this connectivity which is basic to defining individual microzones. The Purkinje
cell output must then be connected to a target region in the deep cerebellar
or vestibular nuclei which contributes to achieving this goal, and for which the
learning procedure hardwired into the chip is stable and convergent. This provides
a strong constraint on the output connectivity. The mossy fibre input connections
are the least constrained. They can be regarded as a wide ‘bus’ of possibly relevant
sensory and motor signals, from which those signals actually relevant to the task
will be chosen by the learning procedure.

‘inverse-model’ circuit shown in Fig. 3. The need for an inverse
model of the motor plant arises because of the ‘distorting’ effects
of plant dynamics on the motor command, as shown in Fig. 1(A).
Motor commands that specify a desired trajectory for a part of the
bodymust therefore be converted into a form that compensates for
the characteristics of the plant. This can be achieved by passing the
command, not directly to the plant itself, but indirectly through an
inverse model of the plant (Fig. 3(A)). As with the ‘forward’ plant
model (terminology emphasising the contrast with the inverse
plant model) such a model needs to be learnt, and a possible
circuit for achieving this is shown in Fig. 3(B). Although, as will
be argued later, the circuit shown in Fig. 3(B) is too simple to be
biologically realistic, it illustrates an important point about the
difference between an adaptive element and the circuit of which
it is a component. Comparison of Figs. 1 and 3 shows how the
same adaptive element can learn either a forward model, or an
inverse model, depending on the details of the external wiring.
This is exactly the point captured by the cerebellar ‘chip’ metaphor
of Fig. 2.

Evaluating internal-model hypotheses of cerebellar function
therefore entails evaluating both the microcircuit model and the
way it is wired into any particular system-level architecture.
The particular microcircuit model chosen here is the adaptive
filter, and this is briefly described in Section 2, and its general
computational suitability for internal model formation explained.
Particular internal-model architectures are then assessed in two
stages. The first asks how they are biologically plausible—how
far the signals they require could be in principle provided
biologically (Section 3). The second stage considers the problems
that arise when the plausible architectures have to be mapped in
practice onto complex neural circuits (Section 4). The final section
addresses the implications of the internal-model hypothesis for the
future understanding of cerebellar functions (Section 5).

2. Microcircuit level: inside the chip

The repeating nature of the cerebellar microcircuit suggests
that there is a generic ‘cerebellar algorithm’, and hypotheses about
its computational capability (Albus, 1971; Marr, 1969) appeared
soon after the microcircuit itself was first described (Eccles, Ito,
& Szentágothai, 1967). The Marr–Albus framework was further
developed by Fujita (1982), who proposed that the cerebellar
circuit acts as an adaptive filter in which the mossy fibre inputs to
the cerebellum convey dynamic time-varying signals rather than
the static spatial patterns associated with the original Marr–Albus
formulations (further details in Section 2.4). Since it appears that
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Fig. 3. Inverse model control of a simple viscoelastic motor plant. A: A desired plant response, in the form of a Gaussian signal, is transmitted through an inverse model
of the viscoelastic motor plant (also used in Fig. 1). The inverse model transforms the desired response into the pulse-step motor command that is the exact control input
required to reproduce the desired response from the plant. B: A circuit for learning an inverse model of the motor plant dynamics. The inverse model is the adaptive element
and can be learnt by using motor error (that is, the difference between actual and desired motor command) as teaching signal as shown in the diagram. Since the desired
motor command is not known (or if it was, could be used directly to drive the plant) this inverse model architecture is not biologically plausible as it stands (see text).

many of the cerebellar models concerned with behaviour (such
as the control of eye or arm movements) resemble the adaptive-
filter model (Dean, Porrill, Ekerot, & Jorntell, 2010), this is the
microcircuit model considered here. Because the main focus here
is on the system-level connectivity, only a brief description is given
of the model and its biological plausibility. More detailed analysis
is available elsewhere (e.g. Dean & Porrill, 2010, 2011).

2.1. The adaptive filter

A linear in weights adaptive filter (Fig. 4(A)) takes as input a
number of time varying signals u1(t), u2(t), . . . , uN(t) (for clarity
only a single input is shown in the figure). These inputs are
passed through a basis of fixed filters Gi to produce signals pi
= G[u1(t), . . . , uN(t)] which are combined with weights (w1,
w2, . . . , wK ) to produce the output

z(t) =


wipi(t). (1)

The term adaptive filter is used because these weights are not pre-
calculated, but are changed systematically during the operation of
the filter to improve filter performance on a task. The learning rule
for filter weights usually takes the form

δwi = −β ⟨e(t)pi(t)⟩ (2)

where β is a positive learning rate parameter, e(t) is called the
teaching signal (which is often related to task errors) and the angle
brackets denote a time average. This learning rule has been re-
discovered in many contexts and given names including the delta
rule, the Widrow–Hoff rule (Widrow & Stearns, 1985), the LMS
rule, theMIT rule, the covariance rule, etc.Wewill generally use the
term covariance rule (Sejnowski, 1977) since updates to a weight
wi are proportional to the covariance of the signal pi(t) controlled
by the weight and the teaching signal e(t).

This learning rule is guaranteed to converge when the teaching
signal is the error in filter output eout(t) = z(t) − zd(t), but, as
we shall see later, this output error signal is not always available
to use as a teaching signal. There is some flexibility in the choice
of teaching signal however. Suppose we have access to a signal
e(t) = H ∗ eout(t) related to output error by a linear filter H . Then
the learning rule abovewill still converge as long as the linear filter
H is strictly positive real (SPR) (Sastry & Bodson, 1989), that is the
phase shift due to H at any frequency must be less than 90° so

that the sign of the correlation in the learning rule is not reversed
at any frequency. This SPR requirement means, for example, that
if learning is required to be stable up to a maximum frequency
of 1 Hz then the learning rule can tolerate delays in the teaching
signal of up to 250 ms (in general the allowable delay is related to
the maximum frequency by T = 1/4f ; for further discussion see
Porrill and Dean (2007a)).

The filter shown in Fig. 4(A) is often referred to as an
analysis–synthesis filter, with the analysis stage corresponding to
the transformation of inputs by the bank of fixed filters, and the
synthesis stage corresponding to the subsequent recombination of
the suitably weighted transformed inputs.

2.2. Similarity to cerebellar microcircuit

Fig. 4(B) shows the basic cerebellar microcircuit in a form that
allows comparison with the adaptive filter shown in Fig. 4(A).
Mossy fibre inputs carry the signals u1(t), u2(t), . . . , uN(t) to
the cerebellum; these are analysed by granule cells whose
axons bifurcate to form parallel fibres which carry basis signals
p1(t), p2(t), . . . , pK (t). The parallel fibres synapse onPurkinje cells
which perform the linear synthesis to produce the signal z(t)
carried by the simple spike output. In addition a single climbing
fibre winds around the Purkinje cell; spikes on this input cause
the PC to fire complex spikes on a 1–1 basis. These complex spikes
are interpreted as a trigger for synaptic weight changes with the
climbing fibre input acting as a teaching signal. The covariance rule
above is broadly consistent with the known behaviour of complex
spike dependent LTD and LTP at PF/PC synapse.

