
Neuron

Review
Calcium Signaling in Dendrites and Spines:
Practical and Functional Considerations

Michael J. Higley1 and Bernardo L. Sabatini1,*
1Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue,
Boston, MA 02115, USA
*Correspondence: bernardo_sabatini@hms.harvard.edu
DOI 10.1016/j.neuron.2008.08.020

Changes in intracellular calcium (Ca) concentration following synaptic and suprathreshold activity are medi-
ated by a wide range of sources and contribute to the regulation of myriad neuronal functions. The develop-
ment of Ca imaging techniques has dramatically increased our understanding of the complex interactions
between different Ca sources and their ability to produce spatial and temporal specificity of signaling, even
within small cellular compartments such as dendrites and dendritic spines. However, as the use of Ca imaging
has become more prevalent, the need to exercise care in the experimental methodology and interpretation of
data has also grown. In this review, we discuss the recent progress made using imaging methods in under-
standing dendritic Ca signaling and also describe a quantitative framework for using fluorescent indicators
to experimentally measure and interpret changes in intracellular Ca.
Calcium (Ca) influx into the cytoplasm of dendrites and dendritic

spines regulates a variety of neuronal functions, including synap-

tic signaling, induction of short- and long-term plasticity, and

regulation of gene transcription (reviewed in Sabatini et al., 2001;

Soderling, 2000; Zucker, 1999). Ca accumulation within these

structures is evoked by action potentials and synaptic stimuli,

which generate Ca influx through multiple classes of ion chan-

nels as well as release from internal stores. The dynamics of

evoked Ca signals depend on the properties of the stimulus,

the local membrane potential, and recent patterns of activity.

Furthermore, nonlinear interactions between Ca sources pro-

duce a complexity of signaling that allows this ubiquitous sec-

ond messenger to act with surprising spatial and temporal

specificity. The development of optical methods for measuring

changes in intracellular Ca concentration has allowed unprece-

dented access to the biochemical signaling events that occur

inside small cellular compartments such as dendrites and

spines. Here, we first review recent progress in understanding

the factors influencing Ca signaling within dendritic compart-

ments. We then discuss a quantitative framework for experi-

mentally measuring and interpreting changes in intracellular Ca

through the use of fluorescent indicators.

Section I. Ca Signaling in Neuronal Dendrites and Spines
In this section, we will review recent work illustrating how optical

methods of measuring Ca influx have provided insight into

Ca signaling in dendrites and spines of central neurons. We

will limit our discussion to postsynaptic Ca handling in principal

cells and focus primarily on those papers that have used imaging

methods to directly measure Ca dynamics in specific subcellular

compartments.

Postsynaptic Calcium Sources
Synaptically evoked increases in cytoplasmic Ca arise from

three general sources: glutamate receptors, voltage-sensitive

Ca channels (VSCCs), and release from internal stores (see Fig-
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ure 1). The specific contributions made by each of these depend

considerably on the brain structure, cell class, and even sub-

cellular compartment. Glutamate receptors, consisting broadly

of NMDA-type (NMDARs) and non-NMDA-type receptors, are

found throughout the central nervous system on dendritic shafts

and spines of multiple cell classes (Cowan et al., 2001).

NMDARs contribute a significant fraction of synaptic Ca influx

in a variety of cells, including pyramidal neurons in both the CA1

(Bloodgood and Sabatini, 2007; Kovalchuk et al., 2000; Mainen

et al., 1999; Müller and Connor, 1991; Regehr and Tank, 1992;

Sobczyk et al., 2005; Yuste et al., 1999) and CA3 (Reid et al.,

2001) regions of the hippocampus, cortical spiny stellate (Nevian

and Sakmann, 2004) and pyramidal neurons (Koester and Sak-

mann, 1998; Schiller et al., 1998), striatal medium spiny neurons

(Carter and Sabatini, 2004; Carter et al., 2007), and olfactory

granule cells (Egger et al., 2005). The conductance of cations,

including Ca, through NMDARs is strongly regulated by mem-

brane potential due to pore blockade by extracellular magne-

sium (Mg) ions (Nowak et al., 1984). However, even at the resting

potentials of most cells, Mg block is incomplete, and glutamate

binding to NMDARs can evoke Ca influx in the absence of addi-

tional depolarization (Jahr and Stevens, 1990; Sabatini et al.,

2002).

Although most non-NMDA-type glutamate receptors exhibit

minimal Ca permeability, AMPA-type glutamate receptors

(AMPARs) lacking a GluR2 subunit are Ca permeable and have

been primarily described in GABAergic interneurons (Burnashev

et al., 1992; Cull-Candy et al., 2006). However, Ca influx via

AMPARs has also been directly demonstrated in striatal medium

spiny projection neurons (Carter and Sabatini, 2004) and has

been inferred through pharmacological and physiological stud-

ies in hippocampal pyramidal neurons (Plant et al., 2006; Thia-

garajan et al., 2005) and cerebellar Purkinje cells (Denk et al.,

1995). Additionally, AMPARs contribute to Ca signaling by

providing membrane depolarization, activating VSCCs (see be-

low), and relieving Mg block from NMDARs (Bloodgood and
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Sabatini, 2007; Denk et al., 1995; Nevian and Sakmann, 2004;

Reid et al., 2001).

Another significant contributor to dendritic Ca signaling are

VSCCs, which comprise a broad class of membrane channels

with a wide variety of voltage dependence, activation, and inac-

tivation properties (Hille, 2001). Within dendrites and spines,

VSCCs open following strong synaptically evoked depolarization

arising from the coactivation of many synapses (Christie et al.,

1995; Denk et al., 1995; Eilers et al., 1995; Finch and Augustine,

1998; Magee et al., 1995; Markram and Sakmann, 1994; Miya-

kawa et al., 1992; Regehr and Tank, 1992; Reid et al., 2001; Schil-

ler et al., 1998; Yuste and Denk, 1995). Sufficient depolarization

for VSCC activation can also be provided by the back-propaga-

tion of somatically generated action potentials (bAPs) that spread

antidromically through at least the proximal portions of the den-

dritic arbor (Bloodgood and Sabatini, 2007; Callaway and Ross,

1995; Carter and Sabatini, 2004; Helmchen et al., 1999; Koester

and Sakmann, 2000; Nevian and Sakmann, 2004; Schiller et al.,

1995; Svoboda et al., 1997; Waters et al., 2003; Yuste and Denk,

1995).