An important aspect of the resemblance illustrated in Fig. 4 is
that the adaptive filter model offers an explanation of the two dis-
tinctive features of the cerebellar microcircuit (e.g. Dean & Porrill,
2011). One is the enormous number of granule cells, estimated at
up to 80% of all neurons in the human brain (Herculano-Houzel,
2010), potentially corresponding to the large number of basis func-
tions required by an analysis–synthesis filter, particularly if non-
linear bases are needed. The seconddistinctivemicrocircuit feature
is the unusual behaviour of climbing fibres. These produce com-
plex spikes in Purkinje cells on average at ∼1 Hz, apparently too
low a frequency to have a significant influence on Purkinje cell out-
put (average simple-spike frequency ∼40 Hz). On the other hand
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Fig. 4. Adaptive filter model of the cerebellum. A. Systems diagram of the adaptive filter. Input signals (only one is shown for clarity) are analysed by a bank of filters
(in engineering applications this could be a bank of delay-lines with a range of delays) to produce a basis of signals; these are recombined with appropriate weights to
produce the desired output. The filter weights are adapted over time using the least-mean-squares (LMS) rule. B: Schematic diagram of the cerebellar microcircuit. Mossy
fibres transmit the input signal to cerebellar cortex. The granule cell layer transforms the input signal to produce an output transmitted by the parallel fibres. Parallel fibres
synapse onto the dendrites of a Purkinje cell. Parallel fibre/Purkinje cell synaptic efficacy is altered by correlational firing of a single climbing fibre and each parallel fibre.
C: Forwardmodel approximation of amotor plant using the adaptive filtermodel of cerebellum. The adaptive filter output is driven by themotor command and the adaptation
of filter weights is driven by prediction error. D: Inverse model approximation of a motor plant using the adaptive filter model of cerebellum. The adaptive filter output is
driven by the desired response signal and the adaptation of filter weights is driven by the motor error in contrast to (C). This change in connectivity is the only difference
between use of the adaptive filter in forward and inverse model roles.

the complex spike produced by a climbing fibre action potential
is associated with a large widespread calcium transient through-
out the Purkinje-cell dendritic tree, apparently related to plasticity
at the estimated 150,000 parallel-fibre synapses on the tree (e.g.
Ohtsuki, Piochon, & Hansel, 2009). The peculiar combination of
low-frequency firing with very extensive synaptic input that is
characteristic of the climbing fibre is exactly what is wanted from
a teaching signal which must alter all synaptic weights appropri-
ately without contaminating the filter output.

2.3. Biological plausibility of adaptive-filter model

Although the adaptive filtermodel of the basic cerebellarmicro-
circuit is popular and appears plausible in certain broad respects,
some detailed microcircuit features have been described that ap-
pear incompatible with it. For example, some recent studies of
granular-layer processing have suggested that mossy fibre signals
may be only slightly altered, rather than transformed as required
by an adaptive filter. A second example concerns Purkinje cell fir-
ing. In certain circumstances Purkinje cells alternate between ‘up’
states with depolarised membrane potential and simple-spike fir-
ing, and ‘down’ states with hyperpolarised membrane potential
and no simple spikes. In other circumstances, Purkinje cell firing is
apparently characterised by complex patterns and pauses, rather
than being straightforwardly related to task variables.

Possible explanations for a number of these putative incompati-
bilities have been discussed previously (Dean & Porrill, 2010; Dean
et al., 2010) with the tentative conclusion that for at least some
cerebellar microzones the adaptive filter remains a good candi-
date model (Dean, Jörntell, & Porrill, 2013; Dean & Porrill, 2011).

This conclusion appears consistent with a recent review of cere-
bellar plasticity (Gao, van Beugen, & De Zeeuw, 2012), which ar-
gues that the granular layer increases the diversity of mossy-fibre
inputs whereas the Purkinje cell network creates output by select-
ing appropriately from this diversity, processes thatwould seem to
correspondwell to the analysis and synthesis stages of an adaptive
filter. Therefore, since the emphasis here is on circuitry external
to the cerebellum, the remainder of the review proceeds on the
assumption that this conclusion is correct. The central question
considered here concerns the biological plausibility of the adaptive
filter as a candidate for the adapting element in forward models as
shown in Fig. 4(C) and in inverse plant models as in Fig. 4(D) (com-
pare with Figs. 1(B) and 3(B) respectively).

2.4. Computational adequacy of adaptive filter

However, it only makes sense to address questions of biological
plausibility if the putative microcircuit algorithm has the required
computational power. Can an adaptive filter be used in principle as
the learning element in internal model architectures?

A general answer for linear adaptive filters has been provided
by Widrow and Stearns (1985), who specifically analysed how
they could successfully be used to learn either forward or
inverse models, and how such adaptive models could be used for
model control, inverse control, interference cancellation, system
identification, and signal prediction.

More recent work on the CMAC (Cerebellar Model Articulation
Controller) described by Albus (1971) is consistent with this
analysis. The CMAC treats the cerebellar microcircuit as a look-up
table which stores the desired response to a given set of inputs,
and therefore functions as a pattern classifier or feature detector.
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However, the learning rule used by the CMAC for adjusting its
weights is of the same form as the covariance rule used by
adaptive-filter models, so the main difference between the two
consists of how inputs are coded. Although Fujita (1982) has
claimed that the spatial pattern-classifier used in the CMAC does
‘‘not account satisfactorily for processing of time–analog signals
conveyed by frequency-modulated nerve impulses’’ (p. 195), it
can be argued that the differences in coding between the CMAC
and the adaptive-filter are concerned more with convenience of
representation for individual problems rather than a fundamental
computational point (Dean et al., 2010).

It turns out that although CMACs are now rarely used for
simulating the role of the cerebellum itself (Dean, Mayhew, &
Langdon, 1994), they continue to be applied to an extremely wide
variety of adaptive control and signal-processing problems (∼30
papers per year), including fuzzy control, non-linear control and
stock index forecasting (Cheng, 2011; Commuri & Lewis, 1997;
Lin, Chen, & Yeung, 2010; Lu & Wu, 2011; Tao & Su, 2011).
Of particular relevance here are the CMAC applications to the
control of complex robots (Kim & Lewis, 2000; Sabourin, Bruneau,
& Buche, 2006). If the above argument concerning CMACs and
adaptive filters is accepted, the continuing usefulness of the CMAC
in engineering and other contexts can be used as testimony to
the computational adequacy of adaptive filters in many control
and signal processing architectures, including those required by
internal-model hypotheses.

3. Chip connectivity: biological plausibility

The second stage of evaluating internal-model hypotheses
concerns the system-level connectivity required by an adaptive
filter to implement the variety of internal-model architectures that
have been proposed for the cerebellum. To make this evaluation
processmore tractable, we split it here into two stages. First, which
specific internal-model architectures are in principle biologically
plausible? Second, do these plausible architectures in practicemap
onto neural circuitry in the ways proposed by the models?

The present section deals with the first of these questions: how
far are the proposed circuits biologically plausible, in the sense of
requiring input signals that at least in principle could be available
in the brain. We consider five specific circuits that have been
proposed in the literature. (This section is a much fuller exposition
of material covered briefly in Supplementary Material of Dean
et al., 2010.)

3.1. Forward models

A forward model of a dynamical system describes the relation-
ship between the inputs to the system and its outputs, for example
the relationship between the motor commands to a motor plant
(e.g. amechanism consisting ofmuscles and joints) and the sensory
consequences of the movement they produce (Fig. 1). Implement-
ing a forward model of a complex motor plant requires a learning
element that can accurately simulate complex input–output trans-
formations, and in biological systems such models can only be ac-
quired by supervised, trial and error, learning. Forward models are
thus ideally suited to implementation via an adaptive filter.