Fluorescent Ca imaging has been used in combination with

pharmacological assays to reveal the extensive variation in

VSCC subtypes active across different cell classes and within

different subcellular compartments. In CA1 pyramidal neurons,

Ca influx to dendritic shafts occurs via L-type, R-type, and low-

Figure 1. Schematic Illustrating the Interplay of Ca Sources
in Dendritic Shafts and Spines
Synaptic activation produces local depolarization (black arrows) and Ca influx
(blue arrows) via AMPARs and NMDARs. Depolarization enhances the con-
ductance of NMDARs and activates VSCCs, contributing additional depolar-
ization and augmenting Ca entry. In some cell classes, synaptic activation
can also produce Ca release from internal stores such as the smooth endo-
plasmic reticulum (SER). Release from internal stores is depicted in the den-
dritic shaft but may also contribute to spine Ca signals. Dendritic depolariza-
tion produced by distal synaptic input or back-propagating action potentials
can lead to local Ca influx via VSCCs and also boost depolarization in spines.
Local membrane conductances, including sodium and potassium channels,
can modulate Ca influx by regulating the local membrane potential. Finally,
VSCCs (specifically, R-type channels) and SK-type Ca-activated potassium
channels participate in a local feedback loop, illustrating the existence of
nanodomain signaling within single dendritic compartments.
threshold T-type VSCCs (Christie et al., 1995; Magee et al., 1995;

Sabatini and Svoboda, 2000), whereas influx into individual spine

heads appears to be primarily limited to R-type channels with

a small contribution from L-type channels (Bloodgood and Saba-

tini, 2007; Hoogland and Saggau, 2004; Sabatini and Svoboda,

2000; Yasuda et al., 2003). In cortical pyramidal neurons, den-

dritic VSCCs include L-type, N-type, P/Q-type, and R-type

channels (Markram et al., 1995), while L-type, P/Q-type, and

low-threshold T-type channels are found in spines (Koester and

Sakmann, 2000). T-type VSCCs also contribute to dendritic Ca

signals in both olfactory granule cells (Egger et al., 2005) and

cerebellar Purkinje cells (Isope and Murphy, 2005). Within striatal

medium spiny neurons, Ca influx occurs through L-type, R-type,

and T-type channels in both dendritic shafts and spines (Carter

and Sabatini, 2004). Interestingly, electron microscopy has

demonstrated that L-type channels in MSN spines consist of

the a1D subunit-containing CaV1.3 subtype (Day et al., 2006).

These channels are activated at lower thresholds and are more

resistant to block by dihydropyridines compared with CaV1.2

L-type channels (Lipscombe et al., 2004), making them difficult

to distinguish pharmacologically from R-type channels and sug-

gesting that earlier reports of R-type channel exclusivity may

need to be revisited. The potentially imprecise mapping between

pharmacological sensitivity and VSCC a subunit expression

makes the molecular composition of the channels mediating

dendritic and spine Ca influx difficult to establish (Doering and

Zamponi, 2003; Lipscombe et al., 2004).

The contributions of Ca release from internal stores to den-

dritic and spine Ca transients following synaptic activation are

controversial. Using organotypic hippocampal slice cultures,

Emptage et al. (1999) found that Ca-induced Ca release signifi-

cantly contributed to synaptically evoked Ca transients in den-

dritic spines. Furthermore, in acute hippocampal CA1 slices,

strong afferent stimulation can lead to activation of metabotropic

glutamate receptors (mGluRs), triggering a phospholipase C

(PLC)- and inositol triphosphate (IP3)-dependent Ca release

from internal stores and contributing to long-term heterosynaptic

plasticity (Dudman et al., 2007; Hong and Ross, 2007; Watanabe

et al., 2006). However, other studies have failed to find evidence

for Ca release from internal stores following more limited synap-

tic stimulation of hippocampal afferents (Kovalchuk et al., 2000;

Mainen et al., 1999; Yuste et al., 1999). More evidence for synap-

tically evoked Ca release from internal stores exists for cerebellar

Purkinje cells, where several groups have shown that activation

of parallel fiber inputs can lead to Ca release via an mGluR-PLC-

IP3-coupled pathway (Finch and Augustine, 1998; Miyata et al.,

2000; Takechi et al., 1998; Wang et al., 2000).

Mechanisms of Specificity in Ca Signaling
In light of the considerable diversity of spatially overlapping

Ca sources, a key question has emerged: how is specificity

of signaling achieved and maintained? Recent studies have

suggested two potentially complementary solutions. First, con-

siderable work has shown that Ca signaling can be spatially re-

stricted, both at the nanoscale (�10–100 nm) and microscale

(�1–100 mm), providing biochemical signals that are limited to

specific subcellular compartments. Second, due to the biophys-

ical properties of many Ca sources (e.g., the voltage
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 903
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dependence of NMDARs and VSCCs), Ca influx may herald var-

ious forms of coincidence detection, providing a signal that is

generated only by specific patterns of neuronal activity.

Signaling Specificity via Calcium Nanodomains
The compartmentalization of Ca signaling within nanodomains

was initially suggested by theoretical considerations of Ca diffu-

sion in small compartments such as the presynaptic terminal

(Fogelson and Zucker, 1985; Neher, 1998; Simon and Llinás,

1985). Direct evidence for nanoscale coupling of Ca influx and

downstream signaling mechanisms was shown in auditory hair

cells (Roberts, 1993). The existence of nanoscale Ca subdo-

mains within the microscale compartment physically provided

by a single dendritic spine has recently been described as well.

Yasuda et al. (2003) found that, while L-type VSCCs did not

contribute an optically measurable amount of Ca to synaptically

evoked signals in spines of CA1 pyramidal neurons, depression

of R-type VSCC signaling following high-frequency spike trains

required activation of L-type channels and downstream CaMKII-

and cAMP-dependent signaling. The authors concluded that Ca

influx through L-type channels must activate downstream effec-

tors through Ca nanodomains that make little contribution to the

bulk (microscale) Ca accumulation in the entire spine. In addition,

studies have demonstrated that small-conductance Ca-acti-

vated potassium channels (SK channels) in hippocampal and

amygdala dendritic spines contribute to shaping synaptic re-

sponses (see Figure 1) (Bloodgood and Sabatini, 2007; Faber

et al., 2005; Ngo-Anh et al., 2005). Critically, in CA1 pyramidal

neurons, SK channels are selectively activated by Ca influx

through R-type VSCCs (Bloodgood and Sabatini, 2007), again

indicating that a direct coupling between a Ca source and a

downstream signaling pathway must occur via nanoscale

domains within dendritic spines.

Coincidence Detection and Dendritic Ca Spikes
Coincidence detection is a fundamental feature of neurons that

allows signaling specificity in response to patterned synaptic

inputs. Coincidence detection often takes the form of a nonlinear

postsynaptic response, such as action potential initiation, follow-

ing an appropriate spatiotemporal organization of afferent in-

puts. Several biophysical properties of Ca sources, including

the voltage dependence of NMDARs and VSCCs, give rise to

additional nonlinearities that may permit neuronal coincidence

detection and play key roles in various neuronal processes

including synaptic transmission and plasticity.

Paired recordings by Llinás and colleagues from the somata

and dendrites of cerebellar Purkinje cells first revealed that com-

plex spikes were mediated by dendritic Ca conductances (Llinás

and Hess, 1976; Llinás and Nicholson, 1971). However, it was

the advent of Ca imaging via fluorescent microscopy that al-

lowed direct observation of dendritic Ca influx in both the cere-

bellum (Tank et al., 1988) and hippocampus (Regehr and Tank,

1990). Using ratiometric imaging of Fura-2, Regehr and Tank

(1990) reported that high-frequency electrical stimulation of

Schaeffer collateral inputs evoked a local supralinear Ca tran-

sient in the proximal apical dendrite of CA1 pyramidal neurons.

The Ca response was regulated by both stimulation frequency

and intensity, exhibiting a clear stepwise increase in amplitude
904 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
above a critical threshold (Regehr and Tank, 1990, 1992). The rise

in Ca was spatially restricted to within �150 mm of the site of

synaptic activation and consisted of influx through both VSCCs

(particularly L-types) and NMDARs. Similar results were found

following synaptic stimulation of distal branches of the apical

dendrite (Cai et al., 2004; Golding et al., 2002; Tsay et al., 2007;

Wei et al., 2001), where both N- and T-type VSCCs may also con-

tribute (Tsay et al., 2007). These all-or-none events, termed

‘‘Ca spikes,’’ are thought to be analogous to the large-amplitude,

broad dendritic spikes described electrophysiologically (Amitai

et al., 1993; Golding et al., 1999; Remy and Spruston, 2007;

Schwartzkroin and Slawsky, 1977; Stuart et al., 1997).

Using a combination of physiology, imaging, and computer

simulations, Magee and colleagues have determined the spatio-

temporal patterns of synaptic activation necessary to elicit den-

dritic Ca spikes. Asynchronous inputs delivered to radial oblique

dendrites of CA1 pyramidal neurons produced somatic depolar-

izations that summed linearly and evoked little dendritic Ca in-

flux. In contrast, highly temporally synchronized inputs exhibited

supralinear summation of somatic voltage responses and pro-

duced a local Ca spike mediated by activation of VSCCs and

NMDARs (see Figure 2) (Gasparini et al., 2004; Losonczy and

Magee, 2006).

The voltage dependence of Ca influx through VSCCs and

NMDARs provides a potential mechanism for the ability of neu-

rons to perform coincidence detection. The biophysical proper-

ties of these Ca sources also permit a variety of other dendritic

conductances to shape the amplitude and spatial spread of

hippocampal dendritic Ca spikes. Voltage-dependent sodium

channels are capable of promoting dendritic depolarization and

thereby enhancing the amplitude of local Ca spikes (Gasparini

et al., 2004; Losonczy and Magee, 2006). In addition, the magni-

tude, duration, and spatial extent of Ca spikes are regulated by

potassium conductances, including A-type (Cai et al., 2004; Frick

et al., 2003; Losonczy and Magee, 2006) and both large-conduc-

tance (Golding et al., 1999) and small-conductance (Cai et al.,

2004) Ca-activated potassium channels. Furthermore, hyperpo-

larization-activated HCN1 channels constrain the amplitude of

local Ca spikes by providing a tonic depolarizing drive that in-

creases the resting inactivation of VSCCs involved in spike gen-

eration (Tsay et al., 2007).

Multiple studies have suggested a functional role for coinci-

dence detection via dendritic Ca spikes, linking them to the gen-

eration of site-specific plasticity of hippocampal synaptic inputs.

Theta-patterned or single high-frequency bursts of synaptic in-

put via the perforant path are capable of evoking a local Ca spike

in apical dendrites of CA1 pyramidal neurons. NMDAR and

L-type VSCC blockade significantly reduced both the amplitude

of the Ca spike and the expression of synapse-specific long-

term potentiation (LTP), suggesting that local Ca spikes provide

a mechanism for inducing synaptic plasticity in the absence of

postsynaptic sodium-channel-mediated spike generation (Gold-

ing et al., 2002; Remy and Spruston, 2007).

A similar picture of dendritic Ca spike generation has emerged

for cortical layer 5 pyramidal neurons. Yuste et al. (1994) de-

scribed synaptically evoked peaks of Ca accumulation in local-

ized regions of L5 pyramidal apical dendrites. Additional work

showed that synaptic stimulation of the distal apical dendrite is
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Figure 2. Schematic Illustrating Some of
the Features of Coincidence Detection via
Dendritic Ca Signals
The columns of traces illustrate hypothetical fluo-
rescent signals from a Ca indicator measured at
each location indicated on the pyramidal neuron
on the left. A synaptic input to spine A (first column)
or spine B (second column) produces a Ca tran-
sient limited to the active spine. Near-synchronous
inputs to a cluster of spines (here showing only
A and B, third column) produce a supralinear Ca
signal within individual spines as well as a local
Ca spike that extends into the neighboring den-
drite (location C). Somatic generation of a back-
propagating action potential (bAP, fourth column)
produces more widespread Ca transients at all
locations in the proximal dendritic arbor. Finally,
pairing a bAP with synaptic input to location A (fifth
column) produces a supralinear Ca signal within
the active spine.
capable of evoking a local Ca spike limited to within�50–150 mm

of the site of activation (Markram and Sakmann, 1994; Oakley

et al., 2001; Schiller et al., 1997). These Ca spikes exhibit all-

or-none generation and propagate poorly to the cell body. In

contrast to the hippocampus, reports have consistently found

that cortical apical dendritic Ca spikes are primarily dependent

on VSCCs, with minimal contribution from NMDARs (Markram

and Sakmann, 1994; Oakley et al., 2001), although Schiller et al.