A simple architecture in which a forward model can be learned
successfully has been shown in Fig. 1. It can be seen that the
connectivity requirements are:

1. Mossy fibre input to the forward model consists of an efference
copy of the relevant motor commands.

2. The error signal required for learning is error in model output.
This signal must be made available on the climbing fibres.

3. In order to calculate the required error signal the model output
must target a comparator in which it is subtracted from the
actual plant output.

If the teaching signal is output error (i.e. discrepancy between
actual and predicted sensory signal) as shown in Fig. 1, then
the adaptive filter with covariance learning rule is guaranteed to
learn to be an optimal estimate of the plant (in the sense that it
minimises the mean square prediction error). Provided sufficient
time is available for learning, the accuracy of this estimate is
therefore limited only by the completeness of the basis signals
generated by the adaptive filter (see Fig. 4(A)).

In engineering systems the architecture shown in Fig. 1 is very
often used, since the forward models learnt can be ‘unplugged’
and used elsewhere. It is difficult to see how this option could
be implemented by a biological system. However forward models
are often required as components of more complex architectures
that can be biologically relevant. It is important to realise that
successful learning in these architectures does not follow directly
from the simple case described here, and that in each case a
separate analysis must be made of the availability of the error
signal required for learning, based on the specified connectivity.
We will consider three further examples of architectures which
include a forward model: noise cancellation in Section 3.1.1,
the Smith predictor in Section 3.1.2, and the state estimator in
Section 3.1.3.

3.1.1. Noise cancellation
An important application of forward models in signal process-

ing is adaptive noise-cancellation (Widrow & Stearns, 1985). The
basic structure of the problem is shown in Fig. 5(A). An input signal
of interest, s(t), is corrupted by noise n(t), for example unwanted
aircraft noise may leak into a headphone audio signal (Dean et al.,
2013). Independent information about the noise source is assumed
to be available, in the headphone example from a small micro-
phone embedded in the earphones. This noise-source information,
or reference signal r(t), is used as the input to an adaptive filter,
whose job it is to provide an estimate n̂(t) of the actual noise that is
present in the signal. If r(t) and n(t)were identical the task would
be very straightforward, because the output of the required filter
would be identical to its input. However the noise may have been
changed before being added to the signal of interest, a process rep-
resented in the diagram by the box labelled ‘noise channel’. The
task of the adaptive filter is therefore to learn a forward model of
the noise channel.

Previous analyses would suggest that the required teaching
signal is filter output error e(t) = n̂(t) − n(t), but this is clearly
unavailable since we have no access to the ‘true’ noise signal n(t).
An alternative teaching signal can be derived by considering a
slightly unusual performance measure, the power of the predicted
signal ŝ(t), given by

E =
1
2


ŝ2


. (3)

Expanding ŝ(t) and assuming statistical independence between
both noise and reference noise and the signal s(t) gives

E =
1
2


ŝ2


=

1
2


(s + (n̂ − n))2


=

1
2


s2


+

1
2


(n̂ − n)2


(4)

(since other cross-correlation terms vanish). Hence this cost
function is equal to mean square output error plus a constant, so
minimising it minimises output error. Its gradient is

∂E
∂wi

=


ŝ
∂ ŝ
∂wi


=


ŝpi


(5)
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Fig. 5. Adaptive cancellation of reafferent signals. A: Adaptive noise cancellation architecture. The problem addressed in noise cancellation is to suppress noise n(t) that
additively corrupts a signal of interest s(t). A known reference noise r(t), which is correlated with the unknown disturbance noise, is used to drive a forward model of the
noise channel. The predicted noise signal n̂(t) produced by the forward model is used to cancel the noise from the observed signal, resulting in a prediction ŝ(t) of the signal
of interest, this signal also acts as teaching signal. The architecture is adaptive, so that the forward model can track changing dynamics of the noise channel. B: Reafferent
signal cancellation. During active sensing reafferent signals are often generated that can interfere with the detection and analysis of exafferent signals. The adaptive noise
cancellation architecture in (A) can be used directly to overcome the reafference problem by substitutingmotor commands for reference noise. Hence, in a biological scenario
the animal or human can learn to predict the sensory consequences of their own movements and cancel these reafferent components from observed sensory signals.

so the gradient descent learning rule is a covariance learning rule

δwi = −β

ŝ(t)pi(t)


(6)

where the teaching signal is e(t) = ŝ(t). This learning rule adjusts
the weights until the estimated signal is uncorrelated with all the
components pi(t) of the reference noise r(t). This is an informative
example, because the teaching signalwe have derived is clearly not
a performance error, in fact it is the signal of interest. This means
that it also provides an examplewhere successful learning does not
reduce the signal carried on the climbing fibre to zero, as would be
expected for an error signal.

This architecture shown can be applied directly to the problem
of predicting the sensory effects of movement in biological
systems (Fig. 5(B)). The signal of interest is now the output
of a biological sensor. The task is to separate sensory signals
that are produced by events in the outside world (exafference)
from the ‘noise’ generated in the sensor by the animal’s own
movements (reafference). The nature of this contamination cannot
be known directly, but there is information about the movements
themselves, provided by the motor commands sent to the relevant
muscles. This ‘efference copy’ information is in effect reference
information about the noise source, and so could be used as input
to an adaptive filter (possibly located in the cerebellum, see below)
that learns to mimic the transformation of motor commands into
sensory signals. Thus the cerebellumwould learn a forward model
of ‘Plant + Sensor Dynamics’, including its basic properties of
elasticity, viscosity and inertia, together with any post-processing
in the sensory apparatus.

Once learning has been achieved, the adaptive filter output is an
explicit prediction of the effects of the animal’s own movements
on the sensory signal. This prediction is subtracted from the
raw sensory input to provide an estimate of the sensory signal
generated by objects in the external world. Learning to predict
the sensory effects of movement has been suggested as a central
cerebellar function (e.g. Miall &Wolpert, 1996). A homely example
concerns the difficulty of tickling oneself: the argument is that this
difficulty is caused by a prediction of the sensory effects of one’s
own movement that is used to diminish the actual sensory effects
(Blakemore, Wolpert, & Frith, 1998).

The connectivity requirements for a hypothetical noise cancel-
lation module are thus:

1. Mossy fibre input to the cerebellum is an efferent copy of the
motor commands.

2. The error signal required for learning is the noise-cancelled
signal.

3. Cerebellar output is an estimate of the self-produced sensations
caused by the animal’s own movement, and must target a
comparator to produce the noise-cancelled signal. Efferent copy
of this signal must be available on the climbing fibre to provide
the teaching signal in Fig. 5.

The signals required by the adaptive element in this architec-
ture appear to be available biologically, and its computational ef-
fectiveness has been tested in the context of a rat-like whisking
robot, using only observed whisker signals and a copy of motor
commands as inputs (Anderson et al., 2010). The next question
therefore concerns whether the circuit is in fact implemented bi-
ologically. This question is addressed in Section 4, for a particu-
lar form of noise cancellation that can be used for the detection of
novel stimuli.

3.1.2. Smith predictor
In engineering systems the preferred control option for track-

ing a desired response in amotor system is usually a feedback con-
troller as shown in Fig. 6(A). The motor plant output is compared
with the desired response and the error is fed into a high-gain con-
troller (labelled ‘simple controller’ in Fig. 6(A)) to produce the re-
quiredmotor command. To achieve stable and accurate tracking of
time varying signals requires careful choice of controller, and there
are powerful standard techniques for designing such controllers
when a plant model is known.

However if the plant output is subject to delay the use of
high-gain controllers can lead to instability and these standard
control design techniques break down. In the control engineering
literature a scheme known as the Smith predictor (Fig. 6(B)) is
often used to overcome the problems associated with designing
feedback controllers for systems with delay. The key benefit to the
designer is that it allows a simple controller to be designed for the
delay-free plant using standard methods. This controller is then
used as a component in the Smith predictor (Fig. 6(C)) which also
requires a forward model of the plant and a model of the delay.
This architecture is guaranteed to give stable control of the delayed
plant when the plant and delay models are accurate.

It has been suggested (Miall et al., 1993) that the cerebellum
could act as a Smith predictor, compensating for the unavoidable
time-delays arising from sensorimotor transmission and central
processing of neural signals in biological systems. It is important
in assessing this suggestion to make Marr’s distinction between
the computational and the algorithmic levels of description.
Computationally the Smith predictor implements a control scheme
in which the desired response is reproduced with a fixed temporal
delay. It is plausible that such a controller could be learned
directly by the cerebellarmicrocircuit in a suitable architecture and
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Fig. 6. The Smith predictor. A: Feedback control loop. A controller driven by
feedback error causes a motor plant to track a desired response. This control
architecture is widely used in engineered systems, and there are standard
procedures for designing suitable controllers when the plant is not subject to
delay. B: The Smith-predictor control loop. The control loop is now complicated
by the presence of a delay, here shown in the sensory feedback pathway. The
presence of a delay complicates control but a Smith predictor can be used to
simplify the design process, which in effect allows the engineer to use a simple
controller designed for a plant without delay. Note that for linear systems, the
sum total of delays through a control loop (motor, sensory and plant) can be
lumped into a single delay component, which has an equivalent effect on control
performance when placed at any location in the loop. C: Smith-predictor controller
architecture. The Smith predictor comprises two forward models of the plant, one
with delay and one without. Motor commands are primarily generated through
control of the undelayed forward model (the inner loop), thereby avoiding control
problems associated with delay. However, the sensory feedback loop shown in (B),
is required for the compensation of disturbances. Therefore, the outer loop of the
Smith predictor (through the delayed forwardmodel) is used to cancel the feedback
error for zero disturbances, which permits the transmission of unpredictable
disturbances only to the inner control loop (assuming an exact forward model of
the plant).

this possibility should be investigated. However the term Smith
predictor implies a particular algorithm based on the architecture
shown in Fig. 6(C) (or one of its variants) with specific modules
implementing the forward plant and delay models found in
that diagram. We are not aware that any biologically plausible
scheme has been proposed that would allow these individual
modules to be learned stably. For example, the teaching signal
necessary for learning the plant forward model in Fig. 6(C)
is the difference between the model input and the undelayed
plant output, and the teaching signal necessary for learning the
delay model is the difference between the (true) delayed and
undelayed plant outputs. Neither signal appears in any natural
way in the Smith predictor architecture, and substitution of similar
signals containing the delayed components will necessarily lead to
learning instability. Some of the stability problems in learningwith
delayed signals might be countered by a synaptic eligibility trace
whose delay matched the plant delay accurately (Porrill & Dean,
2007a) but since this delay is an intrinsic property of the parallel
fibre/Purkinje synapse, it could only cope with a limited range of
delays (e.g. up to 200 ms Wang, Denk, & Häusser, 2000).

In the light of this analysis we highlight a number of challenges
facing the Smith predictor hypothesis for which computational
models have yet to be proposed: (i) How is an undelayed forward
model learnt from signals that are necessarily delayed by

efferent/afferent processing? (ii) How is the Smith predictor
architecture specifically subdivided in terms of forward model
components and delays? (iii) In this architecture, what is the
role and connectivity of the cerebellum? (iv) How are sensory
error signals distributed in order to drive learning in separate
Smith predictor components (forward model and delay model)?
Answering these questions couldwell provide key insights into the
handling of efferent/afferent delays in motor control.

In addition the configuration shown in Fig. 6(C) requires sepa-
rate models of the controlled plant and of the delay (Miall et al.,
1993) suggested a slightly more plausible organisation but one in
which the plant and delay are still represented separately). This
modular configuration is an unlikely outcome of learning with
plausible teaching signals, since it requires a division of the sensory
error into individual components due to errors in plant and de-
lay models. Although it seems unlikely that regions of the cere-
bellum correspond in any direct way to the modular components
implied by the Smith predictor architecture, itwould be interesting
to investigate whether individual components of this architecture
– for example the loop via a forward model, which is very similar
to the internal feedback loop proposed by Robinson (e.g. Robin-
son, 1981) for the control of saccades – have plausible cerebellar
implementations.

3.1.3. State estimator
The input–output characteristics of a system such as a motor

plant often depend on the past history of the control inputs as
well as their current values. The state vector of such a system is
defined to be a set of variables which completely describes the
system, including these ‘historical influences’, such that the control
inputs, together with the initial state, completely determine the
future behaviour of the system. Physical output from the model
can be regarded as a measurement of some combination of
these internal state variables. Having access to the internal state
of a system is very useful when designing controllers and has
important theoretical consequences. For example it can be shown
that the optimal controller for many stochastic systems can be
implemented as a feedback controller with access to the internal
state (Todorov, 2005).

If an accurate theoretical model of the system is unavailable
the only way to determine its internal state is by inference
from measurements on the system. When the system is linear
an optimal (in the sense of least squares) algorithm for state
estimation is known, which can be implemented using a Kalman
filter in the architecture shown in Fig. 7.

Implementation of this state-estimator requires a great deal of
knowledge about the observed system. Firstly we need to know
the state update model, which describes how the internal state of
the plant changes over time both autonomously, and under the
influence of control inputs and system noise. We also need the
measurement model, which describes how measurable quantities
are related to the system’s internal state, and also includes a
model of measurement noise. The state estimator uses these two
models to estimate the system’s current state; updating the current
estimate of the state vector over time using the state updatemodel
and improving this estimate when newmeasurements arrive. This
process uses a Kalman filter algorithm, which determines the
optimal values for the gain matrix which determines the influence
of the current measurements on the state-estimate. Clearly this
influence should be small when the measurements are inaccurate
relative to the expected error in the internally predicted state, but
large in the opposite case. In essence the Kalman gains determine
the relative weighting to be given to the estimates from internal
models compared to external measurements.

Kording, Tenenbaum, and Shadmehr (2007) have investigated
the use of state estimation in biological motor control systems
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Fig. 7. The Kalman filter. Architecture of a Kalman filter state-estimator. The
Kalman filter combines predictive information with sensory observations to
produce an optimal estimate of the plant’s internal state. The predictive element
of the Kalman filter is similar to a typical forward model but the forward model
is split into two components: (i) a dynamic state model that predicts future states
from current values – the dynamicsmodel, and (ii) a staticmodel thatmaps states to
sensory signals – themeasurementmodel (each highlighted in red, since they could
be learned adaptively). The motor commands that drive the plant are also provided
as input to the dynamics model to predict the next state. When measurements
become available the predicted state is additively combined with the sensory
prediction error weighted by the Kalman gain matrix (K), to produce an improved
state estimate. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

in the context of saccadic gain adaptation. Saccades become
inaccurate if the gain of the saccadic plant varies over time. Such
gain changes can arise from a variety of internal causes such
as muscle fatigue, or developmental changes in muscle strength.
These individual components of themuscle state canhave different
characteristic time constants and sizes. For example fatigue
may cause large, relatively rapid variations while developmental
changes cause slower, smaller variations. Although observing
saccadic performance only gives information about the combined
effect of these components the Kalman filter architecture outlined
in Fig. 7 is capable of estimating the contributions of the individual
components and making an optimal gain estimate. Comparing the
behaviour of this ‘ideal observer’ with actual performance has
shown that in many cases the gains used by real observers are the
optimal gains characteristic of state estimation methods.