(1997) found that coactivation of both AMPARs and NMDARs

was required to initiate the Ca transient.

Additional work has focused on the generation of so-called

‘‘NMDA spikes’’ in the basal dendrites of layer 5 pyramidal neu-

rons. Schiller et al. (2000) showed that spatially clustered synap-

tic inputs could evoke large Ca transients in fine branches of the

basal dendrites that were spatially restricted to the activated

segment. Several groups have confirmed that these transients

are primarily mediated by NMDAR activation (Major et al.,

2008; Milojkovic et al., 2007; Schiller et al., 2000). In contrast

to VSCC-mediated events, NMDA spikes are much more spa-

tially restricted, limited to regions of glutamate release (Major

et al., 2008). However, additional spread of the Ca signal beyond

the site of synaptic activation can occur and appears to be me-

diated by subsequent engagement of VSCCs (Milojkovic et al.,

2007). As in the hippocampus, these Ca spikes have been impli-

cated in long-term changes in synaptic strength. Holthoff et al.

(2004) found that a single stimulus applied to a basal dendrite

could evoke an NMDA spike, producing Ca influx into both den-

dritic spines and neighboring shafts that resulted in site-specific

long-term depression of synaptic inputs.

Synaptically evoked Ca nonlinearities can also occur in the ab-

sence of a clear ‘‘Ca spike.’’ In the striatum, near-synchronous

activation of clustered synapses results in supralinear Ca influx

within single dendritic spines that requires both NMDARs and

L-type VSCCs (Carter et al., 2007). Furthermore, in CA1 pyrami-

dal neurons, repetitive afferent stimulation in the stratum radia-

tum can evoke Ca waves in the thick apical dendrite that are

mediated by activation of mGluRs and induce subsequent IP3-

coupled Ca release from internal stores (Watanabe et al.,

2006). In addition, pairing synaptic inputs via the perforant path-

way and Schaeffer collaterals results in supralinear Ca accumu-

lation in the apical dendrite and LTP of the Schaeffer inputs
(Dudman et al., 2007). Both the supralinear Ca influx and LTP

require combined activation of NMDARs and perforant-path-

mediated mGluR-IP3 signaling.

Nonspike Ca nonlinearities are also observed in cerebellar

Purkinje cells. In mature cerebellar Purkinje cells, dendritic

spines lack functional NMDARs (Farrant and Cull-Candy,

1991). However, activation of afferent parallel fibers produces

highly localized Ca influx within single spines due to AMPAR-me-

diated depolarization and subsequent activation of VSCCs (Ei-

lers et al., 1995; Hartell, 1996). Moreover, activation of the climb-

ing fiber produces complex spikes resulting in Ca influx via

VSCCs throughout the proximal dendritic arbor (Ross and Wer-

man, 1987). Pairing climbing fiber inputs with bursts of parallel

fiber stimulation triggers supralinear Ca transients whose spatial

extent is determined by the strength of parallel fiber input (Har-

tell, 1996; Wang et al., 2000). Strong stimulation produces

a supralinear increase in Ca over large regions of dendrites

that is dependent on VSCCs. In contrast, weaker stimulation

can produce supralinear Ca influx limited to single dendritic

spines. In this case, the amplified Ca signal is produced by re-

lease from internal stores following coactivation of IP3 receptors

by IP3, produced following parallel fiber activation of mGluRs,

and Ca ions, accumulated following climbing fiber activation of

VSCCs (Sarkisov and Wang, 2008; Wang et al., 2000). The syn-

ergistic action of Ca and IP3 on Ca release from internal stores

represents an additional biophysical mechanism for neuronal

coincidence detection (Bezprozvanny et al., 1991; Finch et al.,

1991). Furthermore, this mechanism is also subject to regulation,

as large-conductance Ca-activated potassium channels act to

reduce dendritic depolarization and VSCC activation, thereby

limiting the spatial spread of the dendritic Ca signal (Rancz and

Häusser, 2006).

As in the hippocampus and cortex, local Ca transients contrib-

ute to the induction of plasticity at parallel fiber-Purkinje cell

synapses, resulting in the release of endocannabinoids that

produce short-term reduction in synaptic efficacy and are nec-

essary for long-term depression (LTD) of parallel fiber synapses

(Brenowitz et al., 2006; Brown et al., 2003; Rancz and Häusser,

2006; Safo and Regehr, 2005). Furthermore, IP3 receptor activa-

tion in the spine is necessary for mGluR-mediated LTD of parallel

fiber synapses (Finch and Augustine, 1998; Inoue et al., 1998;
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 905



Neuron

Review
Miyata et al., 2000). Using myosin-Va knockouts lacking den-

dritic spine IP3 receptors, Miyata et al. (2000) found that mutant

animals exhibited reduced Ca signaling in individual spines and

failed to generate LTD of parallel fiber synapses, although LTD

could be rescued by focal uncaging of IP3.

Ca Signaling and Coincidence Detection during
Suprathreshold Postsynaptic Activity
Dendritic Ca nonlinearities also play a role in signaling the occur-

rence of synaptic inputs that are sufficient to generate postsyn-

aptic action potentials. In CA1 pyramidal neurons, somatic

sodium-channel-mediated spikes generate widespread Ca sig-

nals by back propagating through the proximal dendritic arbor,

producing sufficient depolarization to open VSCCs in both den-

dritic branches (Callaway and Ross, 1995; Christie et al., 1995;

Jaffe et al., 1992; Spruston et al., 1995) and individual dendritic

spines (see Figure 2) (Bloodgood and Sabatini, 2007; Hoogland

and Saggau, 2004; Mainen et al., 1999; Sabatini and Svoboda,

2000; Yuste and Denk, 1995). Likewise, bAPs in cortical neurons

generate widespread Ca signals in the dendrites and spines of

layer 4 spiny stellate cells (Nevian and Sakmann, 2004) and

pyramidal neurons in layers 2/3 (Nevian and Sakmann, 2006;

Svoboda et al., 1997, 1999; Waters et al., 2003) and layer 5

(Helmchen et al., 1999; Kampa et al., 2006; Koester and Sak-

mann, 1998; Larkum et al., 1999b; Markram et al., 1995; Schiller

et al., 1995; Yuste et al., 1994). bAP-generated Ca influx into

dendrites and single spines also occurs in striatal medium spiny

neurons (Carter and Sabatini, 2004) and in cerebellar Purkinje

cells (Tank et al., 1988).