Studies of this kind can indicate that the system as a whole
can approximate state-estimation, but do not indicate whether the
site of state-estimation is, as has been proposed, the cerebellum
(Miall et al., 2007; Miall & Wolpert, 1996). As far as we are
aware no detailed mechanisms or architectures for the biological
implementation of state estimation methods have been proposed,
so we are unable to give a detailed analysis of the required
connectivity or learning characteristics. In particular, no scheme
has been suggested that could implement the detailed matrix
equations required to estimate the optimal Kalman gain matrices
required in the general case.

The argument so far has focused on state-estimation in the
context of hidden or unobservable states of a motor plant, states
which may in engineering applications have no physical em-
bodiment whatsoever but which have direct relevance to motor
control. However, state-estimation as a generic process for com-
biningmeasurements andmodel-based predictions can be applied
to a very wide range of tasks, including prey localisation (by pre-
cerebellar structures in electric fish Paulin, 2005) or estimating
the position and velocity of an arm (Miall & Wolpert, 1996). Since
the state update model in Fig. 7 is essentially a forward plant
model which has to be adaptive to track the true plant, it could
in principle be implemented as a (cerebellar) adaptive filter. Per-
haps an approximation to the required Kalman gains could also
be implemented with an adaptive filter (though Paulin, 2005 used

a particle-filter scheme for estimating prey location that is very
unlike the Kalman filter algorithm). As with the Smith predictor,
it seems unlikely that in a biological controller these processes
could be partitioned as neatly as in the theoretical state estima-
tor. However, future work may show how the overall functionality
of these architectures may still be achievable in a simplified form
that makes possible their implementation by an adaptive filter.

3.2. Inverse models

We have seen that a feedforward controller can be imple-
mented using the architecture shown in Fig. 3(A). As implemented
in its simplest form in Fig. 3(B) this requires the cerebellar adaptive
filter C to learn the inverse C = P−1 of the motor plant P , hence
the name adaptive inverse control.

In the architecture shown in Fig. 3(B) the teaching signal
required for supervised learning is the error in adaptive filter
output, sometimes called proximal error. Although this error in
filter output causes the errors in system output (distal or sensory
error) that will be measured by sensors, the two are not usually
related in a simpleway. The fact that it is only sensory (distal) error
that is directly available to a learning system rather than learning
element output (proximal) error is called the distal error problem:
it is a generic problem inneural net learning systems (Jordan, 1996;
Jordan &Wolpert, 2000).

In motor systems, if an adaptive-filter output contributes to a
motor command, its output error is called motor error. In this case
the distal error problem is also called the motor error problem,
and is directly relevant to the issue of biological plausibility of
cerebellar internal models. In Fig. 3(B) the teaching signal required
is motor error—the difference between actual and desired motor
commands to the motor plant. As we have noted this error signal
is not directly observable since it passes through the motor plant
before producing observable sensory consequences. Nor can the
desired motor commands be known in advance in biological
systems—hence the circuit shown in Fig. 3(B) as it stands is not
biologically plausible.

Two basic solutions to the motor error problem for cerebellar
learning have been proposed, motor error learning (Section 3.2.1)
and recurrent architecture (Section 3.2.2). In both cases we must
take account of the cerebellum acting in conjunction with other
control pathways since cerebellar lesions do not completely
abolish function. This arrangement appears to be a general feature
of cerebellar control, as seen for example in the vestibulo-ocular
reflex (Section 4.2.2) where the supplementary controller can be
localised in the brainstem (for this reason we will term this non-
cerebellar component B).

3.2.1. Motor error learning
The first solution tackles the motor-error problem head on: the

required motor error is calculated from sensory errors by hypo-
thetical neural structures called reference structures (Fig. 8(A)).
This approach has been most strongly advocated by Kawato and
co-workers and implemented in the feedback–error–learning al-
gorithm (Gomi&Kawato, 1992, 1993; Kawato&Gomi, 1992, 1993),
where the estimated motor error can also be used in online feed-
back mode to improve movement accuracy (not shown in figure).
In this architecture, taking into account the contribution from B,
the cerebellum learns a partial inverse model, C = P−1

− B.
Because motor error is related to sensory error by the plant

transfer function P , sensory error is not a satisfactory training
signal unless the plant itself satisfies the Strictly Positive Real con-
dition (Section 3.1). This constraint severely limits the applicabil-
ity of the circuit shown in Fig. 8(A) if sensory error were used
directly as a teaching signal, especially in multi-joint configura-
tions. Feedback–error–learning attempts to solve this problem by
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Fig. 8. Alternative architectures for adaptive inverse plant compensation. A: Motor-error architecture. Themotor command is produced by a combination of a fixed element
(called B in the text and representing e.g. the brainstem in the case of the VOR) and an adaptive element C representing the cerebellum. Together the fixed and adaptive
components combine to form an inverse model P−1

= B + C of the plant. In order to learn the partial inverse model C = P−1
− B, the required teaching signal is motor

error. However, the motor error is unavailable, and therefore must be estimated from the sensory error by filtering the sensory error through a reference structure that
approximates an inverse model of the plant. Since an (approximate) inverse model of the plant must be known in order to learn an inverse model of the plant this reasoning
is circular for all but very simple plants. B: Recurrent architecture. This differs from (A) in the direction of the cerebellar arcs (highlighted in red). The cerebellum receives
copies of motor command as input and its output is added to the desired response signal. Unlike the forward architecture in (A), the sensory error is used directly, thus
avoiding the circularity mentioned above. Although the brainstem and cerebellum combined constitute an inverse model, the cerebellum itself learns a partial forward
model C = B−1

− P . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

‘back-propagating’ sensory error through an approximate inverse
of the motor plant (as shown by the blue box labelled ‘Reference
Structure’ in Fig. 8(A)) to obtain an estimate of motor error. Hence
the connectivity requirements for this architecture are:

1. Mossy fibre input to the cerebellum consists of a copy of the
desired motion.

2. The error signal required for learning is motor error. This signal
must be made available on the climbing fibre by passing the
sensory error through a suitable reference structure.

3. Cerebellar output must target a brain region involved in
transmitting the motor command, and makes an open-loop
contribution to this command.

Fig. 8(A) illustrates the central problem with this scheme,
which is the requirement for an inverse model (in the Reference
Structure) to learn an inverse model. Feedback–error–learning
seeks to escape this apparent circularity by using a relatively
simple approximation to the true inverse model, such as a single
gain term to transform sensory into motor error.