In most cases, bAP-evoked Ca signals exhibit greater magni-

tude in more proximal dendrites, decreasing with distance from

the soma (Callaway and Ross, 1995; Christie et al., 1995; Jaffe

et al., 1992; Svoboda et al., 1997, 1999). Moreover, in cortical

layer 5 pyramidal neurons, there appears to be a ‘‘hot spot’’ or

apical band �500 mm from the soma that exhibits significantly

elevated Ca influx following spike generation (Larkum et al.,

1999b; Yuste et al., 1994). The reasons for these spatial hetero-

geneities are not entirely resolved. Several reports indicate vari-

ability in the class and distribution of VSCCs in different compart-

ments of dendrites and spines (Bloodgood and Sabatini, 2007;

Christie et al., 1995; McKay et al., 2006; Sabatini and Svoboda,

2000; Westenbroek et al., 1990). However, variability in bAP-

evoked Ca transients appears to be most related to the differen-

tial extent of sodium channel-mediated spike propagation

through the dendritic arbor (Jaffe et al., 1992; Markram et al.,

1995; Schiller et al., 1995; Waters et al., 2003). Gasparini et al.

(2007) showed that local dendritic depolarization through a re-

cording electrode is able to amplify both the bAP amplitude

and the magnitude of Ca influx, while A-type potassium channels

reduce the back propagation of both sodium spikes and resul-

tant Ca influx in CA1 pyramidal neurons. Multiple groups have

also shown that back propagation may be frequency dependent,

with significant Ca influx occurring only following bursts of

appropriately timed somatic spikes (Kampa et al., 2006; Larkum

et al., 1999a; Waters et al., 2003).

In addition to generating a global Ca signal, bAPs contribute to

neuronal coincidence detection by selectively boosting local

dendritic Ca transients in response to synaptic activation (Fig-
906 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
ure 2). Pairing somatic action potentials with near-synchronous

activation of synaptic inputs leads to supralinear Ca influx in

the hippocampus, (Gasparini et al., 2007; Magee and Johnston,

1997; Yuste and Denk, 1995), cortex (Koester and Sakmann,

1998; Nevian and Sakmann, 2004, 2006; Schiller et al., 1998;

Waters et al., 2003), striatum (Carter and Sabatini, 2004), and

olfactory bulb (Egger et al., 2005). The Ca supralinearity is de-

pendent on the activation of NMDARs (Carter and Sabatini,

2004; Schiller et al., 1998; Yuste et al., 1999) and extracellular

magnesium concentration (Nevian and Sakmann, 2004), consis-

tent with the view that the bAP provides sufficient depolarization

to reduce Mg block, significantly increasing synaptic Ca influx.

This model is supported by the finding that, in most cases,

supralinear Ca influx occurs only when synaptic inputs precede

bAP generation, as glutamate bound to NMDARs is required at

the time of bAP-evoked depolarization (Koester and Sakmann,

1998; Nevian and Sakmann, 2004; Yuste et al., 1999). In con-

trast, sublinear Ca influx may occur when the bAP arrives first,

although the mechanisms of this phenomenon are unclear

(Koester and Sakmann, 1998; Nevian and Sakmann, 2004). Sig-

nificant spine Ca influx was also observed with bAP-synaptic

pairing in the presence of AMPAR antagonists, suggesting that

pairing can evoke Ca influx at synapses that are ‘‘electrically

silent’’ as one would expect for an NMDAR-dependent mecha-

nism (Nevian and Sakmann, 2004).

Nevertheless, Ca nonlinearities following pairing of bAPs with

synaptic inputs are not uniformly mediated by NMDAR dynam-

ics. Nakamura et al. (1999) showed that bursts of spikes follow-

ing strong synaptic stimulation could produce large Ca waves in

CA1 apical dendrites that were mediated by synergistic actions

of mGluR-coupled IP3 generation and bAP-associated Ca influx

on IP3 receptors. In addition, bAPs lower the threshold for initia-

tion of IP3-mediated Ca waves in CA1 apical dendrites following

repetitive afferent stimulation (Watanabe et al., 2006), and trains

of bAPs can serve to prime internal Ca stores for subsequent

release (Hong and Ross, 2007).

As with dendritic Ca spikes, the supralinear increases in Ca fol-

lowing bAP-synaptic pairing have been linked with the induction

of spike-timing-dependent plasticity (STDP), where repetitive

pairing of synaptic activity with bAP generation can produce

long-term site-specific changes in synaptic efficacy (Dan and

Poo, 2004; Kampa et al., 2007; Magee and Johnston, 1997;

Markram et al., 1997). In most cases, when synaptic activation

occurs before postsynaptic spiking (pre-post), synapses exhibit

LTP, while the reverse timing (post-pre) yields LTD. Multiple

studies have linked the supralinear Ca influx through NMDARs

seen when synaptic stimuli preceded bAPs to the generation of

LTP (Bender et al., 2006; Magee and Johnston, 1997; Nevian

and Sakmann, 2006). In contrast, the relatively reduced Ca influx

that occurs when bAPs precede the synaptic stimulus, particu-

larly when coupled with synaptic activation of mGluRs, leads to

PLC-dependent synthesis of endocannabinoids and generation

of LTD (Bender et al., 2006; Nevian and Sakmann, 2006; Safo

and Regehr, 2005; Sjöström et al., 2008). Nevertheless, the spe-

cific connection between Ca influx and plasticity remains unclear.

Some authors have suggested that the direction of plasticity

is determined by the degree of Ca elevation (Cormier et al.,

2001; Ismailov et al., 2004). However, Nevian and Sakmann



Neuron

Review
(2006) found that both LTP and LTD protocols could produce

similar Ca transients, and the absolute magnitude of Ca influx

was not correlated with the direction of synaptic plasticity.

Furthermore, the window for spike-timing-dependent LTP is

�5–30 ms, an interval considerably shorter than both the dissoci-

ation time for glutamate from NMDARs (Clements et al., 1992;

Vicini et al., 1998) and the observed window of supralinear Ca

influx (Koester and Sakmann, 1998; Nevian and Sakmann, 2006).