However, although such approximations have been shown to
workwell in particular theoretical and robotics contexts (e.g. Dean,
Mayhew, Thacker, & Langdon, 1991; Kawato, Furukawa, & Suzuki,
1987; Kawato &Gomi, 1993;Miyamura & Kimura, 2002; Nakanishi
& Schaal, 2004) they run into problems for more complex
plants. Thus, a feedback–error–learning model of the cerebellar
control of reaching movements requires that inferior olivary
cells ‘‘detect ‘torque-like’ errors in performance’’ (Schweighofer,
Spoelstra, Arbib, & Kawato, 1998, p. 99), and a recent application
of feedback–error–learning to control of 7-dof robot arm (Tolu,
Vanegas, Luque, Garrido, & Ros, 2012) uses a teaching signal
explicitly related to individual errors in joint angle. The inescapable
difficulty is the general constraint that the reference structure
required for stable learning (i.e. an implicit inverse Jacobian) be of
similar complexity to the inverse model. This point has beenmade
in the context of robotics (e.g. Porrill &Dean, 2007b),with the claim
that feedback–error–learning ‘‘is rarely used in the literature’’
(Schenck, 2011, p. 8). For biological plants it has been argued that
with multiple-input multiple-output redundant systems such as
the vestibulo-ocular reflex in three dimensions, the connectivity
needed by the reference structure becomes infeasibly complex—
how exactly should a vertical retinal-slip signal be channelled to
the six oculorotatory muscles (e.g. Fig. 3 of Porrill, Dean, & Stone,
2004)? As Gomi and Kawato (1992, p. 112) point out: ‘‘The most
interesting and challenging theoretical problem (raised by FEL) is
setting an appropriate inverse reference model in the feedback
controller at the spinal and brainstem levels’’.

A second drawback of the architecture shown in Fig. 8(A)
is that it requires the climbing-fibre signal to cerebellar cortex
to be an estimate of motor error. ‘‘Our view that the climbing
fibers carry control error information, the difference between the
instructions and the motor act, is common to most cerebellar
motor-learning models; however ours is unique in that this er-
ror information is represented in motor-command coordinates’’
(Gomi & Kawato, 1992, p. 112). However, experimental investiga-
tions of climbing-fibre signals have emphasised their sensory na-
ture (see e.g. Miall & Wolpert, 1996), related to touch, pain, mus-
cle sense, or in the case of the vestibulo-ocular reflex retinal slip
(references in Porrill & Dean, 2007b). The fundamental importance
of this sensory signalling is reflected in the zonation scheme for
cerebellar cortex, which derives from the organisation of inputs to
cortex from the inferior olive that are segregated according to the
sensory signals they convey (e.g. Voogd, 2011).

3.2.2. Recurrent architecture
The second proposal for a biologically realistic version of

Fig. 3(B) uses a recurrent architecture (Fig. 8(B)) in which the
input to the adaptive filter is a copy of the motor commands sent
to the plant (Dean, Porrill, & Stone, 2002; Jordan, 1996; Porrill
et al., 2004). This circuit is based on the actual connectivity of
particular cerebellar microzones such as the flocculus. It can be
shown that with this connectivity learning using sensory error
is stable without the need for reference structures, for example
by Lyapunov analysis (Porrill & Dean, 2007b). Note that in this
configuration the cerebellum converges to C = B−1

− P , so that,
despite the fact that the overall architecture embodies an adaptive
inverse controller (Fig. 8(B)), the cerebellum itself implements
an incremental forward model of the plant. This complexity
emphasises that the precise nature of the model learnt by the
cerebellar chip cannot be predicted without close analysis of the
system connectivity.

The connectivity requirements for the recurrent configuration
are:

1. Mossy fibre input to the cerebellum is an efferent copy of the
motor commands.

2. The error signal required for learning is sensory error in model
output (so no reference structure is required).

3. Cerebellar output must target the brain region producing the
desired motion command, forming a closed-loop or recurrent
architecture.

This architecture, which is consistent with a range of anatomi-
cal and neurophysiological evidence, has previously been shown
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in simulations to be capable of solving the 3D VOR plant com-
pensation problem (Porrill et al., 2004), and it has been shown to
have significant theoretical advantages for the modular control of
non-linear and redundant multi-degree of freedom systems (Por-
rill & Dean, 2007b). Recurrent architecture was emphasised early
on by Eccles (1969) who called it the cerebellar ‘dynamic loop’, and
is now regarded as a generic property of cerebellar connectivity
(Middleton & Strick, 2000) of unknown function (Ramnani &Miall,
2001). The computational analysis presented here provides a pos-
sible answer. Cerebellar loops allow stable adaptive learning using
only observable sensory errors. This allows the cerebellarmicrocir-
cuit to be treated as a ‘cerebellar chip’ which can be plugged into a
motor system to improve performance, without the need for com-
plex, hard-wired reference structures.

3.3. Conclusions

This section has considered five architectures, three relating
to forward models and two to inverse models. We argue that
three of these architectures – at least in their present forms
– appear to require signals that are not available biologically.
The two architectures that do seem to be biologically plausible
in principle, namely noise cancellation (forward model) and the
recurrent architecture (inverse model) are considered further in
the next section, which asks whether they are in fact implemented
in neural circuitry. Here we address the distinction between the
adaptive filter architectures suitable in engineering applications
and those suitable for biological systems. The following appear to
be important differences between biology and engineering.

1. The learning rule in biological systems is fixed by the charac-
teristics of synaptic plasticity in the microcircuit. It cannot be
adapted ad hoc to suit particular tasks, in the way engineers
might choose specificmethods froman extensive toolkit, for ex-
ample supplementing an adaptive back-stepping design with a
particular anti-windup scheme, to meet the needs of a specific
task.

2. The cerebellar chip metaphor should not be over-extended. In
engineering applications it is possible to learn a particular com-
ponent, such as an inverse model (this learning will often be
off-line) and then plug the learned component into another slot
in a control architecture. In contrast current evidence suggests
that the cerebellar chip must learn in situ, andmust continue to
function during the learning process. If correct this simple ob-
servation rules outmany commonly used engineering solutions
to control problems.

3. The teaching signals required for adaptive control and signal
processing must be biologically plausible. In many cases these
signals will indicate performance errors (but not always, cf.
noise cancellation) since these indicate the need to change sys-
temparameters. These errorswill be provided originally by bio-
logical sensors, such as vision or touch, and they should as far as
possible be used as teaching signalswithout requiring extensive
processing based on task characteristics (in the way that engi-
neers can choose between output error, equation error, filtered
error, etc.). Although this criterion precludes the use of the com-
plex reference structures required to recovermotor error it does
not exclude the possibility that extensive pre-filtering, together
with other operations such as signal gating is implemented in
pre-olivary structures.

4. Chip connectivity: biological implementation

In this section we investigate to what extent the two
architectures that seem biologically plausible in principle, namely
noise cancellation (forward model) and the recurrent architecture
(inverse model), are implemented by neural circuitry in practice.

4.1. Forward models in noise cancellation

As mentioned previously, a number of suggestions have been
made about the cerebellum’s role in learning an internal model
that can distinguish self-produced sensory signals from those
driven by external stimuli, as in the example of tickling. However,
perhaps surprisingly, these suggestions are at present very rarely
accompanied by descriptions of the detailed neural circuitry that
would be required for such a role. Assessing how far noise-
cancellation is in fact carried out by a cerebellar model is therefore
a difficult task. Here we consider two possible examples. The first
is a hypothesis concerning the circuitry underlying a particular
variant of noise-cancellation involving the cerebellum, namely
detection of novel vibrissal inputs by the whisking rat. The second
concerns experimental evidence directly implicating cerebellar-
like structures in noise cancellation in electric fish.

4.1.1. Noise cancellation and novelty detection
The architecture for novelty detection shown in Fig. 9(A) is

similar to that of Fig. 5(B), but with the addition of a copy
of the sensory signal being sent to the adaptive element. The
specific application considered here is the detection of unexpected
whisker contacts by rats, so the components of Fig. 5(B) have
been re-labelled appropriately. Since the adaptive filter now has
information about previous sensory inputs, it is able to cancel any
component of the signal predictable from its past history. That is, it
becomes a novelty detector, responsive in thewhisking application
only to new contacts, or sharp changes in the characteristics of a
contact.

The connectivity requirements for a novelty-detection module
are therefore:
1. Input to the adaptive filter is an efferent copy of the relevant

motor commands, together with the original sensory signal.
2. Filter output is an estimate of self-noise, and must target a

comparator to produce the noise-cancelled signal.
3. The efferent copy of this signal provides the teaching signal for

the filter.

The signal from the whiskers is contaminated by ‘self-noise’
signals that are generated by the animal’s own exploratory
movements of the whiskers (‘whisking’). The nature of this
contamination cannot be known directly, but there is information
about thewhiskingmovements themselves, provided by themotor
commands sent to the muscles that move the whiskers. This
‘efference copy’ information in effect is the reference information
about the noise source, and so can be used as input to an adaptive
filter (with proposed location in zone A2 of the cerebellum) that
learns to mimic the transformation of motor commands into
sensory signals from the whiskers. Thus, the cerebellum learns a
forward model of ‘Plant + Sensor Dynamics’, including its basic
properties of elasticity, viscosity and inertia, together with any
post-processing in the sensory apparatus (Anderson et al., 2012).

Once learning has been achieved, cerebellar output would be
an explicit prediction of the sensory signal including the effects
of the animal’s own movements on the sensory signal provided
by the whiskers. Evidence suggests that this prediction could be
subtracted in the superior colliculus from the raw sensory input
to provide an estimate of unexpected whisker signal generated
by objects in the outside world. The circuit shown in Fig. 9(A) is
consistent with the known connectivity of the superior colliculus,
inferior olive and cerebellum in rat, and with the established role
of the superior colliculus in detecting (and orienting to) novel
vibrissal stimuli. Further experiments are needed to establish
whether it corresponds to the firing patterns of the relevant
neurons in those structures (Anderson et al., 2012).

The novelty detection architecture illustrates an important
theoretical point. To a large extent the function of a cerebellar
chip is fixed by its climbing fibre input and its output target. In
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Fig. 10. Early proposal for inverse model of oculomotor plant. This diagram, a
reproduction of Fig. 4 from Skavenski and Robinson (1973), shows a simplified
model of the vestibulo-ocular reflex. The head-velocity signal (Rv) from the semi-
circular canals (SCC) arrives at the vestibular nuclei (VN) and is transmitted directly
with gain T via the medial longitudinal fasciculus (mlf) to the oculomotor neurons
(OMNs). This signal is also integrated to provide an eye position signal that is sent
to the OMNs, to compensate for the elasticity of the oculomotor plant that would
otherwise pull the eye back to its starting position when the head movement was
finished. The combination of direct and integrator pathways in effect constitute an
inverse model of the first-order oculomotor plant.

fibres arising from cells in the inferior olive. But the more complex
arrangement provides an explicit estimate of sensory interference
that is available for distribution to appropriate targets in the rest of
the brain. Also, cerebellar output is no longer constrained to act as
a teaching signal, so is freed for other purposes such as cancelling
interference by moving the sensor in question, as in the vestibulo-
ocular reflex (Dean et al., 2013). However, overall the operations of
cerebellar-like structures bear a striking resemblance to those of
adaptive noise-cancelling architectures, a resemblance that adds
plausibility to the idea that the cerebellum is involved in learning
forward models.

4.2. Inverse models

The basic idea of the inverse model as shown in Fig. 3(A)
is probably most familiar in the context of the oculomotor
system, although not under that name. Skavenski and Robinson
(1973) proposed that the head-velocity signal from the semi-
circular canals needed to be partly integrated to compensate for
the elasticity of the oculomotor plant and provide an accurate
vestibulo-ocular reflex (Fig. 10). Extensive subsequentwork on the
oculomotor system has provided perhaps the best example of the
difficulties of mapping concepts such as inverse model onto the
complicated realities of neural circuitry. We consider here three
of these difficulties (see also Lisberger, 2009). The first two are
relevant to any implementation of an inverse model, whereas the
third is related to the recurrent architecture.

4.2.1. Distributed plant and motor commands
In diagrams such as Fig. 1 the properties of motor commands

and the motor plant are usually represented by relatively simple
equations. The reality however is much more complex (Fig. 11).
This diagram is itself highly simplified, in that the mechanical and
geometrical properties of orbital tissue are not shown, properties
that are now known to be much more intricate than originally
thought (e.g. Dean & Porrill, 2008a; Demer, 2006; Schutte, van
den Bedem, van Keulen, van der Helm, & Simonsz, 2006). It does
however show an eye-muscle as composed of many motor units,
and that the force each produces depends on both the firing rate
of its motoneuron, and the muscle unit’s own strength (e.g. as
measured by the maximum tetanic force it is capable of exerting).

It appears that in some muscles the control of such an array of
motor units is simplified by the ‘size principle’, whereby strength
of muscle unit is correlated with the size of the motoneuron
that controls it (Henneman & Mendell, 1981). Since motoneuron

size is related to firing threshold, this principle ensures that
even if all motor units receive the same motor-command signal
(common drive, De Luca & Erim, 1994), muscle units are recruited
automatically in order of increasing strength as the motor
command increases. There is evidence that in oculomotor muscles
also motor units are recruited in order of increasing strength
(Barmack, 1977; Dean, Porrill, & Warren, 1999; Gamlin & Miller,
2012), but modelling studies indicate that at least in primates this
is unlikely to be achieved by sending a common synaptic drive
to all motoneurons (Dean, 1997; Hazel, Sklavos, & Dean, 2002).
The central problem is the large oculomotor range in primates
(about ±45°), which in turn means that the position thresholds at
which motoneurons fire range from < 45° in the off-direction of
the muscle to ∼20° in the on-direction. The range of motoneuron
intrinsic properties required to produce such a range of thresholds
is much larger than that observed experimentally, indicating that
low and high threshold motoneurons do not receive the same
synaptic drive (Dean, 1997; Hazel et al., 2002).

It therefore appears that in the case of the oculomotor plant,
the motor command is a distributed quantity which has a complex
internal organisation. This means in turn that the output of any
inverse model, represented in simple form in Fig. 3, must also be
distributed and organised in a complex manner.

4.2.2. Distributed premotor signals
A further complication in the case of the oculomotor plant is

that the motor commands for controlling conjugate horizontal
eye-position arise from three different sources (Lisberger, Pavelko,
& Broussard, 1994; McFarland & Fuchs, 1992; Scudder & Fuchs,
1992). One is a population of neurons in the vestibular nuclei
termed ‘position-vestibular-pause’ cells, or PVPs (Fig. 12). The
second is from cells sometimes called ‘eye-position’ cells or EPs,
situated in the nucleus prepositus hypoglossi now identified as the
site of the integrator for horizontal eye-movements postulated by
Skavenski and Robinson (1973). The third source of position signals
is from floccular target neurons or FTNs, which relay information
from the flocculus to ocular motoneurons (OMNs).

Modelling how these inputs combine to form observed patterns
of OMN firing (Hazel et al., 2002) suggests that the PVPs provide an
excitatory drive that is similar for all OMNs, whereas EPs provide
an inhibitory signal that is weak for low-threshold OMNs and
strong for high-threshold OMNs, a pattern that acts to increase
the range of OMN thresholds. Inhibitory FTNs appear to provide a
signal similar to that of the EPs, suggesting this is how the adaptive
element of the inversemodel (the flocculus) influences OMN firing.

Fig. 12 thus indicates that the inverse model required for
oculomotor plant compensation is spread over a number of neural
structures, and cannot be identified with any single one of them.