Similarly, the mechanism for LTD also remains unclear, with other

studies suggesting the involvement of L-type Ca channels (Bi

and Poo, 1998) or Ca release from internal stores (Nishiyama

et al., 2000).

Section II. Monitoring and Quantifying Ca Signals
in Neuronal Compartments
In this next section, we will discuss the interpretation of fluores-

cence transients collected in the course of Ca imaging experi-

ments, focusing on two main goals. First, we describe a simple

but quantitative framework that can be used to interpret fluores-

cence transients from Ca indicators and highlight basic facts

about Ca imaging that are often overlooked. These concepts

are based on the extensive treatment of intracellular Ca buffering

by Neher and colleagues (Neher and Augustine, 1992; Zhou and

Neher, 1993). Second, we differentiate between the conditions

necessary to accurately measure changes in the concentration

of intracellular calcium ([Ca]) following a stimulus versus those

needed to determine the relative contributions of multiple Ca

sources to stimulus-evoked Ca transients.

Intracellular Ca reversibly binds to endogenous molecules

such as Ca-binding proteins (e.g., calbindin, parvalbumin, cal-

modulin) (Schwaller et al., 2002). In addition, Ca binds to exper-

imentally introduced molecules such as synthetic Ca buffers

(e.g., EGTA, BAPTA, Fura-2, Fluo-4) and genetically encoded

Ca indicators (e.g., Chameleon, GCAMP, TN-XL). Fluorescent

Ca indicators are molecules that undergo a conformational

change on binding Ca that alters either their fluorescence

absorption or emission properties. Therefore, measuring intra-

cellular [Ca] requires the introduction of a Ca-binding molecule

and necessarily perturbs the dynamics of Ca transients com-

pared to the natural state. Understanding this perturbation is

critical for accurate interpretation of Ca-related fluorescent

signals, and throughout this section, we develop and highlight

five key points regarding the experimental use of fluorescent

Ca indicators.

Ca and Fluorescent Indicators Are in Equilibrium
The interaction between Ca and Ca buffer is described by the

second-order kinetic equation:

½Ca�+ ½B�4½BCa� (1)

where [Ca], [B], and [BCa] represent the concentrations of free

Ca, free buffer, and Ca-bound buffer, respectively. For many

synthetic Ca indicators, the forward rate constant (kon) is nearly

diffusion limited, whereas the reverse rate constant (koff) varies

and determines the equilibrium or dissociation constant KD (KD =

koff/kon). For typical experiments, reaction (1) locally reaches
equilibrium within �100 ms, in which time Ca diffuses far less

than 1 mm (although longer equilibration times may occur in the

presence of very high affinity indicators, particularly those that

bind multiple divalent ions, or when endogenous buffering is

high [Kao and Tsien, 1988; Naraghi, 1997; Sabatini and Regehr,

1998]). Thus, considering the typical data acquisition rates and

spatial resolutions of Ca imaging experiments, [Ca] and [B] are

assumed to be in local equilibrium. That is:

KD =
½Ca�½B�
½BCa� (2)

As the total concentration of buffer (BT) is constant, with BT =

[B] + [BCa], Equation 2 can be rewritten as:

½BCa�= BT

½Ca�
½Ca�+ KD

(3)

Equation 3 can be used to plot [BCa] as a function of [Ca],

yielding binding curves typical of two particle interactions

(Figure 3A). For many modern, high dynamic range fluores-

cence Ca indicators such as Fluo-4 and Fluo-5, free indicator

(i.e., not bound to Ca) is nearly nonfluorescent. Therefore, ex-

perimentally measured fluorescence (F) is primarily contributed

by [BCa], and we can assume that F = a[BCa]. The value of the

constant a depends on the properties of the indicator (e.g.,

cross-section, quantum efficiency, excitation and emission

spectra), microscope (e.g., illumination power, numerical aper-

ture of the objective, detectors used to collect light), and sam-

ple (e.g., size of the imaged structure, absorptive properties of

the tissue). Note that this direct relationship between [BCa] and

fluorescence does not hold when using indicators such as

Mg-green, which substantially bind divalent ions other than

Ca, or Fura-2, which possesses more than one Ca-binding site

and also exhibits fluorescence in the Ca-unbound state (Henke

et al., 1996). Furthermore, the relationship breaks down when

using imaging modalities such as whole-field fluorescence, in

which background fluorescence (e.g., tissue autofluorescence)

is not negligible, particularly in small (and therefore dim) struc-

tures such as spines and dendrites. The relative lack of tissue

autofluorescence is a major advantage of measuring spine

and dendrite fluorescence with two-photon laser-scanning

microscopy.

Point 1: The measured fluorescence from a Ca indicator is

proportional to [BCa] (with possible contributions from [B]

and autofluorescence) but not to [Ca].

Buffer Capacity Determines the Response
of Indicator to Changes in [Ca]
In Figure 3A, the relationships between [BCa] and [Ca] are plot-

ted for two buffers with different affinities (KD = 0.2 or 1.0 mM)

and for multiple concentrations of total buffer (BT = 75, 150, or

300 mM). On each curve, we have plotted the point representing

a resting spine ([Ca]rest = 0.1 mM) with a square. Note that [Ca]rest

is the value at which Ca influx and efflux are balanced and is in-

dependent of changes in Ca buffer. Subsequent points, plotted

as circles, represent changes from rest due to a series of action
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 907
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Figure 3. The Relationships between Ca-
Bound Indicator ([BCa]) and Free Ca ([Ca])
or Total Ca (CaT)
(A) The relationship between [BCa] and [Ca] is plot-
ted for a buffer with KD = 0.2 mM (left) or KD = 1.0
mM (right). Curves have been calculated for a total
buffer concentration (BT = [BCa] + [B]) of either 75,
150, or 300 mM (see Equation 3). The values for
[BCa] corresponding to resting [Ca] (squares) or
[Ca] following a series of APs (circles) are plotted.
Values for resting [Ca] as well as the total Ca influx
per AP (DCaT = 20 mM) were based on studies of
hippocampal pyramidal neurons. As [Ca] in-
creases, the buffer becomes saturated, and the
slope of each curve becomes dramatically sublin-
ear. Furthermore, because of buffer saturation, the
rise in [Ca] for each AP becomes progressively
larger.
(B) The relationship between [BCa] and total Ca in-
flux above rest (DCaT) is plotted (see Equation 9)
using the same values for KD and BT as in (A). In
contrast to (A), the curves have a large linear re-
gion with a slope �1.0 (see Equation 10). The
curves become sublinear only following near-
complete saturation of the buffer.
potentials (APs), each of which contributes 20 mM of total cal-

cium (CaT = [Ca] + [BCa]) to the spine. For these examples,

values are chosen to match those measured in apical spines of

hippocampal CA1 pyramidal neurons (Sabatini et al., 2002) and

may vary for other cell classes.