4.2.3. Flocculus has multiple, partial roles
The connectivity of the flocculus shown in Fig. 12 corresponds

partly to the recurrent architecture shown in Fig. 8(B), but has
additional elements, in particular a vestibular input (mainly via
floccular projecting neurons or FPNs in the vestibular nuclei). This
gives the flocculus additional functionality. As part of an inverse
model for oculomotor plant compensation, it needs to adjust all
eye-movement signals sent to the OMNs, of whatever origin. These
are provided by the recurrent loop from brainstem and OMNs
via neurons in the paramedian tract nuclei (PMT) (e.g. Büttner-
Ennever, 1988; Dean & Porrill, 2008b). However, the existence of a
specific input from the vestibular system allows the flocculus to
compensate for changes that are confined to that system (e.g. a
change in semi-circular canal properties). This additional role has
been modelled by Haith and Vijayakumar (2009) and corresponds
to the flocculus functioning as a partial inverse model of a sensory
system.
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Fig. 11. Schematic diagram of the motor units in an extraocular muscle (EOM). EOMs consist of many motor units (NN =∼ 1000 in primate) arranged mainly in parallel.
In most motor units, a muscle unit is controlled by its ocular motoneuron (OMN). Muscle units vary in ‘strength’ xi , and the force that they produce is a function of strength,
the firing rate FR of the parent OMN, and muscle length which is determined by eye position (φ). During sustained fixation at φ, OMNs with a threshold θ that is less than φ
do not fire at all, while for the others FR = ki(φ − θi). These firing rates are determined by the synaptic drive to the motoneurons, shown here as a fixation command signal
ψ . Evidence suggests that this drive varies from motoneuron to motoneuron (see text).
Source: From Fig. 1 of Dean (1996).

Fig. 12. Sources of premotor drive to ocular motoneurons (OMNs). Conjugate eye-position related firing rates in abducens OMNs are driven from three main sources. 1.
Position-vestibular-pause neurons (PVPs) in the medial vestibular nucleus, which are part of the main pathway for the vestibulo-ocular reflex. 2. Floccular target neurons
(FTNs), part of a side path for the vestibulo-ocular reflex. These neurons receive an input from the flocculus. 3. Eye-position neurons (EPs) in the nucleus prepositus hypoglossi,
constituting the horizontal ‘integrator’. The functional connections between EPs and the other two classes of neurons are obscure. Two inputs to the flocculus are shown:
one from the semi-circular canal via floccular projecting neurons (FPNs) in the vestibular nuclei, the other from the nuclei of the paramedian tract (PMT) which conveys an
efferent copy of the commands sent to the plant. It appears that all three sets of brainstem neurons projecting to the OMNs must be regarded as part of the inverse model,
together with the cerebellar flocculus itself (grey box). The flocculus (red) is the adaptive part of the inverse model, as well as the synapses to FTNs conveying vestibular
signals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A further related function for the flocculus is indicated by
evidence relating it to the optokinetic reflex, which is a feedback
reflex driven by retinal slip (Carpenter, 1988). Because of delay
in the retinal slip signal (∼100 ms) this reflex can only have
substantial gains at low frequencies, but there it complements
the vestibulo-ocular reflex which is more effective at higher
frequencies. Since the optokinetic reflex is a feedback control
system, as illustrated in a simple form in Fig. 6(A), the likely
function of the flocculus is to tune the ‘simple controller’ shown
in the diagram to achieve the optimal gain at each frequency given
the delays in retinal slip processing, replacing the Smith-predictor
architecture shown in Fig. 6(B). This function of the flocculus does
not fit easily into categories such as ‘forward’ or ‘inverse’ models.
A scheme of this kind has been described in Anderson, Porrill, and
Dean (2007).

In primates, the contribution of the flocculus to following visual
stimuli is enormously expanded, allowing small moving targets to
be fixated in ‘smooth pursuit’ (Carpenter, 1988). Although related
to overall gaze stabilisation (inasmuch as it constitutes stabilising
gaze on a particular target) it represents a major functional
addition, reflected in new classes of Purkinje cell firing patterns
found in primates (Lisberger, 2009).

Finally, although the flocculus is represented as the adaptive
element in Fig. 12, extensive evidence indicates the existence of
plastic synapses in the brainstem itself, in particular vestibular
synapses on FTNs. It appears that floccular output itself can act as a
teaching signal to guide this plasticity (Boyden, Katoh, & Raymond,
2004; Lisberger, 1998).

5. Conclusions

The analysis presented here clarifies the relationship between
the adaptive filter model of the cerebellar microcircuit and
descriptions of cerebellar function using the terminology of
internal models. It is easy to confuse an adaptive filter with
a forward model, even though this is a category mistake. The
adaptive filter implemented by a cerebellar microzone need not
function as a forward model, but a forward model embodied in
the cerebellum necessarily has an adaptive filter as its learning
element (we knowof no alternativemechanismwhichwill provide
the learning processes assumed for forward models). In fact the
adaptive filter can be used as a component of many adaptive
control schemes (hence the cerebellar chip metaphor). As such
it is not to be identified with any particular scheme such as a
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‘forward model’ or a ‘state-estimator’; it is both lower-level and
more general. In order to learn internal models the cerebellum
draws upon the power of the adaptive filter, implemented in an
appropriate connectivity.

If the adaptive filter model is correct then the cerebellar chip
is indeed a very powerful computational device, as evidenced by
the range of applications of the adaptive filter in engineering. We
describe this property as ‘computational adequacy’. Computational
adequacy should be regarded as an essential feature of any
proposed model of cerebellar function, given that the cerebellum
is known to be involved in such awide range of sensory, motor and
possibly even cognitive, behaviours.

We have analysed the impact of the constraints imposed
by biological implementation, such as the need for a suitable
teaching signal, on the computational adequacy of the cerebellar
chip. At first sight these constraints are quite limiting, since it
seems that direct biological implementation ofmanyuseful control
architectures, such as the Smith-predictor or state-estimation, is
implausible. However we have seen that equivalent functionality
can often be achieved in a differentway, for example by embedding
the adaptive filter element in a circuit with a well-chosen
macroscopic connectivity, as seen in the recurrent architecture
for plant inversion. In fact it seems that engineers may have
something to learn from biological design principles. Current
engineering design methodologies have access to an enormous
range of sophisticated techniques, but control systems must be
designed on a case-by-case basis to suit particular problems;
this is often a non-trivial task, especially for compliant actuators
and structures. In contrast biological systems achieve remarkable
levels of performance for such systems using a relatively flat and
homogeneous control structure.

Two further conclusions of the analysis should be emphasised.
Firstly, we have looked at only a relatively small subset of the
kind of tasks with which the cerebellum is known to be involved.
This is because the relevant cerebellar connectivity is known in
sufficient detail for very few cases (Dean & Porrill, 2011), and
hence discussion of the internal model hypothesis is necessarily
focused on a small number of examples. However, each example
has suggested a different identification of the cerebellar chip
with a particular kind of internal model. This indicates that
cerebellar function in general is unlikely to be explained under
a single, simple, heading such as ‘state-estimation’ or ‘inverse
modelling’. Secondly, more detailed analysis of a particular region,
the flocculus, has shown that identification of function is likely to
be further complicated by the fact that the cerebellum both works
alongside other brain areas, and controls distributed systems, so
its contribution will necessarily be incremental and distributed. In
these situations it is more likely that cerebellar microzones, while
implementing a common algorithm, learn task-specific adaptive
filters which combine a number of roles.
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