With each subsequent AP, the change in [BCa] (D[BCa]) be-

comes progressively smaller compared to the change in [Ca]

(D[Ca]). The relationship between D[BCa] and D[Ca] is described

quantitatively by the buffer capacity, kB, defined as the incre-

mental change in [BCa] for an incremental change in free [Ca]

(Neher and Augustine, 1992):

kB =
v½BCa�
v½Ca� z

D½BCa�
D½Ca� (4)

This equation, in the differential form, gives the slope of the

curves in Figure 3A. The nonlinearity of each curve indicates

that kB is not constant but decreases as [Ca] increases. Intui-

tively, at higher [Ca], a greater fraction of the total buffer is bound

and less is available to sequester further increases in [Ca]. The

differential form of Equation 4 defines kB for an infinitesimal

change in [Ca] (d[Ca]). However, most experiments involve de-

tecting larger changes in [Ca] (D[Ca]). Therefore, kB can be ap-

proximated by combining the difference form of Equation 4

with Equation 3 to yield:

kB =
BT KD�

KD + ½Ca�rest

��
KD + ½Ca�rest + D½Ca�

� (5)

Equation 5 demonstrates that, as either the total buffer con-

centration or its Ca affinity increases, the buffer capacity in-

creases.
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The utility of treating kB quantitatively is that its value predicts

features of stimulus-evoked Ca transients and corresponding

fluorescence. For example, if a stimulus such as a single AP in-

creases CaT in a spine by DCaT (20 mM in Figure 3), the corre-

sponding D[Ca] is given by:

D½Ca�= DCaT

1 + kT

(6)

Equation 6 is derived from Equation 4 using DCaT = D[Ca] +

D[BCa] and replacing kB with kT, the sum of the individual buffer

capacities for all endogenous and exogenous Ca-binding mole-

cules. Thus, D[Ca], the stimulus-evoked change in free Ca,

scales inversely with kT such that, at higher buffer capacities,

less Ca remains free for a given DCaT.

Point 2: The change in free-Ca concentration (D[Ca]) that oc-

curs following a change in total Ca concentration (DCaT) is di-

rectly determined by the total buffer capacity of the dendritic

compartment.

Determinants of the Linearity of Fluorescence
Measurements
Several groups have used equilibrium equations to derive D[Ca]

from stimulus-evoked changes in fluorescence (Grynkiewicz

et al., 1985; Maravall et al., 2000). While this approach has

been used successfully, it requires knowledge or approximation

of indicator fluorescence in the presence of both zero and satu-

rating [Ca], parameters that can be difficult to determine within

dendrites and spines of neurons in a brain slice. One potential

simplifying solution is to assume, under specific conditions, a
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linear relationship between D[Ca] and D[BCa] (and thus fluores-

cence). When a buffer is present at high concentrations and

[Ca] < < KD, Equations 4 and 5 can be approximated as:

½BCa�= kB½Ca� (7)

kB =
BT

KD

(8)

Under these conditions, there is a direct proportionality linking

[Ca] and [BCa] (and, by extension, fluorescence), and the indica-

tor is said to be ‘‘in a linear range.’’ However, Equations 7 and 8

will always underestimate actual [Ca], and the range over which

they can be used with acceptable errors is remarkably small.

Consider the situation in which the buffer is half occupied

(i.e., [BCa] = [B] = BT/2). Equilibrium (see Equation 3) dictates

that [Ca] = KD. However, Equations 7 and 8 predict that [Ca] =

KD/2—an error of 100%! In fact, to assume linearity and under-

estimate true [Ca] by less than 25%, [Ca] must be kept below

KD/4.

Point 3: In order to consider the relationship between [BCa]

and [Ca] to be linear and thus allow Equations 7 and 8 to pro-

vide a reasonable approximation, free [Ca] must remain sev-

eral-fold smaller than the KD of the indicator.

In many studies, the goal is to quantify the relative contributions

of various Ca sources to a stimulus-evoked transient rather than

to determine the absolute [Ca]. For example, what fractions of

synaptically evoked Ca transients in spines are contributed by

NMDA-type glutamate receptors (NMDARs) versus voltage-sen-

sitive Ca channels (VSCCs)? For these studies, it is a mistake to

use calculations of D[Ca] to compare the Ca influx under different

conditions.

Instead, the total stimulus-evoked Ca influx (DCaT) can be

measured directly from the change in fluorescence (i.e.,

D[BCa]), a relationship that is surprisingly insensitive to changes

in buffer capacity over a wide range. This result can be seen in

Figure 3B, where [BCa] is plotted as a function of CaT added

above rest using the following:

½BCa�= 1=2

�
ðCaT + BT + KDÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCaT + BT + KDÞ2�4ðBT ,CaTÞ

q �

(9)

Equation 9 is derived from Equation 3 using CaT = [Ca] + [BCa]

and solving for [BCa]. As in Figure 3A, points are plotted as cir-

cles for a series of APs, where each AP adds 20 mM total Ca to

the spine. Note that values for [BCa] at DCaT = 0 represent rest-

ing concentrations of bound buffer in the spine. For a variety of

indicator concentrations and affinities, the relationship between

[BCa] and CaT has a linear region with a slope of �1 (i.e., D[BCa]

is approximately equal to DCaT). This result occurs in ranges over

which the evoked change in free [Ca] per AP is already substan-

tially nonlinear (compare with Figure 3A) and can be explained by

considering buffer capacity in terms of total Ca rather than free

Ca. Combining Equations 4 and 6 yields:

D½BCa�= DCaT

kB

1 + kT

(10)
In the typical case in which the experimenter has added suffi-

cient indicator to dominate the buffer capacity of the cell, whose

contribution can be ignored (i.e., kT zkB > > 1), D[BCa] can be

used as an estimate for DCaT to within 10% error until the kB

drops to a value of �10. This conclusion holds when the endog-

enous buffer capacity of the neuron is low, as in the thin den-

drites and spines of pyramidal neurons (Noguchi et al., 2005;

Sabatini et al., 2002). However, buffer domination may be

more challenging in interneurons and Purkinje cells that have

higher endogenous Ca-binding capacities, presumably due to

higher concentration of Ca-binding proteins (Fierro and Llano,

1996; Lee et al., 2000).

Point 4. Stimulus-evoked changes in [BCa], as estimated by

changes in fluorescence, are linearly proportional to the total

Ca influx, DCaT, over a broad range. This linearity is preserved

over a range in which a large fraction of the buffer is bound to

Ca and in which the relationship between [BCa] and [Ca] is

clearly nonlinear.

Kinetic and Diffusional Effects of Ca Indicators
Thus far, we have considered the effects of Ca-binding mole-

cules on the magnitude of changes in free and total Ca. We now

briefly outline the effects of indicator on the kinetics and spatial

spread of stimulus-evoked changes in [Ca] within spines and

dendrites.

In response to a rapid rise in CaT within a small compartment,

as occurs following an AP, [Ca] rises quickly and then returns to

resting levels via various Ca extrusion and sequestration mech-

anisms with a time course that can be well-approximated by

a single exponential with decay time constant t (Sabatini et al.,

2002; Scheuss et al., 2006; Yuste and Denk, 1995). The presence

of Ca buffers slows the clearance of Ca according to:

t =
ð1 + kT Þ

g
(11)

where g is the rate of Ca clearance from the compartment and kT

is the sum of the individual buffer capacities for all intracellular

Ca-binding molecules. Thus, an increase in buffer capacity, as

occurs following the introduction of fluorescent Ca indicator,

slows the decay of intracellular Ca levels. Notably, this slowing

occurs by the same amount that the peak magnitude is reduced

(see Equation 6). Thus, the integral of the Ca transient is less sen-

sitive than the peak magnitude to variability in buffer capacity.

Importantly, investigators measuring changes in Ca via fluores-

cent indicators must remain aware that the kinetics of the mea-

sured response are typically a considerably filtered version of the

unperturbed signal.

Intracellular buffers also markedly perturb the spatial diffusion

of Ca molecules through the cytoplasm. Endogenous Ca buffers

can be grouped by their diffusion properties as either mobile or

immobile, whereas experimentally introduced indicators are

generally highly mobile. Intracellular movement of Ca can be

characterized by an effective diffusion coefficient, Deff, that is

dependent on the diffusion coefficients of free Ca (DCa) and Ca

bound to both mobile endogenous buffers (DM) and indicator

(DDye), as well as the buffer capacities of both buffers:
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 909
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Deff =

�
DCa + DM,kM + DDye,kDye

�
�
1 + kM + kI + kDye

� (12)

where kM and kI designate the buffer capacities of the mobile and

immobile endogenous buffers, respectively. The diffusion coeffi-

cient of the immobile buffer is set to zero and hence does not

appear in the numerator. In most cases, the mobility of experi-

mentally introduced Ca indicators is significantly larger than

that of endogenous buffers (Gabso et al., 1997; Hernandez-

Cruz et al., 1990), significantly increasing the distance over

which Ca molecules travel in the cytoplasm. This result has the

consequence of potentially breaking down the compartmentali-

zation of microdomain signaling normally established by various

Ca-binding molecules (Goldberg et al., 2003; Soler-Llavina and

Sabatini, 2006). Thus, experiments concerned with measuring

spatially restricted Ca signaling must pay particular concern to

the actions of introduced indicators.

Point 5: The introduction of Ca indicators can significantly de-

crease the amplitude, prolong the time course, and extend

the spatial spread of intracellular D[Ca] in comparison to the

unperturbed state. These consequences may significantly

disrupt normal Ca signaling.

Concluding Thoughts
In this review, we have discussed the practical considerations

regarding the measurement and interpretation of Ca-sensitive

fluorescent imaging data and highlighted several examples of

how optical studies have expanded our knowledge of dendritic

Ca signaling. A large body of evidence now exists showing

that, despite the diversity of spatiotemporally overlapping Ca

sources, signaling can occur with great specificity due to both

compartmentally restricted Ca transients and nonlinear summa-

tion in response to precise patterns of neuronal activity. Never-

theless, while the last few decades have witnessed enormous

strides in our understanding, a number of open questions remain

to be explored and answered.

First, the consequences of perturbed Ca diffusion due to the

highly mobile fluorescent indicators on normal Ca signaling are

almost certainly underappreciated. In particular, the existence

and function of compartmentalized Ca signaling at the microdo-

main scale remains a fascinating but elusive subject, largely due

to the difficulty in imaging Ca transients with minimal disruption

of the diffusional restrictions that support these signaling envi-

ronments. In addition, the characterization of dendritic Ca spikes

as ‘‘all-or-none’’ may understate the importance of more subtle

graded changes in [Ca] that are masked by the saturation of

moderate to high affinity indicators. The continued development

of lower-affinity indicators that preserve a measurable fluores-

cent signal will greatly facilitate additional insights into the fine

details of dendritic Ca handling.

Second, the functional role of Ca molecules as second

messengers in dendritic biochemical signaling remains unclear.

A variety of Ca-sensitive downstream molecules, such as cal-

modulin, are known to couple rises in Ca concentration to sub-

sequent changes in synaptic and cell function (Colbran and

Brown, 2004). However, in most cases the precise mechanisms
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linking changes in [Ca] to functional consequences have not

been established. The similarities between Ca nonlinearities

and STDP following bAP-synaptic pairing are highly suggestive

of a causal connection. However, clear differences between

these two phenomena highlight the need for continued investiga-

tion of the exact role played by Ca in cell signaling.

Finally, several studies demonstrate the ability of dendritic Ca

transients to herald near-synchronous and spatially clustered

synaptic activation. However, most of this evidence has been

acquired in brain slices using forms of synaptic activation that

may not closely resemble in vivo conditions. The intact brain is

awash with robust and behaviorally context-specific patterns

of synchronous neuronal activity (Buzsaki and Draguhn, 2004;

Llinás and Steriade, 2006; Stevens and Zador, 1998). Moreover,

neurons in vivo are influenced by both excitatory and inhibitory

synaptic connections as well as state-dependent actions of myr-

iad neuromodulators. One of the major hurdles in experimental

neuroscience is the need to understand how these global

patterns of network activity map onto the specific activation of

individual synapses, thus making use of the varied and dynamic

mechanisms of dendritic Ca signaling.
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